五年级奥数(应用题)题及答案-巨人杯
- 格式:docx
- 大小:15.61 KB
- 文档页数:1
第1页共2页第2页 共2页8. 小芳是巨人学校数学班学生,这周上完课回家后,她拿出自己这学期所得的积分券,打算下次课换更大面值的.她整理后发现1分券张数占总张数的13,2分券张数占总张数的14,5分券张数占总张数的15,而10分券张数占总张数的16,其余均为20分券.那么小芳所有积分券的总分至少为_______分.二、填空题Ⅱ(本大题共4小题,每小题6分,共24分)9. 已知循环小数0.72与0.01 的乘积仍是一个循环小数,这个乘积是_______.(结果用循环小数表示)10.晨曦小学师生为灾区捐款,其中五年级一班学生共捐了600多元,所捐钱数为整数且被5除余4,被7除余6,被9除余8,那么五年级一班学生共捐了_______元.11.如图,正六边形ABCDEF 的面积是180平方厘米,O 点是AB 边的中点,P 点是ED 边上靠近D 点的三等分点.OP 把六边形分成了两部分,则较大部分的面积是________平方厘米.12.小龙对冬冬说:“你说巧不巧,我爸爸今年的年龄正好是他年龄的两个数字和的4倍!”冬冬沉思一下说:“好几种可能呢!我可说不准他的年龄.”小龙笑眯眯的说:“我还没说完呢,更巧的是今年我爸年龄用到的两个数字,和我爷爷的年龄用到的数字是一样的,而且他们俩年龄差二十多岁.”那么小龙的爷爷今年_______岁.三、填空题Ⅲ(本大题共4小题,每小题7分,共28分)13.甲、乙两人同时分别从一个圆形跑道的一条直径的两端A 、B 开始匀速跑步,甲顺时针,乙逆时针.当乙跑了90米时甲乙两人第一次相遇,当甲还差40米跑完一周时他们第二次相遇,那么这个圆形跑道长_______米.14.如图,正方形ABCD 的边长为10厘米,2CF BF =,3AE BE =,那么阴影部分的面积为_______平方厘米.15.有一些自然数,正着读和反着读是一样的,如98789,我们将这样的数称为回文数.现有三个回文数757、3993、21512,用它们分别除以同一个自然数n 后(n <757),所得余数依次为a ,b ,c ,其中a ,b ,c 互不相同且b 为a 和c 的等差中项,那么n 最大是________.16.有一类数字互不相同的八位数,它们均由数字1到8组成,且任意三个相邻的数字之和均为3的倍数,如12645378,24357681等.如果将这样的八位数从小到大排列,45612378排在第_______位.A DBC E FO P F A B CE D。
五年级奥赛试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是质数?A. 23B. 48C. 72D. 91答案:A2. 一个长方体的长、宽、高分别是8cm、6cm和5cm,它的体积是多少立方厘米?A. 240B. 180C. 120D. 100答案:A3. 一个数乘以0.1相当于把这个数缩小了10倍,那么一个数乘以0.01相当于把这个数缩小了多少倍?A. 10倍B. 100倍C. 1000倍D. 2倍答案:B4. 以下哪个图形的对称轴最多?A. 正方形B. 圆形C. 等边三角形D. 长方形答案:B5. 一个数加上它的相反数等于多少?A. 0B. 1C. 2D. -1答案:A二、填空题(每题3分,共15分)1. 一个数的立方等于它本身,这个数是______。
答案:1或0或-12. 一个数的因数总比它的倍数______。
答案:少3. 一个长方体的体积是120立方厘米,长是10厘米,宽是3厘米,那么它的高是______厘米。
答案:44. 一个数的倒数是它本身的数是______。
答案:1或-15. 一个数除以它本身等于______。
答案:1三、解答题(每题5分,共20分)1. 一个长方体的长、宽、高分别是10cm、8cm和6cm,求它的表面积。
答案:表面积= 2(10×8 + 10×6 + 8×6) = 2(80 + 60 + 48) =476平方厘米2. 一个数的1/3加上它的1/4等于1,求这个数。
答案:设这个数为x,则有(1/3)x + (1/4)x = 1,解得x = 1.23. 一个数的2倍减去3等于这个数本身,求这个数。
答案:设这个数为x,则有2x - 3 = x,解得x = 34. 一个数加上它的3倍等于28,求这个数。
答案:设这个数为x,则有x + 3x = 28,解得x = 7四、应用题(每题10分,共20分)1. 一个班级有45名学生,如果每名学生平均分到3本书,那么这个班级一共有多少本书?答案:45名学生× 3本书/人 = 135本书2. 一个长方形的长是宽的2倍,如果宽增加5厘米,长减少5厘米,那么长方形的面积不变。
