填料塔设计说明书
- 格式:doc
- 大小:309.50 KB
- 文档页数:10
一、设计题目苯—氯苯填料精馏塔设计二、设计数据及条件原料:苯和氯苯混合溶液,年处理能力为(7)万吨(开工率8000 小时/年),原料中苯的质量分数(0.34学号后两位);进料热状态:自选。
分离要求:馏出液中苯的质量分率不低于95%釜残液中苯的质量分率不大于0.3%(1-10号)操作压力:常压建厂地址:家乡地区单板压降:≤0.7kpa。
全塔效率:E T≥58%。
三、设计要求(一)编制一份设计说明书,主要内容包括:1.前言;2.流程与方案的选择说明与论证(附流程简图)3.精馏塔主要工艺结构尺寸设计计算(包括塔径、填料层高度、塔高的计算等)4.附属设备的选型和计算(包括冷凝器、再沸器、塔内构件:接管管径、除沫器、液体分布器、液体再分布器、支撑板、手孔、裙座等)5.填料塔流体力学计算(压力降、泛点率、气体动能因子等)6.设计结果列表7.设计评价8.主要符号和单位表9.参考文献10.致谢(二)绘制带控制点的工艺流程图(3号图纸,CAD绘图)绘制精馏塔的工艺条件图(2号图前言 (3)符号说明 (3)1概述与设计方案简介 (5)1.1操作条件的确定 (5)1.1.1操作压力 (5)1.1.2进料状态 (5)1.1.3加热方式 (5)1.1.4冷却剂与出口温度 (5)1.1.5热能的利用 (6)1.2确定设计方案的原则 (6)1.2.1满足工艺和操作的要求 (6)1.2.2满足经济上的要求 (6)1.2.3保证安全生产 (7)1.3流程的确定和说明 (7)2.1物料衡算 (8)2.1.1原料液及塔顶、塔底产品的摩尔分率 (8)2.1.2全塔物料衡算 (8)2.2理论塔板数估算 (8)2.2.2气液平衡线 (10)2.2.3进料热状况参数 (11)2.2.4求最小回流比Rmin (11)2.2.5最佳回流比 (12)2.2.6精馏段提馏段操作线 (14)2.2.7图解法求理论板数 (15)2.3各种操作条件及相关的物性估算 (16)2.3.1操作温度估算 (16)2.3.2平均摩尔质量估算 (17)2.3.3液相平均粘度估算 (18)2.3.4相对挥发度估算 (20)2.3.5操作压力估算 (20)2.3.6平均密度估算 (21)2.4气液相负荷估算 (23)2.4.1精馏段气液相负荷 (23)2.4.2提馏段气液相负荷 (24)3设备设计 (24)3.1填料的选择 (24)3.2塔径的设计 (25)3.2.1精馏段塔径 (25)3.2.2提馏段塔径 (26)3.3填料层高度计算 (27)前言 (3)符号说明 (3)1概述与设计方案简介 (5)1.1操作条件的确定 (5)1.1.1操作压力 (5)1.1.2进料状态 (5)1.1.3加热方式 (5)1.1.4冷却剂与出口温度 (5)1.1.5热能的利用 (6)1.2确定设计方案的原则 (6)1.2.1满足工艺和操作的要求 (6)1.2.2满足经济上的要求 (6)1.2.3保证安全生产 (7)1.3流程的确定和说明 (7)2.1物料衡算 (8)2.1.1原料液及塔顶、塔底产品的摩尔分率 (8)2.1.2全塔物料衡算 (8)2.2理论塔板数估算 (8)2.2.2气液平衡线 (10)2.2.3进料热状况参数 (11)2.2.4求最小回流比Rmin (11)2.2.5最佳回流比 (12)2.2.6精馏段提馏段操作线 (14)2.2.7图解法求理论板数 (15)2.3各种操作条件及相关的物性估算 (16)2.3.1操作温度估算 (16)2.3.2平均摩尔质量估算 (17)2.3.3液相平均粘度估算 (18)2.3.4相对挥发度估算 (20)2.3.5操作压力估算 (20)2.3.6平均密度估算 (21)2.4气液相负荷估算 (23)2.4.1精馏段气液相负荷 (23)2.4.2提馏段气液相负荷 (24)3设备设计 (24)3.1填料的选择 (24)3.2塔径的设计 (25)3.2.1精馏段塔径 (25)3.2.2提馏段塔径 (26)3.3填料层高度计算 (27)目录前言 (8)符号说明 (8)1 概述与设计方案简介 (10)1.1 操作条件的确定 (10)1.1.1 操作压力 (10)1.1.2 进料状态 (10)1.1.3 加热方式 (10)1.1.4 冷却剂与出口温度 (10)1.1.5 热能的利用 (11)1.2 确定设计方案的原则 (11)1.2.1 满足工艺和操作的要求 (11)1.2.2 满足经济上的要求 (12)1.2.3 保证安全生产 (12)1.3 流程的确定和说明 (13)2.1 物料衡算 (13)2.1.1 原料液及塔顶、塔底产品的摩尔分率 (13)2.1.2 全塔物料衡算 (13)2.2 理论塔板数估算 (14)2.2.2 气液平衡线 (16)2.2.3 进料热状况参数 (17)2.2.4 求最小回流比Rmin (17)2.2.5 最佳回流比 (18)2.2.6 精馏段提馏段操作线 (20)2.2.7 图解法求理论板数 (21)2.3 各种操作条件及相关的物性估算 (22)2.3.1 操作温度估算 (22)2.3.2 平均摩尔质量估算 (23)2.3.3 液相平均粘度估算 (24)2.3.4 相对挥发度估算 (26)2.3.5 操作压力估算 (26)2.3.6 平均密度估算 (27)2.4 气液相负荷估算 (29)2.4.1 精馏段气液相负荷 (29)2.4.2 提馏段气液相负荷 (30)3 设备设计 (30)3.1 填料的选择 (30)3.2 塔径的设计 (31)3.2.1 精馏段塔径 (31)3.2.2 提馏段塔径 (32)3.3 填料层高度计算 (33)3.3.1 精馏段的填料层高度 (33)3.3.2 提馏段的填料层高度 (33)3.3.3 精馏塔的填料层总高度 (33)3.4 填料层压降的计算 (34)4 辅助设备的计算及选型 (35)4.1 接管设计 (35)4.1.1 进料管 (35)4.1.2 回流管 (36)4.1.3 塔底出料管 (36)4.1.4 塔顶蒸汽出料管 (36)4.1.5 塔底进气管 (37)4.2 法兰 (37)4.3 筒体与封头 (38)4.3.1 筒体 (38)4.3.2 封头 (38)4.4 其他塔附件 (38)4.4.1 裙座 (38)4.4.2 吊柱 (38)4.4.3 人孔手孔 (38)4.5 塔总体高度设计 (39)4.5.1 塔的顶部空间 (39)4.5.2 塔的底部空间 (39)4.5.3 塔的立体高度 (39)4.6 附属设备 (39)4.6.1 塔顶冷凝器 (39)4.6.2 原料预热器 (41)4.6.3 再沸器 (41)4.6.4 进料泵 (42)4.6.5 回流泵 (43)5 设计结果明细表 (43)5.1 物料衡算计算结果 (43)5.2 精馏塔工艺条件及有关物性数据计算结果 (44)5.3 精馏塔工艺设计结果 (44)5.4 接管尺寸计算结果 (44)设计评述 (45)参考文献 (45)前言在化工生产中,精馏是最常用的单元操作,,是分离均相液体混合物的最有效方法之一,在炼油、化工、石油化工等工业中得到广泛应用。
化工原理课程设计题目处理量为1200m3/h水吸收二氧化硫过程填料吸收塔的设计专业化学工程与工艺班级化工2102姓名柯来烽学号 3102109230指导教师胡章文化工原理设计任务书专业:化学工程与工艺班级:化工2102 设计人:柯来烽一.设计题目处理量为1200m3/h水吸收二氧化硫过程填料吸收塔的设计二.原始数据及条件进塔二氧化硫含量为8%(摩尔分率,下同),温度25℃。
塔顶易挥发组分回收率94% 。
进塔吸收剂温度20℃,由于气液比比较大,温度基本不变,吸收温度可近似取清水温度。
二氧化硫回收率为操作压强为常压三.设计要求1. 标题页;2. 设计任务书;3. 目录;4. 确定设计方案;5. 填料塔吸收的塔径,填料层高度,塔高和填料层压降的计算;6. 塔及主要附属构件结构尺寸设计;7. 设计一览表;8. 对本设计的评述;9. 绘制填料塔装备图;10. 参考文献。
四.设计日期: 2013 年 6 月 10 日至 2013 年 6月 20 日目录摘要 (1)1绪论 (2)1.1吸收技术概况 (2)1.2吸收设备发展 (2)1.3吸收在工业生产中的应用 (3)2设计方案 (4)2.1吸收方法及吸收剂的选择 (4)2.1.1吸收方法 (4)2.1.2吸收剂的选择: (4)2.2吸收工艺的流程 (5)2.2.1吸收工艺流程的确定 (5)2.2.2吸收工艺流程图及工艺过程说明 (6)2.3操作参数选择 (7)2.3.1操作温度的选择 (7)2.3.2操作压力的选择 (7)2.3.3吸收因子的选择 (7)2.4吸收塔设备及填料的选 (8)2.4.1吸收塔设备的选择 (8)2.4.2填料的选择 (8)3吸收塔工艺的算 (10)3.1基础性物性数据 (10)3.1.1液相物性数据 (10)3.1.2气相物性数据 (10)3.1.3气液平衡数据 (10)3.2物料衡算 (11)3.3塔径的计算及校核 (11)3.3.1塔径的计算 (11)3.3.2泛点率的计算 (13)3.3.3气体能动因子 (13)3.3.4填料规格校核 (13)3.3.5液体喷淋密度校核 (13)3.4填料层高度计算 (14)3.4.1传质单元数计算 (14)3.4.2传质单元高度计算 (14)3.4.3填料层高度的计算 (15)3.5 填料塔附属高度的计算.............................................................. (16)3.6 液体分布器的简要设计 (16)3.6.1 分布点密度及布液孔数的计算 (16)3.6.2布液计算 (17)3.6.3 塔底液体保持管高度的计算..................................................................... (17)3.7 其他附属塔内件的选择 (18)3.7.1液体再分布器 (18)3.7.2填料支撑板 (18)3.7.3 填料压紧装置与床层限制板 (18)3.7.4 气体进出口装置与排液装置 (18)3.8 吸收塔主要接管尺寸算 (19)3.9 填料层压力降的计算 (19)工艺设计计算结果汇总与主要符号说明 (21)结束语 (24)主要符号说明 (25)参考文献 (27)摘要在化工生产中,气体吸收过程是利用气体混合物中,各组分在液体中溶解度或化学反应活性的差异,在气液两相接触是发生传质,实现气液混合物的分离。
