混凝土T形截面受弯构件正截面承载力计算
- 格式:ppt
- 大小:10.07 MB
- 文档页数:31
第3章钢筋混凝土受弯构件正截面承载力的计算§1概述1、受弯构件(梁、板)的设计内容:图3-1①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而破坏,叫做正截面受弯破坏。
②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破坏,叫做斜截面受剪破坏。
③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规范规定的要求。
比如最小配筋率、纵向2①板⑴板的形状与厚度:a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观区别是高宽比不同,有时也将板叫成扁梁。
其计算与梁计算原理一样。
b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度通常不小于板跨度的1/35(简支)~1/40(弹性约束)或1/12(悬臂)左右;一般民用现浇板最小厚度60mm,并以10mm为模数(讲一下模数制);工业建筑现浇板最小厚度70mm。
⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向板中两个方向均为受力钢筋。
一般情况下互相垂直的两个方向钢筋应绑扎或焊接形成钢筋网。
当采用绑扎钢筋配筋时,其受力钢筋的间距:当板厚度h≤150mm时,不应大于200mm,当板厚度h﹥150mm时,不应大于1.5h,且不应大于250mm。
板中受力筋间距一般不小于70mm,由板中伸入支座的下部钢筋,其间距不应大于400mm,其截面面积不应小于跨中受力钢筋截面面积的1/3,其锚固长度l as不应小于5d。
板中弯起钢筋的弯起角不宜小于30°。
板的受力钢筋直径一般用6、8、10mm。
对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定:a. 钢筋间距不应大于200mm,直径不宜小于8mm(包括弯起钢筋在内),其伸出墙边的长度不应小于l1/7(l1为单向板的跨度或双向板的短边跨度)。
b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出墙边的长度不应小于l1/4。
c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm,且单位长度内的总截面面积不应小于跨中受力钢筋截面面积的1/3。
T形截面受弯构件正截面承载力计算对于T形截面受弯构件正截面承载力的计算,我们需要考虑以下几个因素:1.材料的力学性能:首先我们需要知道构件所使用的材料的弹性模量和屈服强度。
这些参数通常可以从材料的规格书或实验数据中获得。
2.受力分析:我们要确定在构件上产生最大弯矩的位置。
通常情况下,T形截面受弯构件在底部和侧面承受的弯矩是最大的。
根据受力分析,我们可以得出最大弯矩值。
3.截面形状:T形截面由顶横梁和底翼板组成。
我们需要确定这些截面的几何参数,例如顶横梁的宽度、厚度和底翼板的高度、厚度。
4.应力分布:根据受力分析,我们可以绘制出T形截面受弯构件的应力分布图。
根据构件上的应力分布,我们可以确定任意截面上的应力值。
5.截面承载力计算:正截面承载力的计算通常包括弯曲抗力和剪切抗力两个方面。
-弯曲抗力:根据截面形状和应力分布,我们可以计算出截面所能承受的最大弯矩。
根据材料的弹性模量和屈服强度,我们可以计算出构件所能承受的最大应力。
然后,我们可以通过应力与强度的比较来确定截面的弯曲抗力。
-剪切抗力:T形截面的底横梁和侧面翼板之间存在剪力作用。
根据剪力的大小,我们可以计算出截面上的剪应力。
同样,我们通过应力与强度的比较来确定截面的剪切抗力。
6.结构稳定性考虑:在计算截面承载力时,还需要考虑到结构的稳定性。
这包括了截面的屈曲和扭曲稳定性等。
需要注意的是,以上步骤只是一个大致的计算方法,具体的计算过程还需要根据具体的情况进行调整和修改。
在实际工程中,通常会根据设计规范和标准进行计算,确保构件的安全可靠。
T形截面受弯构件正截面承载力计算首先,我们需要确定T形截面的几何形状参数。
T形截面由两个部分组成,一部分是腿部,另一部分是横梁。
我们需要测量腿部和横梁的宽度b和高度h,以及腿部和横梁的厚度t1和t2接下来,我们需要确定材料的特性参数。
材料的特性参数包括弹性模量E和抗弯强度fy。
弹性模量表示材料在受应力作用下产生的变形程度,抗弯强度表示材料在受弯应力作用下的最大承载能力。
然后,我们需要确定加载方式。
T形截面受弯构件可以分为两种加载方式:一种是在腿部施加荷载,另一种是在横梁施加荷载。
对于腿部受载的情况,我们可以先假设T形截面的两个腿部均受到均匀荷载q的影响。
然后利用梁的理论计算方法,根据T形截面的几何形状和材料特性,计算出腿部的正截面承载力。
根据梁的理论计算方法,腿部受均匀荷载q的最大弯矩应为最大正截面弯矩M。
根据梁的力学方程M=E·I/y,其中E为弹性模量,I为截面的惯性矩,y为截面上其中一点的距离截面重心的垂直距离。
梁的截面惯性矩I可以根据截面几何形状的性质计算得到。
腿部的正截面承载力可以根据下式计算:P = fy·A = fy·(h1·t1 + h2·t2)其中,fy为材料的抗弯强度,A为截面的面积,h1和h2为腿部的高度,t1和t2为腿部的厚度。
最后,我们还需要根据截面几何形状的性质计算出腿部的扭转常数J和抗扭矩Wt。
扭转常数J表示截面抵抗扭转变形的能力,抗扭矩Wt表示截面的最大承载能力。
通过计算这两个参数,我们可以得到T形截面的抗扭矩Wt。
综上所述,我们可以通过测量T形截面的几何形状参数,确定材料的特性参数,采用梁的理论计算方法,计算出T形截面受弯构件的正截面承载力。
这将有助于工程师评估T形截面受弯构件的结构安全性,并进行合理的设计和优化。