小学五年级数学奥数竞赛试卷及答案word百度文库(2)一、拓展提优试题1.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是,余数是.2.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是.3.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了个松果.4.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块块.5.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.6.定义新运算:a&b=(a+1)÷b,求:2&(3&4)的值为.7.(8分)有四个人甲、乙、丙、丁,乙欠甲1元,丙欠乙2元,丁欠丙3元,甲欠丁4元.要想把他们之间的欠款结清,只因要甲拿出元.8.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)9.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B 两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.10.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.11.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.12.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.13.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.14.如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a﹣b×c的值是.15.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分=.(甲和乙)的面积差是5.04,则S△ABC【参考答案】一、拓展提优试题1.解:设除数为b,商和余数都是c,这个算式就可以表示为:47÷b=c…c,即b×c+c=47,c×(b+1 )=47,所以c一定是47的因数,47的因数只有1和47;c为47肯定不符合条件,所以c=1,即除数是46,余数是1.故答案为:46,1.2.解:根据分析可得:1000以内最大的“希望数”就是1000以内最大的完全平方数,而已知1000以内最大的完全平方数是312=961,根据约数和定理可知,961的约数个数为:2+1=3(个),符合题意,答:1000以内的最大希望数是961.故答案为:961.3.解:(6+2)×[(5×6)÷2]=8×15,=120(个).答:小松鼠一共储藏了120个松果.故答案为:120.4.解:正方体的棱长应是5,4,3的最小公倍数,5,4,3的最小公倍数是60;所以,至少需要这种长方体木块:(60×60×60)÷(5×4×3),=216000÷60,=3600(块);答:至少需要这种长方体木3600块.故答案为:3600.5.解:依题意可知:当第一次过后,小张剩余194只铅笔,小李剩余19只钢笔.当第二次过后,小张剩余188只铅笔,小李剩余18只钢笔.当第三次过后,小张剩余182只铅笔,小李剩余17只钢笔.当第四次过后,小张剩余176只铅笔,小李剩余16只钢笔.正好是11倍.故答案为:四6.解:2&(3&4),=(2+1)÷[(3+1)÷4],=3÷1,=3;故答案为:3.7.解:根据分析,从甲开始,乙欠甲1元,故甲应得1元,甲欠丁4元,故甲应还4元;清算时,甲还应拿出4﹣1=3元,此时甲的账就结清了;再看看丁的账,丁得到甲的4元后,还给丙3元,即可结清;再看看丙的账,丙得到丁的3元后,还给乙2元,丙的账也清了;再看看乙的账,乙得到丙的2元后,还给甲1元,乙的账也结清;综上,甲只须先拿出4元还给丁,后得到乙的1元,故而甲总共只须拿出3元.故答案是:3.8.解:每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,所以,100+6×8+15﹣12=100+48+3=151答:得到的结果是 151.故答案为:151.9.解:(58+14)÷2=72÷2=36(分)答错:(5×10﹣36)÷(2+5)=14÷7=2(道)答对:10﹣2=8道.故答案为:8.10.解:依题意可知:要满足是六合数.分为是3的倍数和不是3的倍数.如果不是3的倍数那么一定是1,2,4,8,5,7的倍数,那么他们的最小公倍数为:8×5×7=280.那么280的倍数大于2000的最小的数字是2240.如果是3的倍数.同时满足是1,2,3,6的倍数.再满足2个数字即可.大于2000的最小是2004(1,2,3,4,6倍数)不符合题意;2010是(1,2,3,5,6倍数)不符合题意;2016是(1,2,3,4,6,7,8,9倍数)满足题意.2016<2240;故答案为:201611.解:3n是5的倍数,3n的个数一定是0或5又因为大于0的自然数n是3的倍数,所以3n最小是453n=45n=15所以n最小取15时,n是3的倍数,3n是5的倍数.答:n的最小值是15.故答案为:15.12.解:依题意可知:经过了乘以3,再逆序排列,再加上2得到的数字是2015.那么要求原来的数字可以逆向思维求解.2015﹣2=2013,再逆序变成3102,再除以3得3102÷3=1034.故答案为:103413.