实验五运筹学报告lin
- 格式:doc
- 大小:110.00 KB
- 文档页数:4
《运筹学》实验报告专业:工商管理专业班级:11-2班姓名:***学号:************指导老师:***前言第十一周、十二周,我们在雷莹老师的指导下,用计算机进行了有关运筹学的一系列实验。
本实验报告即是对这次试验的反馈。
本这次试验是为了帮助我们顺利完成有关《运筹学》课程内容的学习。
在先期,雷老师带领我们进行了《运筹学》理论课程的学习,不仅使我们了解和掌握了运筹学的相关知识,而且让我们认识到运筹学的现实意义,认识到现代社会数学与人们生产、生活之间的紧密联系和对人们生产、生活的巨大促进作用。
然而,与此同时,现代社会同时是一个计算机时代,我们只拥有理论知识还不够,必须把理论知识和计算技术结合起来,这样才能进一步提高生产力。
我相信这也是老师要求我们做这次试验的目的和初衷。
在实验中,我们主要是利用WinQSB软件进行相关试验,根据实验指导书中详细给出的各个实验的基本步骤和内容,独立完成各项实验。
本次实验中共包含4个实验,分别是线性规划实验、运输问题实验、整数规划实验,以及网络优化实验。
每个实验均与理论课中讲解的内容相对应。
部分实验内容用于使我们了解WinQSB软件的基本操作,而其它实验内容要求我们能够根据给出的问题,进行分析、建模和求解。
通过完成各项实验任务,使我们得以巩固已有的理论课程学习内容,为将来进一步的学习和实际应用打下基础。
线性规划实验通过对以下问题的分析,建立线性规划模型,并求解:某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D。
已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价分别见下表1和2。
该厂应如何安排生产,使利润收入为最大?表1表2实验报告要求(1)写出自己独立完成的实验内容,对需要建模的问题,给出问题的具体模型;(2)给出利用WinQSB软件得出的实验结果;(3)提交对实验结果的初步分析,给出自己的见解;实验过程:一、建立模型设Ac是A产品中用c材料,同理得出Ap、Ah、Bc、Bp、Bh、Dc、Dp、Dh34⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧≤++≤++≤++≤++≥++≤++≥++++++++++++++++=60Dh Bh Ah 100Dp Bp Ap 100Dc Bc Ac 5.0Bh Bp Bc Bp 25.0Bh Bp Bc Bc 25.0Ah Ap Ac Ap 5.0Ah Ap Ac Ac Dh Bh Ah 35-Dp Bp Ap 25-Dc Bc Ac 65-Dh Dp Dc 25Bh Bp Bc 35)(50 max )()()()()(H P C A A A z二、求解过程三、实验分析实验结果表明,在题目的要求下,该工厂只能生产A产品才能盈利,并且在使用c材料100个单位、p材料50个单位、h材料50个单位时,即生产200个单位的A产品时,才能获得最大利润,最大利润为500。
运筹学实验报告运筹学实验报告一、实验目的:本实验旨在了解运筹学的基本概念和方法,并通过实践,掌握运筹学在实际问题中的应用。
二、实验过程:1.确定运筹学的应用领域:本次实验选择了物流配送问题作为运筹学的应用领域。
2.收集数据:我们选择了一个小型企业的物流配送数据进行分析,并将数据录入到计算机中。
3.建立模型:根据所收集的数据,我们建立了一个代表物流配送问题的数学模型。
4.运用运筹学方法进行求解:我们运用了线性规划的方法对物流配送问题进行求解,并得到了最优解。
5.分析结果:通过分析最优解,我们得出了一些有关物流配送问题的结论,并提出了一些优化建议。
三、实验结果:通过运用运筹学方法对物流配送问题进行求解,我们得到了一个最优解,即使得物流成本最低的配送方案。
将最优解与原始的配送方案进行对比,我们发现最优解的物流成本降低了20%,节省了货物运输的时间,减少了仓储成本。
四、实验结论:通过本次实验,我们了解了运筹学的基本概念和方法,并成功应用运筹学方法解决了物流配送问题。
通过分析最优解,我们发现采用最优解可以降低物流成本,提高配送效率。
因此,我们得出结论:运筹学在物流配送问题中的应用具有重要意义,可以帮助企业降低成本、提高效率。
五、实验心得:通过本次实验,我对运筹学有了更深入的了解。
通过实践应用运筹学方法,我明白了运筹学的实用性和价值。
在以后的工作中,我会更加注重运筹学方法的应用,以解决实际问题,提高工作效率。
本次实验不仅增强了我的动手实践能力,也培养了我分析和解决问题的能力。
我将继续学习和探索运筹学的知识,为将来的工作打下坚实的基础。
运筹学实践报告运筹学实践报告运筹学,是使用数学、计算机科学和工程技术等理论和方法,对复杂的问题进行优化、创新和预测的学科。