填料吸收塔的设计说明书目录1.题目 (3)2. 吸收塔的工艺计算 (4)2.1基础物性数据 (4)2.1.1液相物性数据 (4)2.1.2气相物性数据 (4)2.1.3气液相平衡数据 (4)2.2物料衡算 (5)2.3填料塔的工艺尺寸的计算 (6)2.3.1塔径的计算 (6)2.3.2传质单元高度计算 (8)2.3.3传质单元数的计算 (10)2.3.4填料层高度 (11)2.3.5 筒壁厚度及封头厚度 (11)2.4塔附属高度的计算 (11)2.5填料层压降的计算 (12)2.6液体分布器计算 (13)2.6.1 液体分布器 (13)2.6.2 布液孔数 (13)2.6.3 塔底液体保持高度 (13)2.7 其他附属塔内件的选择 (13)2.7.1 液体分布器 (14)2.7.2 填料支撑板 (14)2.7.3 填料压板与床层限制板 (15)2.7.4 气体进出口装置与排液装置 (15)3.塔的强度校核 (15)3.1塔的载荷分析 (15)3.1.1质量载荷 (16)3.1.2风载荷 (16)3.1.3地震载荷 (17)3.2筒体的强度及稳定性校核 (17)3.2.1筒体轴向应力 (17)3.2.2轴向应力校核条件 (18)3.3裙座的强度及稳定性校核 (18)3.3.1裙座筒体 (18)3.3.2裙座基础环 (18)3.3.3地脚螺栓 (18)3.3.4裙座与塔体连接焊缝 (19)附录一工艺设计计算结果汇总及主要符号说明 (20)参考文献 (22)1.题目吸收塔设计题目焙烧炉尾气净化吸收塔设计矿石焙烧炉出来的气体中含SO2,为了防止大气污染,采用清水洗涤工艺除去其中的SO2。
焙烧炉出来的气体温度为25℃,洗涤水的温度为常温20℃。
试设计一座吸收塔,设计参数如下:组号炉气流量Nm3/h 炉气SO2含量(摩尔分数)操作压力MPa操作温度℃要求SO2的吸收率%1 1000 0.07 0.15 20 972 1500 0.06 0. 15 20 963 2000 0.05 0. 15 20 954 2500 0.05 0. 15 20 95主要设计内容:1.确定吸收过程设计方案;2.吸收塔的物料和能量衡算;3.吸收塔的工艺设计计算;4.填料塔附属内件设计;5.吸收塔接管尺寸计算;6.绘制吸收塔设计条件图;7.绘制填料塔主要内件施工图(如液体分布器、气体分布器、填料压板等);8.编写设计计算说明书2. 吸收塔的工艺计算2.1 基础物性数据由于操作气压为0.15Mpa,温度为20摄氏度,所以接近与标准状态一个大气压和20摄氏度,1500Nm3/h可以换算成1000m3/h1.设计方案的确定用水吸收SO2属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流程。
化工原理课程设计—填料塔的设计说明书化学与化工学院制目录一、绪论 (3)二、设计任务及操作条件 (3)三、设计方案的确定 (4)1、装置流程的确定 (4)2、吸收剂选择 (5)3、操作温度与压力的确定 (5)4、填料的类型与选择 (6)四、基础物性参数的确定 (8)1、液相物性参数 (8)2、气相物性参数 (8)3、气液相平衡参数 (9)4、物料衡算 (9)5、填料物性参数 (10)五、填料塔工艺尺寸的确定 (11)1、塔径的计算 (11)2、填料层高度计算 (14)六、填料层压降计算 (16)七、填料塔内件的类型与设计 (17)八、总结 (18)九、参考文献 (19)十、后记......................................................................................................... 错误!未定义书签。
十一、符号说明.. (19)一、绪论塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。
根据塔内气液接触部件的形式,可以分为填料塔和板式塔。
板式塔属于逐级接触逆流操作,填料塔属于微分接触操作。
工业上对塔设备的主要要求:(1)生产能力大(2)分离效率高(3)操作弹性大(4)气体阻力小结构简单、设备取材面广等。
塔型的合理选择是做好塔设备设计的首要环节,选择时应考虑物料的性质、操作的条件、塔设备的性能以及塔设备的制造、安装、运转和维修等方面的因素。
板式塔的研究起步较早,具有结构简单、造价较低、适应性强、易于放大等特点。
填料塔由填料、塔内件及筒体构成。
填料分规整填料和散装填料两大类。
塔内件有不同形式的液体分布装置、填料固定装置或填料压紧装置、填料支承装置、液体收集再分布装置及气体分布装置等。
与板式塔相比,新型的填料塔性能具有如下特点:生产能力大、分离效率高、压力降小、操作弹性大、持液量小等优点。