解:根据分析,如图所示,将图进行分割成面积相等的三角形,阴影部分由18个小三角形组成,而空白部分有6个小三角形,故阴影部分面积是空白部分面积的18÷6=3倍.故答案是:3.14.解:依题意可知:3a+2与17是对立面,3a+2=17,所以a=5;7b﹣4与10是对立面,7b﹣4=10,所以b=2;a+3b﹣2c与11的对立面,5+3×2﹣2c=11,所以c=0;所以a﹣b×c=5故答案为:515.解:根据分析,S△BDC=S△EBC⇒S△DOB=S△EOC,∴S甲﹣S乙=(S甲+S△DOB)﹣(S乙+S△EOC)=5.04,又∵S△BDC :S△DEC=BC:DE=2:1即:S△BDC=2S△DEC∴S四边形DECB =3S△DEC;S△ADE=S△DEC∴S△ABC =S四边形DECB+S△ADE=4S△DEC,设S△DEC =X,则S△BDC=2X,故有2X﹣X=5.04,∴X=5.04,S△ABC =4S△DEC=4X=4×5.04=20.16故答案是:20.16。
人教版【word 直接打印】小学五年级奥数竞赛数学竞赛试卷及答案图文百度文库 一、拓展提优试题1.已知13411a b -=,那么()20132065b a --=______。
2.(7分)将偶数按下图进行排列,问:2008排在第 列. 2 4 6 816 14 12 1018 20 22 2432 30 28 26…3.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是 ,余数是 .4.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是 .5.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年 岁,(注:数a 的立方等于a ×a ×a ,数a 的四次方等于a ×a ×a ×a )6.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出 个数.7.某次入学考试有1000人参加,平均分是55分,录取了200人,录取者的平均分与未录取的平均分相差60分,录取分数线比录取者的平均分少4分.录取分数线是 分.8.一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距 千米.9.用0、1、2、3、4这五个数字可以组成 个不同的三位数.10.如图中,A 、B 、C 、D 为正六边形四边的中点,六边形的面积是16,阴影部分的面积是 .11.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A 、B 两人各自答题,得分之和是58分,A 比B 多得14分,则A 答对 道题.12.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需 分钟.13.用1、2、3、5、6、7、8、9这8个数字最多可以组成 个质数(每个数字只能使用一次,且必须使用).14.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有 种.15.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有 块.【参考答案】一、拓展提优试题1.2068[解答]由于13411a b -=,所以()6520513451155a b a b -=⨯-=⨯=,所以()()20132065201365202068b a a b --=+-=2.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.3.解:设除数为b ,商和余数都是c ,这个算式就可以表示为:47÷b =c …c ,即b×c+c=47,c×(b+1 )=47,所以c一定是47的因数,47的因数只有1和47;c为47肯定不符合条件,所以c=1,即除数是46,余数是1.故答案为:46,1.4.解:根据分析可得:1000以内最大的“希望数”就是1000以内最大的完全平方数,而已知1000以内最大的完全平方数是312=961,根据约数和定理可知,961的约数个数为:2+1=3(个),符合题意,答:1000以内的最大希望数是961.故答案为:961.5.解:先用估值的方法大概确定一下维纳的年龄范围.根据174=83521,184=104976,194=130321,根据题意可得:他的年龄大于或等于18岁;再看,183=5832,193=6859,213=9261,223=10648,说明维纳的年龄小于22岁.根据这两个范围可知可能是18、19、20、21的一个数.又因为20、21无论是三次方还是四次方,它们的尾数分别都是:0、1,与“10个数字全都用上了,不重也不漏”不符,所以不用考虑了.只剩下18、19这两个数了.一个一个试,18×18×18=5832,18×18×18×18=104976;19×19×19=6859,19×19×19×19=130321;符合要求是18.故答案为:18.6.