微波技术与天线试卷答案A(1)
- 格式:doc
- 大小:175.00 KB
- 文档页数:7
0 L 0λ 微波技术与天线考试试卷〔A 〕一、填空〔 2分⨯10 =20分〕1、 天线是将电磁波能量转换为高频电流能量的装置。
2、 天线的方向系数和增益之间的关系为G = D η 。
3、 对称振子越粗,其输入阻抗随频率的变化越_缓慢_,频带越宽。
4、 分析电磁波沿传输线传播特性的方法有场和路两种。
5、 半波对称振子的最大辐射方向是 与其轴线垂直;旋转抛物面天线的最大辐射方向是其轴线。
6、 λ / 4 终端短路传输线可等效为电感的负载。
7、 传输线上任一点的输入阻抗 ZinZ、特性阻抗 以及负载阻抗 Z L满足。
Z = Z Z + jZ tan βz Lin 0+ jZ tan βz8、 微波传输线按其传输的电磁波波型,大致可划分为TEM 传输线,TE 传输线和TM 传输线。
9、 传输线终端接一纯感性电抗,则终端电抗离最近的电压波腹点的距离为φ 。
4π 110、等反射系数圆图中,幅角转变 π 时,对应的电长度为 0.25;圆上任意一点到坐标原点的距离为λ / 4 。
二、推断〔 2分⨯10 =20分〕1. 同轴线在任何频率下都传输TEM 波。
√2. 无耗传输线只有终端开路和终端短路两种状况下才能形成纯驻波状态。
〤3. 假设传输线长度为3厘米,当信号频率为20GHz 时,该传输线为短线。
╳4. 二端口转移参量都是有单位的参量,都可以表示明确的物理意义。
√5. 史密斯圆图的正实半轴为行波系数K 的轨迹。
╳6. 当终端负载与传输线特性阻抗匹配时,负载能得到信源的最大功率。
√7. 垂直极化天线指的是天线放置的位置与地面垂直。
√8. 波导内,导行波的截止波长肯定大于工作波长。
√Z9.驻波天线是宽频带天线。
╳10.天线的效率越高,其辐射力量越强。
√三、简答题〔5分⨯6=30分〕答案仅作为参考1.何谓阻抗匹配?分为哪几类?实现阻抗匹配的方法是什么?答:阻抗匹配即信号传输过程中负载阻抗和信源内阻抗之间满足特定协作关系,从而使信号源给出最大功率,负载能够吸取全部的入射波功率。
2.1题007030ln 104,1044.0,3.030R D L m cm R m cm D πμπμ=⨯=⨯====--1199001043.675ln 1036175ln 10941ln -⨯=⨯⨯=⨯⨯⨯==πππεR D C无损耗线1.51875ln 120ln000====πεμR DC L Z Ω3110310101008800600=⨯=⨯==εμωβC L8103⨯=p v m/smp 31010388=⨯=λ2.2解Ω=⨯⨯==--85.4910666.010655.1129000C L Z50Hz 时:43900210.51010655.15022--=⨯⨯⨯⨯==ππL f X L Ω7312001009.21010666.05022--⨯=⨯⨯⨯⨯==ππC f B C S100MHz 时:1039.871010655.1102239800=⨯⨯⨯⨯==-ππL f X L Ω0.421010666.010********=⨯⨯⨯⨯==-ππC f B C S2.3 解:d D z r r ln 600εμ=r r p εμλλ0=1.在空气里时57.96210ln600==z由于8103⨯=p V所以0λλ=p2.在高分妇材料介质中38.64210ln 5.11600=⨯=z由于88102125.210⨯=⨯⨯3=p V 所以32λλ=p 2.4 形式上,低频或直流电功率传输线横截面为多连通区域,传送信号的有单连通与多连通。
在内容上,电力传输注重功率容量及传输损耗,信号线要求适应很高的频率,且有频带宽度要求,注重信息速率。
2.5 (1)Ω===Ω==∞==5.3715075'150220113120121L A A A LA A Z z Z Z Z z z z(2)Ω===Ω==∞==1002550252220223121Z Z Z Z Z Z Z B B B L B B2.6 频率为100MHz 时Ω=⨯=Ω====⨯=12075060015015060030031010322088D L DE Z Z Z Z m λ012020====Ω=A BC LCFCD Z Z Z Z Z Z频率为200MHz 时Ω=Ω=Ω==⨯⨯=3003006005.110210388CD D DE Z Z Z m λΩ=Ω=⨯=Ω=Ω=∞=300200900600300300300A B BC C CF Z Z Z Z Z 2.7 解:Ω==Ω=Ω===∞=====Ω==Ω=2525251005000505023202020L A B BELBC C L CF CD Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z2.8 解:无损耗传输线Ω=Ω=2501500L Z Z()()()dj d j d j L L i r e e e Z Z Z Z d U d U d βββ2220025.0400100---==+-==Γ(1)P d λ25.0=时()25.025.05.0222-==Γ=⨯⨯=-ππλλπβj P Pe d d(2)pd λ5.0=时()25.025.025.02222==Γ=⨯⨯=-ππλλπβj P Pe d d2.10 