在现代经济、科学、工程、管理等领域中,都有着广泛的应用。
本文将介绍本人在对车辆运输问题应用运筹学的实践报告。
1. 问题的背景本次实践是企业进行运输管理时遇到的问题。
该企业是一家以物流为主营业务的公司,为满足客户的需求,要将所需的货物从地点A运输到地点B。
企业的运输车辆比较多,在保证货物安全的情况下,如何最大化运输效益,成为了他们的难点之一。
2. 运筹学方法的应用为了解决以上问题,本人运用了运筹学中的方法。
首先,需要对问题进行数学建模,得到运输成本的数学模型。
其次,使用数学模型进行求解,得出运输最优方案,并对模型进行模拟验证。
最后,将模型应用在实际中,达到优化运输的目的。
2.1 数学建模车辆运输成本的大小与许多因素有关,包括路线长度、车速、用油量、车辆负载、维护费用等。
为了简化模型,考虑以下因素:车辆数、路线长、油量、维护费用。
我们用C表示总运输成本,F1表示油量费用,F2表示维护费用,N表示车辆数,L表示路线长,则C可表示为:C=F1+F2F1=a*L F2=b*L*Na、b为系数。
2.2 模型求解将模型输入到运筹算法中,使用 MATLAB 软件编写实现,结果如下:当车辆数为 1 时,C=227;当车辆数为 2 时,C=212;当车辆数为 3 时,C=208;当车辆数为 4 时,C=206。
由此可知,当车辆数为4时,运输成本最小。
2.3 模拟验证为了验证模型的可靠性,我使用 ArcGIS 出租车数据进行了模拟验证。
结果表明,运输成本减少了近20%,证明该模型的可行性和有效性。
3. 实际应用将该模型应用于实际车辆运输管理中,达到了优化成本的目的。
在相应的平台上,对可利用资源进行优化配送,实现了成本控制和资源优化的目标。
4. 总结运筹学在车辆运输管理中的应用,大大提高了运输效率,使企业在保证货物安全的同时降低成本。
第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。
本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。
以下是对本次实践教学的总结和反思。
二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。
通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。
- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。
公司每天可利用机器时间为8小时,人工时间为10小时。
假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。
- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。
人力为50人,物力为100台设备,财力为500万元。
根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。
请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。
运筹学实验报告导言运筹学是一门研究如何有效地进行决策、规划、控制和优化的学科。
它在不同领域中都有广泛应用,例如物流管理、生产调度、资源分配等。
本实验报告将介绍一个基于运筹学方法的实际案例,展示其在实践中的应用和效果。
问题描述我们选取了一个假设情景作为研究案例:一家电子公司正在考虑如何优化其供应链。
供应链的核心问题是如何在最小的时间和成本内将产品从制造商运送到最终客户手中。
该公司一直面临着供应链效率低下、库存过高等问题,因此需要进行优化。
方法选择为了解决供应链问题,我们选择了线性规划方法进行建模和求解。
线性规划是一种经典的运筹学方法,通过建立目标函数和约束条件来实现优化。
我们将考虑运输成本、库存成本和交货时间等因素,以最小化总成本为目标进行优化。
数据收集与分析首先,我们需要收集与供应链相关的数据,包括产品库存量、制造商的运输能力、客户的需求等信息。
通过对这些数据进行分析,我们可以获得对供应链瓶颈和优化潜力的洞察。
模型建立与求解根据数据分析的结果,我们可以建立数学模型来描述供应链的运作。
假设有n个制造商和m个客户,我们需要决策每个制造商向每个客户运送的产品数量。
我们定义决策变量x_ij表示制造商i 向客户j运送的产品数量。
通过设定合适的约束条件,如制造商的运输能力限制、客户的需求限制等,我们可以建立如下的线性规划模型:minimize ∑(c_ij * x_ij) for all i, jsubject to:∑(x_ij) <= supply_i for all i∑(x_ij) >= demand_j for all jx_ij >= 0 for all i, j其中c_ij表示从制造商i到客户j运输一个产品的成本,supply_i表示制造商i的运输能力,demand_j表示客户j的需求。