解:列举如下:1=1;2=2;3=1+2;4=2+2;5=5;6=1+5;7=2+5;8=8;9=9;10=10;11=1+10;12=2+10;13=5+8;14=7+7;15=5+10;16=8+8;17=8+9;18=8+10;19=9+10;通过观察,可看出从1、2、3、…、9、10中选出若干个数分别为{1,2,5,8,9,10};就能使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.故至少需要选出6个数.故答案为6.7.解:设录取者的平均成绩为X分,我们可以得到方程,200X+(1000﹣200)×(X﹣60)=55×1000,200X+800(X﹣60)=55000,1000X﹣48000=55000,1000X=103000,X=103;所以录取分数线是103﹣4=99(分).答:录取分数线是99分.故答案为:99.8.解:顺水速度为:24+3+3=30(千米/小时);甲、乙两港相距:5÷(+),=5÷,=(千米);答:甲、乙两港相距千米.故答案为:.9.解:4×4×3,=16×3,=48(种);答:这五个数字可以组成 48个不同的三位数.故答案为:48.10.解:如图:连接正方形的一条对角线,延长DA,与最上边正六边形边的延长线交与一点,这样可得两个三角形①、②三角形①和三角形②是全等三角形,它们的面积相等,进而可得出阴影部分两侧的三角形可补到六边形的角上,这样就成了一个长方形,阴影部分的面积等于空白部分的面积,所以阴影部分的面积是正六边形面积的一半16÷2=8答:阴影部分的面积是8.故答案为:8.11.解:(58+14)÷2=72÷2=36(分)答错:(5×10﹣36)÷(2+5)=14÷7=2(道)答对:10﹣2=8道.故答案为:8.12.解:假设每人每分钟修大坝1份洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=(450﹣400)÷25=50÷25=2(份)大坝原有的份数45×10﹣2×45=450﹣90=360(份)14人修好大坝需要的时间360÷(14﹣2)=360÷12=30(分钟)答:14人修好大坝需30分钟.故答案为:30.13.解:可以组成下列质数:2、3、5、7、61、89,一共有6个.答:用1、2、3、5、6、7、8、9这8个数字最多可以组成 6个质数.故答案为:6.14.解:根据分析可得,朝上一面的4个数字的和最小是:1×4=4,最大是6×4=24,24﹣4+1=21(种)答:朝上一面的4个数字的和有 21种.故答案为:21.15.解:依题意可知:第一层的共有4个角满足条件.第二层的4个角是4面红色,去掉所有的角块其余的符合条件.分别是3+2+3+2=10(个);共10+4=14(个);故答案为:14。
小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。
问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。
如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。
根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。
因此所求的答案为5人。
2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。
但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。
问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。
3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。
x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。
如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。
直到两数相同为止。
问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。
一年级:1、有一只壁虎沿着10米深的井往上爬,白天向上爬5米,到夜里往下滑了3米,那么壁虎什么时候可以爬出井口?答案与解析:壁虎白天爬上了5米,晚上又掉下了3米,那实际上每天只能爬上去2米,爬前6米壁虎用了3天,还剩4米,因此第4天就可以爬出去了。
2、学校开运动会同学们在操场上站队排练体操,小华前面有8个人,后面有5个人,问:小华这一行一共有多少人?答案与解析:小华前面有8人,说明不包括小华;小华后面有5个人,也不包括小华,但是这一行的总人数包括小华,所以要求这一行有多少人,就要用小华前面的人数加上小华后面的人数,再加上小华本身。
8+5+1=14(人)答:这一行一共有14人。
二年级:1、排好队,来报数,正着报数我报七,倒着报数我报九,一共多少小朋友?答案与解析:正着报数"我"报了一次,倒着报数"我"又报了一次,所以把两次报数加起来时,"我"被加了两次。
因此算这队的总人数时,应从两次报数之和减1。
7+9-1=15(人)。
也可以这样想:正着报数报到我为止,倒着报数时,我就不报了,只报到我的后面相邻的那个人他应该报8,所以全队总人数是:7+(9-1)=15(人)。