解:由()()d d S Γ-Γ+=11得到()2.05.25.011==+-=ΓS S dm f V pP 3.010110398=⨯⨯==λ()⎪⎭⎫ ⎝⎛-Γ=Γ-=-=-=d j P L ed dd d ππππλππβϕϕ3402.034042在无损耗时,0Z 为纯阻()Ω=+-=+-Z =Γ15010010000000Z Z Z Z Z Z d L L终端最近的电压波腹点处cm m d d 5.74030340≈==-=Γππϕ2.11 解:由题意得()d S S d L βϕϕ22.05.25.011-===-+=ΓΓ 当m d 01.0=时,()πϕ12+=Γn得()πλπϕ124min ++=n d pL波节点相差50mm 时由上式可知m d P p1.024==λπλπ且将波长和m d 01.0=代入后得到 ()()()ππ6.026.02.002.0j gbd j e e d -+-=Γ=Γ由于()π6.002.00j L L e Z Z Z Z -=+-=Γ()[]()[]5.1641190.0062.1190.0938.0502.012.015001016.06.00j j j e e Z Z j j L -=+-⨯=-+⨯=Γ-Γ+=--ππ2.12 解:令L Z Z 2050=Ω=⨯=10020050*Z()d tg jZ Z d tg jZ Z Z d Z L L in ββ++=000求其实部d tg d tg dtg Z Z dtg Z Z Z Z L L L ββββ22222020040000250010000100001+=+=++211051002575003000022====d tg d tg d tg βββ 21arctgd =β214.7*==d tg mmd β()7550100502520050j j j d Z in -=++=串入()j d X in 75=阻抗短路线 ()cm d d tg jd tg jZ d Z in 56.123750====ββ并入导纳12202200=++d tg Z Z dtg Z Z Z Z L L L ββ018.0107.121.043000075001000010000250040000222=⨯===+=+πββββd d tg d tg d tg d tg()()j j j d Y in 5.1150110020040050501+=⎪⎪⎭⎫⎝⎛++=并入导纳-0.03j 欧化为阻抗100/3j ,d=0.0094m 2.13()d j d d j d d j d d j d djZ d Z d jZ d Z Z d Z L L in ββββββββββββsin 2cos 3sin 3cos 2600sin 400cos 600sin 600cos 400600sin cos sin cos 000++=++=++= AB 段阻抗匹配()Ω==450L in Z d Z3.3 答:微带线导行电磁波的模式:准TEM 模(或者EH 模)、TE 模式、TM 模式 TE 类表面模式;同轴线导行TEM 模、TE 模、TM 模对于微带线准TEM 模式:rC P V V ε0=rC P ελλ0=对于同轴线TEM 模来说:r r p V V εμ0=r r p εμλλ0=3.4 金属波导管的特点:有效防止辐射损耗;解决导体损耗增加的问题。
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少? 解:31)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性) Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ r ln 600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1min l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
第一章1-1解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> , 此传输线为长线。
1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<< ,此传输线为短线。
1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。
用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。