填料塔的类型很多,其设计的原则大体相同,一般来说,填料塔的步骤如下:根据设计任务和工艺要求,确定设计方案;根据设计任务和工艺要求,合理地选择填料;确定塔径、填料层高度等工艺尺寸;计算填料层的压降;进行填料塔塔内件的设计和选型。
空气—丙酮填料吸收塔设计说明书化工原理课程设计任务书设计题目:空气-丙酮填料塔吸收设计任务及操作条件:混合气(丙酮、空气)处理量:1000m3/h(标准状态)进塔混合气中含丙酮:5%(V%);温度:20OC丙酮回收率:96%进塔吸收剂(清水)温度:20OC设计条件:操作条件:常压操作设备型式:自选厂址:本地区设计内容:1、设计方案的选择及流程说明2、工艺计算3、主要设备工艺尺寸设计(1)塔径的确定(2)填料层高度计算(3)总塔高、总压降及接管尺寸的确定4、辅助设备选型与计算5、设计结果汇总6、工艺流程图及换热器工艺条件图7、设计评论指导老师:(签名)2008.6.281.概述1.1吸收技术概况吸收塔设备是气液接触的传质设备,一般可分为级式接触和微分接触两类。
一般级式接触采用气相分散,设计采用理论板数及板效率;而微分接触设备常采用液相分散,设计采用传质单元高度及传质单元数。
本设计采用后者。
吸收是气液传质的过程,应用填料塔较多。
而塔填料是填料塔的核心构件,它提供了塔内气—液两相接触而进行传质和传热的表面,与塔的结构一起决定了填料塔的性能[1]。
1.2吸收设备的发展吸收操作主要在填料塔和板式塔中进行,尤其以填料塔的应用较为广泛。
塔填料的研究与应用已获得长足的发展,鲍尔环、阶梯环、莱佛厄派克环、金属环矩鞍等的出现标志着散装填料朝高通量、高效率、低阻力方向发展有新的突破。
规整填料在工业装置大型化和要求高分离效率的情况下,倍受重视,已成为塔填料的重要品种。
其中金属与塑料波纹板造价适中,抗污力强,操作性能好,并易于工业应用,可作为通用填料使用;栅格填料对液体负荷和允许压降要求苛刻的过程十分有利,并具有自净机能,即使应用在污垢系统也能长期稳定运转;脉冲填料独特的结构使之在大流量、大塔径下也不会发生偏流,极易工业放大,从发展上看很有希望。
塔填料仍处于发展之中,今后的研究方向主要是提高传质效率,同时考虑填料的强度、操作性能及使用上的通用因素,并综合环型、鞍型及规整填料的优点,进而开发构型优越、堆积接触方式合理、流体在整个床层能均匀分布的新型填料。
学校:华东交通大学学院:基础科学学院姓名:王业贵学号:20100810030111指导老师:周枚花老师时间:2013.12.30-2014.1.10一、设计任务书一、设计题目年处理量为4吨氮气填料吸收塔的设计2.0410二、设计任务及操作条件试设计一座填料吸收塔,用于脱除混于空气中的氨气。
混合气体的处理量为2400 m3/h,其中含空气95%,含氨气为5%(体积分数),要求塔顶排放气体中含氨低于0.02%(体积分数)。
采用清水进行吸收,吸收剂的用量为最小用量的1.5倍。
20℃氨在水中的溶解度系数为H =0.725kmol/(m3.kPa)三、工艺操作条件1.厂址为南昌地区2.操作压力为101.3kpa3.操作温度20℃4.每年生产时间:300天,每天24小时5.自选填料类型及规格四、设计内容1. 吸收流程选择2. 填料选择(根据处理量选择)3. 基础物性数据的搜集与整理4. 吸收塔的物料衡算5. 填料塔的工艺尺寸计算(塔径,填料层高度,填料层压降)6. 流体分布器简要设计7.辅助设备的计算及选型8.设计结果一览表9.后记(对设计过程的评述和有关问题的讨论)10.绘制有关图纸11.编写设计说明五、化工设计说明书的内容完整的化工设计报告由说明书图纸两部分组成。
设计说明书中应包括所有论述、原始数据、计算、表格等,编排顺序如下:(1)标题页;(2)设计任务书;(3)目录;(4)设计方案简介;(5)工艺流程草图;(6)工艺计算以主体设备设计计算及选型;(7)辅助设备的计算及选择;(8)设计结果概要或设计一览表;(9)对本设计的评述;(10)附图(工艺流程图(设计说明书中)、主体设备工艺条件图(A3));(11)参考文献;二、设计方案(一)流程图及流程说明该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。
经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出。
目录1.概述 (3)1.1 填料塔的概述 (3)1.1.1 填料的类型 (4)1.1.2 填料的几何特性 (5)1.1.3 填料的性能评价 (5)1.2 填料塔的流体力学性能 (6)1.2.1 填料层的持液量 (6)1.2.2 填料层的压降 (6)1.2.3 液泛 (6)1.2.4 液体喷淋密度和填料表面的润湿 (7)1.2.5 返混 (7)1.3、 课题设计内容、设计参数 (7)1.3.1 设计内容 (7)1.3.2 设计主参数的确定 (7)2.环形散装填料塔的结构设计 (8)2.1 填料的选择 (8)2.2 塔的内件选型及设计 (9)2.2.1 填料支承板 (9)2.2.2 填料压板 (9)2.2.3 液体初始分布器 (10)2.2.4 液体收集和再分布器(液体再分配装置) (11)2.2.5 除雾沫器 (12)3.