2、有一列数3,4, 8,3,4,8,3,4,8,……第25个数是几?这25个数的和是多少?答案与解析:3,123;25÷3=8…1,所以第25个数是3。
每三个数为一个周期,3+4+8=15,25个数含有8个这样的周期,第25个数是3,所以这25个数的和为:15×8+3=12325÷3=8 (1)3+4+8=1515×8+3=1233、桌上有10支点燃的蜡烛。
风从窗户吹进来,吹灭了2支蜡烛,过了一会儿,又有一支蜡烛被吹灭。
把窗关起来,再没有蜡烛被吹灭,第二天早上还剩几支蜡烛?答案与解析:由题目可知道桌子上点燃的10支蜡烛,共有3支蜡烛被吹灭,其余7支会一直燃烧下去,直到燃尽为止。
小学五年级数学奥林匹克竞赛题含答案The pony was revised in January 2021小学五年级数学奥林匹克竞赛题(含答案)一、小数的巧算(一)填空题1. 计算 1.996+19.97+199.8=_____。
答案:221.766。
解析:原式=(2-0.004)+(20-0.03)+(200-0.2)=222-(0.004+0.03+0.2)=221.766。
2. 计算 1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____。
答案:103.25。
解析:原式=1.1⨯(1+3+...+9)+1.01⨯(11+13+ (19)=1.1⨯25+1.01⨯75=103.25。
3. 计算 2.89⨯4.68+4.68⨯6.11+4.68=_____。
答案:46.8。
解析:4.68×(2.89+6.11+1)=46.84. 计算 17.48⨯37-17.48⨯19+17.48⨯82=_____。
答案:1748。
解析: 原式=17.48×37-17.48×19+17.48×82 =17.48×(37-19+82)=17.48×100=1748。
5. 计算 1.25⨯0.32⨯2.5=_____。
答案:1。
解析:原式=(1.25⨯0.8)⨯(0.4⨯2.5)=1⨯1=1。
6. 计算 75⨯4.7+15.9⨯25=_____。
答案:750。
原式=75⨯4.7+5.3⨯(3⨯25)=75⨯(4.7+5.3)=75⨯10=750。
7. 计算 28.67⨯67+3.2⨯286.7+573.4⨯0.05=____。
答案:2867。
原式=28.67⨯67+32⨯28.67+28.67⨯(20⨯0.05) =28.67⨯(67+32+1)=28.67⨯100=2867。
(二)解答题8. 计算 172.4⨯6.2+2724⨯0.38。
巨人杯数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个数的平方等于16,那么这个数是:A. 4B. -4C. 4或-4D. 16答案:C3. 以下哪个表达式的结果不是整数?A. 3 + 2B. 5 - 1C. 2 × 3D. 6 ÷ 2答案:无(所有选项结果都是整数)4. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 200π答案:B5. 以下哪个是勾股定理的表达式?A. a² + b² = c²B. a + b = cC. a × b = cD. a ÷ b = c答案:A6. 如果一个角的度数是90°,那么这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:B7. 一个等腰三角形的两个底角相等,如果顶角是40°,那么每个底角的度数是:A. 70°B. 65°C. 60°D. 50°答案:B8. 以下哪个是二次方程的一般形式?A. ax² + bx + c = 0B. ax + bx² + c = 0C. ax² + c = 0D. ax + c = 0答案:A9. 一个数的立方根是3,那么这个数是:A. 27B. 9C. 81D. 243答案:A10. 以下哪个是方程2x - 5 = 7的解?A. x = 6B. x = 3C. x = 1D. x = 2答案:A二、填空题(每题2分,共20分)11. 一个数的平方根是4,那么这个数是________。
答案:1612. 如果一个三角形的三边长分别为3, 4, 5,那么这是一个________三角形。
答案:直角13. 一个分数的分子是7,分母是14,化简后是________。
五年级奥数(应用题)题及答案-巨人杯
导语:小编为同学们在数学能力方面的提高,今天带给同学们一道抽屉原理的奥数题,希望同学们认真做哦!
巨人杯奥数能力选拔考试,去年共有1123名同学参加,芳芳说:"至少有10名同学来自同一个学校."如果他的说法是正确的,那么最多有多少个学校参加了这次入学考试?
答案与解析:本题需要求抽屉的数量,反用抽屉原理和最"坏"情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,则(1123-10)÷9=123……6 ,因此最多有:123+1=124 个学校(处理余数很关键,如果有125个学校则不能保证至少有10名同学来自同一个学校)。