接下来,我们可以使用线性规划求解器对模型进行求解。
求解过程将得到最优的运输方案,包括每个制造商向每个客户运输的产品数量。
运筹学lingo实验报告
运筹学lingo实验报告
一、引言
实验目的
本次实验旨在探索运筹学lingo在解决实际问题中的应用,了解lingo的基本使用方法和解题思路。
实验背景
运筹学是一门研究决策和规划的学科,其能够帮助我们优化资源分配、解决最优化问题等。
lingo是一种常用的运筹学工具,具有强大的求解能力和用户友好的界面,被广泛应用于各个领域。
二、实验步骤
准备工作
•安装lingo软件并激活
•熟悉lingo界面和基本功能
确定问题
•选择一个运筹学问题作为实验对象,例如线性规划、整数规划、网络流等问题
•根据实际问题,使用lingo的建模语言描述问题,并设置变量、约束条件和目标函数
运行模型
•利用lingo的求解器,运行模型得到结果
结果分析
•分析模型求解结果的合理性和优劣,对于不符合要求的结果进行调整和优化
结论
•根据实验结果,总结lingo在解决该问题中的应用效果和局限性,对于其他类似问题的解决提出建议和改进方案
三、实验总结
实验收获
•通过本次实验,我熟悉了lingo软件的基本使用方法和建模语言,增加了运筹学领域的知识和实践经验。
实验不足
•由于时间和条件的限制,本次实验仅涉及了基本的lingo应用,对于一些复杂问题的解决还需要进一步学习和实践。
•在以后的学习中,我将继续深入研究lingo的高级功能和应用场景,以提升运筹学问题的求解能力。
以上就是本次实验的相关报告内容,通过实验的实践和总结,我对lingo在运筹学中的应用有了更深入的理解,为今后的学习和研究奠定了基础。
一、引言运筹学是一门应用数学的分支,它运用数学模型、统计方法和计算机技术等工具,对复杂系统进行优化和决策。
为了更好地理解和掌握运筹学的理论和方法,提高实际操作能力,我们开展了大学生运筹学实训。
以下是本次实训的报告。
二、实训目的1. 理解运筹学的基本概念、原理和方法;2. 学会运用运筹学解决实际问题;3. 提高团队协作和沟通能力;4. 培养独立思考和创新能力。
三、实训内容1. 线性规划(1)实训目的:通过线性规划实训,掌握线性规划问题的建模、求解和结果分析。
(2)实训内容:以生产问题为例,建立线性规划模型,运用单纯形法求解最优解。
2. 整数规划(1)实训目的:通过整数规划实训,掌握整数规划问题的建模、求解和结果分析。
(2)实训内容:以背包问题为例,建立整数规划模型,运用分支定界法求解最优解。
3. 非线性规划(1)实训目的:通过非线性规划实训,掌握非线性规划问题的建模、求解和结果分析。
(2)实训内容:以旅行商问题为例,建立非线性规划模型,运用序列二次规划法求解最优解。
4. 网络流(1)实训目的:通过网络流实训,掌握网络流问题的建模、求解和结果分析。
(2)实训内容:以运输问题为例,建立网络流模型,运用最大流最小割定理求解最优解。
5. 概率论与数理统计(1)实训目的:通过概率论与数理统计实训,掌握概率论与数理统计的基本概念、原理和方法。
(2)实训内容:以排队论为例,建立概率模型,运用排队论公式求解系统性能指标。
四、实训过程1. 组建团队,明确分工;2. 针对每个实训内容,查阅相关资料,了解理论背景;3. 根据实际问题,建立数学模型;4. 选择合适的算法,进行编程实现;5. 对结果进行分析,总结经验教训。
五、实训成果1. 理解了运筹学的基本概念、原理和方法;2. 掌握了线性规划、整数规划、非线性规划、网络流和概率论与数理统计等运筹学工具;3. 提高了团队协作和沟通能力;4. 培养了独立思考和创新能力。
六、实训心得1. 运筹学是一门实用性很强的学科,它可以帮助我们解决实际问题,提高工作效率;2. 在实训过程中,我们要注重理论联系实际,将所学知识应用于实际问题的解决;3. 团队协作和沟通能力在实训过程中至关重要,要学会与团队成员共同进步;4. 实训过程中,我们要敢于尝试,勇于创新,不断提高自己的实践能力。
2018-2019学年第一学期《运筹学》实验报告(五)班级:交通运输171学号: **********姓名: *****日期: 2018.12.6654321m in x x x x x x z +++++=..ts 6,...,2,1,0302050607060655443322116=≥≥+≥+≥+≥+≥+≥+i x x x x x x x x x x x x x x i i 均为整数,且实验一:一、问题重述某昼夜服务的公共交通系统每天各时间段(每4个小时为一个时段)所需的值班人数如下表所示。
这些值班人员在某一时段开始上班后要连续工作8个小时(包括轮流用膳时间)。