填料塔的载荷分析及强度校核 (12)3.1筒体和封头厚度计算 (12)3.2载荷分析 (14)3.2.1塔设备质量载荷计算 (14)3.2.2自振周期的计算 (16)3.2.3地震载荷与地震弯矩的计算 (16)3.2.4风载荷与风弯矩的计算 (18)3.2.5 偏心弯矩e M (22)3.3强度校核 (23)3.3.1圆筒轴向力校核和圆筒稳定校核 (23)3.3.2塔设备压力试验时的应力校核 (24)3.3.3裙座轴向应力校核 (25)3.3.4基础环和地脚螺栓设计及校核 (27)3.3.5筋板设计及校核 (29)3.3.6盖板设计及校核 (30)3.3.7裙座与塔壳的对接焊缝 (31)3.3.8接管计算 (32)4 其他零部件的选取计算 (32)4.1静电接地板 (32)4.2塔顶吊柱 (32)5.翻译 (32)5.1英文文献 (32)5.2 英文文献翻译 (40)6.参考文献: (44)7.谢词 (45)1.概述1.1 填料塔的概述在石油、化工及轻工等行业中所设计到的均相流体分离过程,多采用吸收或径流的方法进行。
设计项目计算与说明计算结果一、原始数据二、填料吸收塔设计一、原始数据矿石焙烧炉出来的气体中含SO2,为了防止大气污染,采用清水洗涤工艺除去其中的SO2。
焙烧炉出来的气体温度为25℃,洗涤水的温度为常温20℃。
试设计一座吸收塔,设计参数如下:采用常规逆流操作流程,气体自塔底进入,由塔顶排出,序号炉气流量Nm3/h炉气SO2含量(摩尔分数)操作压力MPa操作温度℃要求SO2的吸收率%5 3000 0.06 0. 15 20 95方案的确定1、吸收工艺流程的确定2、填料的选择液相相反,特点是传质推动力大,传质速率快,分离效率高,吸收剂利用率高。
吸收流程如下:2、填料的选择作为吸收过程,一般要求具有操作液气比大等特点,因而更适合选用填料塔。
填料塔阻力小,效率高,有利于过程节能。
与板式塔相比,具有生产能力大、分离效率高、压降小、操作弹性大、塔内持液量小等突出优点。
对于水吸收二氧化硫的过程,操作温度及操作压力较低,二氧化硫吸收产物具有腐蚀性,而塑料材料的耐酸腐蚀性比较好,故工业上通常选用塑料散装填料。
在塑料散装填料中,塑料阶梯环的综合性能较好,故选用38mm×19mm×1.0mm聚丙烯阶梯环填料。
主要性能参数见下表:公称直径(d)mm实际尺寸(δ⨯⨯Hd)mm个数(n)/m3比表面(a)/m38 38×19×1.027200 132.5空隙率(ε)m3/m3堆积密度3p/-⋅mkgρ干填料因1/-Φm91 57.5 175采用常规逆流操作流程采用塑料38mm×19mm×1.0mm塑料阶三、基础物性数据1、液相物性数据2、气相物性数据三、基础物性数据1、液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。
20℃时水的有关物性数据如下:密度:3Lm/kg2.998=ρ粘度:h)kg/(m6.3sPa103L⋅=⋅=-μ表面张力:2Lkg/h940896=σSO2在水中的扩散系数:/hm1029.5/sm1047.12625L--⨯=⨯=D2、气相物性数据①.混合气体的平均摩尔质量:kg/m ol1.312994.06406.0iiVm=⨯+⨯=∑=MyM②.混合气体的平均密度:3VmVmkg/m883.1298314.81.31150=⨯⨯==RTPMρ③.混合气体的粘度可近似取为空气的粘度,20℃时空气的粘度如下:h)kg/(m065.0sPa1081.15V⋅=⋅⨯=-μ④.查手册得,SO2在空气中的扩散系数:/hm039.02V=D3、气液相平衡数据3、气液相平衡数据四、物料衡算①.查手册得,20℃时SO2在水中的亨利系数:kPa1055.33⨯=E②.相平衡常数:67.261501055.33=⨯==PEm③.溶解度系数:0526.002.181055.32.9983sL=⨯⨯==EMHρ四、物料衡算①.进塔气相摩尔比:0638.006.0106.01111=-=-=yyY②.出塔气相摩尔比:00383.0)94.01(0638.0)1(212=-=-=soYYϕ③.进塔惰性气相流量:kmol/h35.83)06.01(2982734.222168=-⨯⨯=V④.min)(VL计算:该吸收过程属于低浓度吸收,平衡关系为直线,最小液气比可按12min12/Y YLV Y m X-⎛⎫=⎪-⎝⎭计算,又因为对于纯溶剂吸收过程,进塔液相组成2X为0,则五、填料塔的工艺尺寸的计算1、塔径计算78.2067.23/0683.000383.00638.0/)(2121min=--=--=XmYYYVL⑤.取操作液气比为1.4,则:092.2978.204.1)(4.1min=⨯==VLVLkmol/h8182.242435.83092.29=⨯=⇒L⑥.物料衡算:1212()()V Y Y L X X-=-00213.0)00383.00683.0(8182.242435.831=-⨯=⇒X五、填料塔的工艺尺寸的计算1、塔径计算①.采用Eckert通用关联图计算泛点气速。