1-4 解: 特性阻抗050Z ====Ωf=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r Uz U e U e ββ''-'=+()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入33223420220218j j z U eej j j Vππλ-'==+=-+=-()3412020.11200z I j j j A λ'==--=- ()()()34,18cos 2j te z uz t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j te z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L=Z 0∴()()220j z i r U z U e U β''==()()()212321100j j z z Uz e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解: 210.20.2130j L e ccmfπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L LL Z Z -Γ+===Ω+Γ- 由 ()()()22max0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1inin Z z z ''=∞Γ=(b) ()()0100,0in in Z z Z z ''==ΩΓ=(c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3inin Z z Z z ''==ΩΓ=1-9 解: 1 1.21.510.8ρ+Γ===-Γmax 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-=min1120.2,0.514L z ρππβρλ-'Γ===⨯=+ min1min120.2j z z L e β'-'Γ=-=Γ∴ 2420.20.2j jLeeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β= 开路线输入阻抗 0in Z jZ ctg l β=-a) 00252063inZ jZ tgjZ tgj πλπλ=⨯=Ω b) 002252033in Z jZ tg jZ tg j πλπλ=⨯=-Ωc) 0173.23inZ jZ ctgj π=-=-Ωd) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013oj L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-41-17 解: 1350.7j Le Γ=1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求 min1min100min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5LZ j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =-最短分支线长度为 l=0.174λ()0.516B =-1-19 解: 302.6 1.4,0.3,0.30.16100LL lZ j Y j λ=-===+由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω1.01 1.31in Y j =- ()0.020.026in Y j S =-1-20 解: 12LY j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.311.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577inZ j =-Ω 1-21 解: 11 2.5 2.50.20.2L L Y j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5LZ '= 500/2.5200LZ '==Ω(纯电阻)变换段特性阻抗 0316Z '==Ω 1-22 解: 1/0.851.34308.66o o Larctg ϕ=-=-= 由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12Lz ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1inZ j '+= 得 1inZ j '=-向负载方向等效(沿等Γ图)0.25电长度得 1inin Z Z ''='则 ininY Z '''=由inin in Y Y j Z ''''''=+= 得 12in inY Z j j ''''=-=-由负载方向等效0.125电长度(沿等Γ图)得12LY j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。
设特性阻抗为 Z °的无耗传输线的驻波比,第一个电压波节点离负载的距离为《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为50的均匀传输线终端接负载 R 100 ,求负载反射系数i,在离负载0.2 ,0.25及0.5处的输入阻抗及反射系数分别为多少?1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两 导体间填充介电常数r 2.25的介质,求其特性阻抗及f 300MHz 时的波长。
则空气同轴线 乙 60ln b65.9a 当 r 2.25时,z 。