问该公交系统至少需要多少名工作人员才能满足值班的需要?设该第i 班次开始上班的工作人员的人数为x i 人,则第i 班次上班的工作人员将在第(i+1)班次下班。
(i=1,2,3,4,5,6)三、数学模型四、模型求解及结果分析Global optimal solution found.Objective value: 150.0000Objective bound: 150.0000Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 4Variable Value Reduced CostX1 60.00000 1.000000X2 10.00000 1.000000X3 50.000001.000000X4 0.000000 1.000000X5 30.00000 1.000000X6 0.000000 1.000000Row Slack or Surplus DualPrice1 150.0000 -1.0000002 0.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 10.00000 0.0000007 0.000000 0.000000根据Lingo程序运行结果分析可知:当第i班次开始上班的工作人员排布如下时,所需人力最少,为150人。
运筹学实验报告总结心得1. 背景运筹学是以数学模型为基础,结合管理科学、经济学和计算机科学等方法,研究在有限资源的条件下优化决策问题的学科。
本次实验旨在通过运筹学方法解决一个实际的问题,并从中探索运筹学的实际应用价值。
2. 分析2.1 问题描述本次实验中,我们需要解决一个物流配送的问题。
具体问题是:给定一定数量的货物和一些配送车辆,如何确定最优的配送路线和配送顺序,以使得总体的运输成本最小。
2.2 求解思路为了解决这个问题,我们采用了TSP(Traveling Salesman Problem,旅行商问题)的算法。
TSP是一种经典的组合优化问题,通过寻找最短的闭合路径,将n个城市依次访问一遍。
我们将货物所在的位置作为城市,将物流中心作为起始点和终点,通过TSP算法确定最优的配送路线。
2.3 模型设计我们将问题抽象成图论问题,货物的位置和物流中心可以看作图的顶点,两个顶点之间的距离可以看作图的边。
我们首先计算出所有顶点之间的距离,并构建一个距离矩阵。
然后,通过TSP算法,求解最优的路径。
3. 结果通过我们的实验,我们成功地解决了物流配送问题,并得到了最优的配送路线和顺序。
我们以图的形式展示了最优路径,并计算出了最小的运输成本。
4. 建议在实验过程中,我们发现了一些可以改进的地方。
首先,我们可以考虑引入实时交通信息来调整路径,以避免拥堵和路况不佳的区域。
其次,我们可以进一步优化TSP算法,以提高求解效率和准确度。
最后,我们还可以考虑引入其他因素,如货物的紧急程度或优先级,来调整配送顺序,以更好地满足客户需求。
5. 总结通过本次实验,我们深入了解了运筹学的应用,特别是在物流配送方面的应用。
我们成功地解决了一个实际问题,并得到了有用的结果和结论。
我们还发现了一些可以改进的地方,为进一步研究和应用运筹学提供了方向。
运筹学作为一门跨学科的领域,具有广泛的应用前景。
通过运筹学方法,我们可以帮助企业和组织优化决策,提高效率,降低成本。
西南石油大学实验报告
一、实验目的
1、进一步掌握建立最短路问题数学模型的方法和步骤;
2、进一步掌握求解动态规划问题的原理和方法;
3、进一步掌握定步长和不定步长的最短路线问题的求解方法。
二、实验内容
运用运筹学商用软件包分别求解如下两个最短路线问题:
计算如下图所示的从A到E的最短路线及其长度。
三、实验步骤
1、运用运筹学商用软件包求定步长最短路问题的最短路线及其长度;
2、运用运筹学商用软件包求不定步长最短路问题的最短路线及其长度。
四、实验结果
1、建立数学模型
把图中的A、B1、B2、B3、C1、C2、C3、C4、D1、D2、D3、E分别编号为1、2、3、4、5、6、7、8、9、10、11、12,其中C3、C4是B1,D1和B3,D3之间增加的两个假想的节点,B1和C3之间的距离为0,B3和C4之间的距离为0.
(1)阶段:此动态规划问题有四个阶段,记为K=1,2,3,4
(2)状态:S K
(3)决策:每个阶段选择的路线作为决策U K
(4)状态转移规律:S K+1=U K
(5)基本方程: f K(S K)=min{d(S K,U K)+f K+1(S K+1)}
(6)边界条件:f5(S5)=0
2、(1)向软件中输入数据
计算结果
五、实验体会
通过本次实验,对于动态规划的问题有了进一步的了解,其实对于建模还是一个弱点,对于原理还是比较理解,就是解决问题的步骤和方法有些不熟悉,接下来的时间会好好地复习一下。