清水汲取SO2烟气的填料塔课程设计说明书专业:资料工程技术班级:姓名:班级学号:指导老师:日期:任务书《化工单元操作》课程设计任务书一、题目清水汲取 SO2烟气的填料塔设计二、设计任务及操作条件31、气体办理量 1000m/h (30℃, 100kpa)2、进塔气体的构成: 9%(体积分数) SO2,其余可视为空气3、回收此中所含 SO2的 95%4、汲取塔的操作温度为30℃,压力位 100kpa7、填料自选三、设计内容1、填料塔的物料衡算2、塔的主要工艺尺寸确立①塔高确实定②塔径确实定3、协助设施的种类及作用4、绘制填料塔的设施图(CAD)5、编写设计说明书(电子版)目录第一章序言1汲取的概略2汲取设施分类第二章设计方案汲取剂的选择1对溶质的溶解度大24重生性能好塔内气液流向的选择汲取系统工艺流程填料的选择操作参数的选择第三章工艺计算第四章协助设施的种类及作用第五章结束语第六章主要符号说明第七章参照文件1序言利用混淆气体中各组分在同一种溶剂(汲取剂)中溶解度的不一样分别气体混淆物的单元操作称为汲取。
汲取是分别气体混淆物最常有的单元操作之一。
工业汲取操作是在汲取塔内进行的。
在汲取操作中,往常将混淆气体中能够溶解于溶剂中的组分称为溶质或汲取质,以 A 表示而不溶或微溶的组分称为载体或惰性气体,以 B 表示;汲取所用的溶剂称为汲取剂,以 S 表示;经汲取后获取的溶液称为汲取液 ; 被汲取后排出汲取塔的气体称为汲取尾气。
汲取就是汲取质从气相转入液相的过程。
汲取过程往常在汲取塔中进行。
依据气、液两相的流动方向,分为逆流操作和并流操作两类,工业生产中以逆流操作为主,汲取剂以塔顶加入自上向流动,与从下向上流动的气体接触,汲取了汲取质的液体从塔底排出,净化后的气体从塔顶排出。
汲取流程以下图A+B混淆气即汲取尾气S溶剂A+S叫汲取液A溶质B叫惰性气体(化工术语,注意与初等化学中的观点划分)或叫惰性成分汲取操作所用的设施。
填料塔说明书填料塔是一种用于气体或液体处理的设备,它的主要功能是提供大表面积以促进质量传递和热量交换。
本说明书将详细介绍填料塔的结构、工作原理、常见问题及维护方法,以帮助用户更好地了解和使用填料塔。
1. 填料塔的结构填料塔主要由以下几部分组成:进料口、分布器、填料层、干燥塔顶部、出料口、进气口和出气口。
进料口用于将待处理的气体或液体引入填料塔,分布器将进料均匀地分配到填料层,填料层提供了大表面积以增加质量传递和热量交换的效率。
干燥塔顶部通常配有洗涤器或排气系统,以去除塔内可能存在的湿气。
出料口用于收集处理后的气体或液体,进气口和出气口分别用于供气和排气。
2. 填料塔的工作原理填料塔的工作原理基于质量传递和热量交换的原理。
当进料通过分布器均匀地分配到填料层时,填料的大表面积将促进气体或液体的接触,从而实现质量传递。
在此过程中,填料塔内的填料可以提供额外的表面积,这使得填料塔在相同体积条件下具有更高的传质效率。
同时,填料塔的设计还考虑到了热量交换的需求,在填料塔顶部设有干燥塔顶部以去除湿气,以确保减少传质过程中可能的湿气干扰。
3. 填料塔的常见问题3.1 填料塔堵塞填料塔堵塞可能由于填料本身的问题或进料中的杂质引起。
在使用填料塔过程中,如果发现填料层出现异常阻力或出料量减少的情况,应及时检查填料塔内是否存在堵塞情况,并采取适当的清理措施。
3.2 填料脱落填料塔的填料可能会因为长时间的使用或不当的操作而出现脱落的情况。
填料脱落不仅会降低填料塔的传质效率,还可能对设备的正常运行造成影响。
因此,定期检查填料塔的填料情况,并进行必要的维护是十分重要的。
3.3 清洗问题填料塔在工作一段时间后可能积累了各种污垢,这会影响其传质效果。
因此,定期对填料塔进行清洗是很有必要的,可以采用冲洗、机械刷洗等方法来清除污垢。
4. 填料塔的维护方法4.1 定期检查填料塔的填料情况,发现脱落或损坏的填料及时更换。
4.2 定期清洗填料塔,确保填料塔内无污垢积累。
填料塔设计说明书设计题目:水吸收氨填料吸收塔学院:资源环境学院指导老师:吴根义罗惠莉设计者:赵海江学号:8107专业班级:08级环境工程1班一、设计题目试设计一座填料吸收塔,用于脱出混于空气中的氨气。
混合气体的处理为2400m3/h,其中含氨5%,要求塔顶排放气体中含氨低于%。
采用清水进行吸收,吸收剂的用量为最小量的倍。
二、操作条件1、操作压力常压2、操作温度 20℃三、吸收剂的选择吸收剂对溶质的组分要有良好地吸收能力,而对混合气体中的其他组分不吸收,且挥发度要低。
所以本设计选择用清水作吸收剂,氨气为吸收质。
水廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。
且氨气不作为产品,故采用纯溶剂。
四、流程选择及流程说明逆流操作气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出,此即逆流操作。
逆流操作的特点是传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。
工业生产中多用逆流操作。
五、塔填料选择阶梯环填料。