-60ln b43.9V r a 当f 300MHz 时的波长:0.67m1.3题解:1 (Z 1 Z °).( Z 1 Z 0) 1 3 (0.2 )j2 z1 j0.8 1ee 3(0.5 )13(二分之一波长重复性) 1 (0.25 ) 3Z 1 jZ 0tan 丨Z in (0.2 ) z 。
一129.4323.79乙n (0.25 ) 502/100 25(四分之一波长阻抗变换性)乙 n (0.5 ) 100(二分之一波长重复性)解:同轴线的特性阻抗Z 0Z2Z in -2500R 11.5方。
证明:令传输线上任意一点看进去的输入阻抗为Z in ,与其相距处看进去的输入阻抗为4Z n ,则有:Z 1 jZ °tan zZ 0jZ 1 tan zl min1,试证明此时的终端负载应为乙 Z o证明:对于无耗传输线而言:Z1Zj tan丨 min 1 Z in( 1 min 1)Z 0ZZ1j tan丨 min 1Zin(l min1)Z/由两式相等推导出:乙Z 01 j tan lmin1jtan lmin 1传输线上的波长为:cf 2 g— 2mr因而,传输线的实际长度为:I -0.5m4终端反射系数为:R1 Z0 R1 Z49490.96151输入反射系数为:1ej2 1in 1490.96151根据传输线的4的阻抗变换性,输入端的阻抗为:试证明无耗传输线上任意相距入/4的两点处的阻抗的乘积等于传输线特性阻抗的平Z in1 j tan I minijtan 1min 11.4特性阻抗为Z 0 100长度为 /8的均匀无耗传输线,终端接有负载① ② ③ 解:传输线始端的电压。
《微波技术与天线》题集一、选择题(每题2分,共20分)1.微波的频率范围是:A. 300 MHz - 300 GHzB. 300 kHz - 300 MHzC. 300 GHz - 300 THzD. 300 Hz - 300 kHz2.微波在自由空间传播时,其衰减的主要原因是:A. 散射B. 反射C. 绕射D. 折射3.下列哪种天线常用于微波通信?A. 偶极子天线B. 螺旋天线C. 抛物面天线D. 环形天线4.微波传输线中,最常用的传输线是:A. 同轴线B. 双绞线C. 平行线D. 光纤5.微波器件中,用于反射微波的器件是:A. 微波晶体管B. 微波二极管C. 微波反射器D. 微波振荡器6.在微波电路中,常用的介质材料是:A. 导体B. 绝缘体C. 半导体D. 超导体7.微波集成电路(MIC)的主要优点是:A. 高集成度B. 低功耗C. 低成本D. 大尺寸8.微波通信中,用于调制微波信号的常用方法是:A. 调幅B. 调频C. 调相D. 脉冲编码调制9.下列哪种效应是微波加热的主要机制?A. 热辐射效应B. 电磁感应效应C. 介电加热效应D. 光电效应10.在雷达系统中,发射天线的主要作用是:A. 接收目标反射的微波信号B. 发射微波信号照射目标C. 处理接收到的微波信号D. 放大微波信号二、填空题(每空2分,共20分)1.微波的波长范围是_____至_____毫米。
2.微波在自由空间传播时,其传播速度接近光速,约为_____米/秒。
3.抛物面天线的主要优点是具有较高的_____和_____。
4.微波传输线中,同轴线的内导体通常采用_____材料制成。
5.微波器件中,用于产生微波振荡的器件是_____。
6.微波加热中,被加热物体必须是_____材料。
7.微波集成电路(MIC)是在_____基片上制作的微波电路。
8.雷达系统中,接收天线的主要作用是_____。
9.微波通信中,为了减小传输损耗,通常采用_____方式进行传输。
可编辑修改精选全文完整版课程名称:微波技术与天线答案共 4 页试卷:A、考试形式:闭卷一、填空题(每空1分,共10分)1、300MHz 3000GHz。
2、相等,λ/2。
3、TE104、TE015、电激励、磁激励、电流激励6、越强二、选择题(每题2分,共20分)1、B2、D3、A4、A5、C6、B7、C8、D9、D 10、B三、简答题(每题6分,共24分)1、有一三端口元件,测得其[S]矩阵为:00.9950.1 []0.995000.100s⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦问:此元件有那些性质?它是一个什么样的元件?答:(1)由S11=S22=S33=0知,此元件的三个端口均匹配。
1分(2)由S23=S32=0知,此元件的端口2和端口3是相互隔离的。
1分(3)S ij=S ji(i、j=1,2,3)知,此元件是互易的。
1分(4)由S11=S22=S33知,此元件是对称的。
1分(5)由[S]+[S]≠[I]知,此元件是有耗的。
1分此元件是一个不等分的电阻性功率分配元件。
1分2、智能天线将在那几个方面提高移动通信系统的性能?答:1.提高通信系统的容量和频谱利用率; 1.5分2.增大基站的覆盖面积; 1.5分3.提高数据传输速率; 1.5分4.降低基站发射功率,节省系统成本,减少了信号干扰与电磁环境污染。
1.5分3、解释对称振子的波长缩短效应,分析产生的原因。
答:对称振子的相移常数β大于自由空间的波数k,亦即对称振子上的波长短于自由空间波长,称为波长缩短想象。
2分4、某定向耦合器的耦合度为33dB ,定向度为24dB ,端口①的入射功率为25W ,计算直通端②和耦合端口③输出功率。