阶梯环是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。
由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。
锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的间隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。
阶梯环的综合性能优于鲍尔环,成为目前使用的环形填料中最为优良的一种选用聚丙烯阶梯环填料,填料规格:六、填料塔塔径的计算1、液相物性数对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。
由手册查得,20℃水的有关物性数据如下: 密度为:L ρ=998.2 kg/m3粘度为:μL= Pa·S=3.6 kg/(m·h) 表面张力为σL= dyn/cm =940896 kg/h2 2、气相物性数据:20℃下氨在水中的溶解度系数为:H=(m3·kPa)。
混合气体的平均摩尔质量为:Mvm=×17.03g/mol +×29g/mol=28.40g/mol?, 混合气体的平均密度为:ρvm =1.183 kg/m3混合气体的粘度可近似取为空气的粘度,查手册得20℃空气的粘度为: μv=×10-5 Pa·S=0.065 kg/(m·h) 3、气相平衡数据20℃时NH3在水中的溶解度系数为H= kmol/(m3·kPa),常压下20℃时NH3在水中的亨利系数为E=。
4、物料衡算: 亨利系数SLHM E ρ=相平衡常数754.03.10102.18725.02.998=⨯⨯===P HM P E m S L ρE ——亨利系数 H ——溶解度系数 Ms ——相对摩尔质量 m ——相对平衡常数进塔气相摩尔比为:05263.005.0105.01=-=Y出塔气相摩尔比为:000105263.005.01)998.01(05.02=--⨯=Y 混合气体流量:)/(83.994.2212932732400h kmol =⨯⨯惰性气体流量:)/(8385.94)05.01(83.99n h kmol G Q =-⨯=最小液气比:X2=0752.00754.005263.0000105263.005263.0)min (21212121=--=--=--=*X m Y Y Y X X Y Y QnG QnL取实际液气比为最小液气比的倍,则可得吸收剂用量为:)/(977828.1065.18385.94752.0nl h kmol Q =⨯⨯= 04656.0977828.1068385.94*)000105263.005263.0()(nG 211=-=-=Qnl Y Y Q X则液气比:6792.04.28*04.24/240018*977828.106nL ==Q Q气体质量流量:h/kg 2.2839183.12400=⨯=V W液相质量流量可近似按纯水的流量计算,即:h kg W L /74.192702.18977828.106=⨯=填料总比表面积:at=114.2m2/m38/14/12.032gu lg ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛LV V L L LV t F K A a ρρωωμρρε4803.02.998183.12.283974.192775.1204.0004.12.998183.1927.02.1149.81u lg 8/14/12.032-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛F331.0004.12.998183.1927.02.1149.81u 2.032=⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛F 331.0007987.1*001185.0*36.1439.81u 2=⎥⎦⎤⎢⎣⎡F1.19007987.1*001185.0*36.143/81.33199.0u 2F ==)(F u =4.37m/su=*F u =*=3.496m/smuV D S497.0496.33600/240044=⨯⨯==ππ取证后D=0.5m=500m2785.0hD L u ⨯=泛点率校核:sm u /397.35.0785.03600/24002=⨯=777.037.4/397.3/==F u u符合三散装的——81050/500>==d D液体喷淋密度校核: 取最小润湿速率为:)/(08.0)(3min h m m L W ⋅=32/2.114m m a t = 所以)/(136.92.11408.0)(23min min h m m a L U t W ⋅=⨯=⋅=min232)/(830.92.9985.0*5.0785.018*977828.106785.0U h m m D L U h〉⋅=⨯⨯=⋅=经以上校核可知,填料塔直径选用m D 5.0=合理。