(6分)解:C=10lgP 1/P 3=33dB P 1/P 3=10-3.3 P 3=P 1×10-3.3=0.0125W 2分 D=10lgP 3/P 4=24dB P 4=0.00005W=50μW 2分 则直通端的输出为: P 2=24.9875W 2分5、画出两个沿x 方向排列间距为λ/2且平行于z 轴放置的振子天线在等幅同相激励时的H 面方向图。
《电磁场微波技术与天线》习题及参考答案一、填空题:1、静止电荷所产生的电场,称之为_静电场_;电场强度的方向与正电荷在电场中受力的方向__相同_。
2、电荷之间的相互作用力是通过 电场 发生的,电流与电流之间的相互作用力是通过磁场发生的。
3、矢量场基本方程的微分形式是:V A ρ=⋅∇和 J A =⨯∇ ;说明矢量场的散度和 旋度 可以描述矢量场在空间中的分布和变化规律。
4、矢量场基本方程的积分形式是:dV dS A V V S ρ⎰⎰=⋅⋅和 dS J s dl A l ⋅=⋅⎰⎰;说明矢量场的环量和 通量 可以描述矢量场在空间中的分布和变化规律。
5、矢量分析中的两个重要定理分别是高斯定理和斯托克斯定理, 它们的表达式分别是:dS A dV A S v ⋅⎰=⋅∇⎰ 和dS rotA dl A s l ⋅=⋅⋅⎰⎰。
6、静电系统在真空中的基本方程的积分形式是:∮D s ·d S =q 和⎰E·d =0。
7、静电系统在真空中的基本方程的微分形式是:V D ρ=⋅∇和0=⨯∇E 。
8、镜象法的理论依据是静电场的唯一性定理 。
基本方法是在所求场域的外部放置镜像电荷以等效的取代边界表面的感应电荷或极化电荷 。
9、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =_0__;而磁场→B 的法向分量B 1n -B 2n =__0__。
10、法拉弟电磁感应定律的方程式为E n =-dtd φ,当d φ/dt>0时,其感应电流产生的磁场将阻止原磁场增加。
11、在空间通信中,为了克服信号通过电离层后产生的法拉第旋转效应,其发射和接收天线都采用圆极化天线。
12、长度为2h=λ/2的半波振子发射天线,其电流分布为:I (z )=I m sink (h-|z|) 。
13、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
微波技术与天线答案1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<< 此传输线为短线1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。
用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。
1-4 解: 特性阻抗050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入 33223420220218j j z Ueej j j V ππλ-'==+=-+=-()3412020.11200z Ij j j A λ'==--=- ()()()34,18cos 2j te z u z t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==()()()212321100j j z z U z e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解:210.20.2130j L e ccm fπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L LL Z Z -Γ+===Ω+Γ- 由 ()()()22max 0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1in in Z z z ''=∞Γ= (b) ()()0100,0in in Z z Z z ''==ΩΓ= (c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3in in Z z Z z ''==ΩΓ= 1-9 解: 1 1.21.510.8ρ+Γ===-Γ 0max 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-= min1120.2,0.514L z ρππβρλ-'Γ===⨯=+min1min120.2j z z Le β'-'Γ=-=Γ ∴ 2420.20.2j jL eeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β=开路线输入阻抗 0in Z jZ ctg l β=- a) 00252063in Z jZ tgjZ tgj πλπλ=⨯=Ω b) 002252033in Z jZ tg jZ tg j πλπλ=⨯=-Ωc) 0173.23in Z jZ ctgj π=-=-Ω d) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013oj L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-41-14 解: 表1-5 1-15 解: 表1-61-16 解: 表1-71-17 解: 1350.7oj L e Γ= 