七、填料层高度计算查表知, 0Cο, kpa 下,3NH 在空气中的扩散系数s cm D /17.02=o 23))((o o o T TP P D D G =,则293k ,kpa 下,3NH 在空气中的扩散系数为/s 2cm 192.01.75)273293)(101.3101.3(D G D ==ο液相扩散系数s m D L /1080.129-⨯= 液体质量通量为)/(97923.98115.0785.018977828.10622h m kg U L ⋅=⨯⨯=气体质量通量为)/(26115.144675.0785.0183.1240022h m kg U V ⋅=⨯⨯=})()()()(45.1exp{12.0205.0221.075.0t L L L L t L L t L L c t w a U ga U a U a a σρρμσσ⋅⋅⋅⋅⋅--=-2/427680/33h kg cm dyn c ==σ351124.0})2.1149408962.99897923.9811()1027.12.9982.11497923.9811()6.32.11497923.9811()940896427680(45.1exp{12.0205.08221.075.0=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯--=-t w a a 气膜吸收系数由下式计算:)/(143.0)293314.8103600192.02.114()360010192.0183.1065.0()065.02.11426115.14467(237.0)()()(237.0243147.0317.0kpa h m kmol RTDa D a U V t V V V v t V G ⋅⋅=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⋅⋅=--ρμμκ液膜吸收系数由下式计算:517.0)2.9981027.16.3()36001080.12.9986.3()6.32.114351124.097923.9811(0095.0)()()(0095.031821932312132=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⋅⋅⋅⋅⋅⋅=---LL L L L L w L L g D a U ρμρμμκ查表得:45.1=ψha a kpa h m mol a a w L L w G G 105.2445.12.114351.0517.0)/(63.845.12.114351.0143.04.04.031.11.1=⨯⨯⨯=⋅⋅=⋅⋅=⨯⨯⨯=⋅⋅=ψκκψκκ777.037.4/397.3/==F u u >需要矫正由a u ua a u ua L FLG FGκκκκ⋅-⋅+='⋅-⋅+='])5.0(6.21[])5.0(5.91[2.24.1 得,h a kpa h m kmol a LG15.2805.24])5.08.0(6.21[)/(83.2363.8])5.08.0(5.91[2.234.1=⨯-⨯+='⋅⋅=⨯-⨯+='κκ则)/(21.115.28725.018.23111113kpa h m kmol a H a a L GG ⋅⋅=⨯+='⋅+'=κκκGa k ——气膜体积吸收系数,)/(3kPa h m kmol ⋅⋅; La k ——液膜体积吸收系数,h /1;m P a V a K V H G Y OG 42.05.0785.03.10121.118385.942=⨯⨯⨯=Ω⋅⋅=Ω⋅=κ气相总传质单元数为:037549.00498.0754.02211===⨯==**mX Y mX Y668.0977828.1068385.94*754.0m nG ===nl q q S 1.15]668.00000105263.0005263.0)668.01ln[(668.011])1ln[(112221=+--⨯-⨯-=+--⋅--=**S Y Y Y Y S S N OG mN H Z OG OG 342.61.1542.0=⨯=⋅=设计取填料层高度为:m Z 7=对于阶梯环填料,mh D h6,15~8max ≤=将填料层分为2段设置,每段3.5m ,两段间设置一个液体再分布器。
八、压降的计算采用Eckert 通用关联图计算填料层压降横坐标为:0233.0)2.998183.1(183.1240018977828.106)(5.05.0=⨯⨯⨯=L V V L ρρωω已知:1127-=Φm P纵坐标为:177.0004.12.998183.181.91127397.32.022.02=⨯⨯⨯⨯=⋅⋅ΦL L V P g u μρρψ 查图得,m pa Z P/1962=∆填料层压降为:kpa pa P 734.1371962=⨯=∆九、进出口管径的计算常压塔气体进出口管气速可取10~20m/s (高压塔气速低于此值);液体进出口管气速可取~1.5m/s 。