1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求min1min10min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5L Z j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =- 最短分支线长度为 l=0.174λ()0.516B =- 1-19 解: 302.6 1.4,0.3,0.30.16100L L lZ j Y j λ=-===+ 由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω 1.01 1.31in Y j =- ()0.020.026in Y j S =- 1-20 解: 12L Y j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.31 1.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577in Z j =-Ω 1-21 解: 11 2.5 2.50.20.2L LY j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5L Z '= 500/2.5200LZ '==Ω(纯电阻) 变换段特性阻抗316Z '===Ω 1-22 解: 1/0.851.34308.66o o L arctg ϕ=-=-=由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12L z ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1in Z j '+= 得 1in Z j '=- 向负载方向等效(沿等Γ图)0.25电长度 得 1in in Z Z ''='则 in in Y Z '''=由in in in Y Y j Z ''''''=+= 得 12in in Y Z j j ''''=-=- 由负载方向等效0.125电长度(沿等Γ图)得 12L Y j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。
微波技术与天线基础总复习题一、填空题1、微波是一般指频率从 至 范围内的电磁波,其相应的波长从 至 。
并划为 四个波段;从电子学和物理学的观点看,微波有 、 、 、 、 等重要特点。
2、无耗传输线上的三种工作状态分别为: 、 、 。
3、传输线几个重要的参数:(1) 波阻抗: ;介质的固有波阻抗为 。
(2) 特性阻抗: ,或 ,Z 0=++I U 其表达式为Z 0= ,是一个复数; 其倒数为传输线的 .(3) 输入阻抗(分布参数阻抗): ,即Z in (d)= 。
传输线输入阻抗的特点是: a) b) c) d)(4) 传播常数:(5) 反射系数:(6) 驻波系数:(7) 无耗线在行波状态的条件是: ;工作在驻波状态的条件是: ;工作在行驻波状态的条件是: 。
4、负载获得最大输出功率时,负载Z 0与源阻抗Z g 间关系: 。
5、负载获得最大输出功率时,负载与源阻抗间关系: 。
6、史密斯圆图是求街均匀传输线有关 和 问题的一类曲线坐标图,图上有两组坐标线,即归一化阻抗或导纳的 的等值线簇与反射系数的 等值线簇,所有这些等值线都是圆或圆弧,故也称阻抗圆图或导纳圆图。
阻抗圆图上的等值线分别标有 ,而 和 ,并没有在圆图上表示出来。
导纳圆图可以通过对 旋转180°得到。
阻抗圆图的实轴左半部和右半部的刻度分别表示 或 和 或 。
圆图上的电刻度表示 ,图上0~180°是表示 。
7、阻抗匹配是使微波电路或系统无反射运载行波或尽量接近行波的技术措施,阻抗匹配主要包括三个方面的问题,它们是:(1);(2);(3)。
8、矩形波导的的主模是模,导模传输条件是,其中截止频率为,TE10模矩形波导的等效阻抗为,矩形波导保证只传输主模的条件是。
9、矩形波导的管壁电流的特点是:(1)、(2)、(3)。
10、模式简并现象是指,主模也称基模,其定义是。
单模波导是指;多模传输是。
11、圆波导中的主模为,轴对称模为,低损耗模为。
课程名称:微波技术与天线答案
共 4 页试卷:A、考试形式:闭卷
一、填空题(每空1分,共10分)
1、300MHz 3000GHz。
2、相等,λ/2。
3、TE10
4、TE01
5、电激励、磁激励、电流激励
6、越强
二、选择题(每题2分,共20分)
1、B
2、D
3、A
4、A
5、C
6、B
7、C
8、D
9、D 10、B
三、简答题(每题6分,共24分)
1、有一三端口元件,测得其[S]矩阵为:
00.9950.1 []0.99500
0.100
s
⎡⎤
⎢⎥=⎢⎥
⎢⎥
⎣⎦
问:此元件有那些性质?它是一个什么样的元件?
答:(1)由S11=S22=S33=0知,此元件的三个端口均匹配。
1分
(2)由S23=S32=0知,此元件的端口2和端口3是相互隔离的。
1分(3)S ij=S ji(i、j=1,2,3)知,此元件是互易的。
1分(4)由S11=S22=S33知,此元件是对称的。
1分(5)由[S]+[S]≠[I]知,此元件是有耗的。
1分此元件是一个不等分的电阻性功率分配元件。
1分2、智能天线将在那几个方面提高移动通信系统的性能?
答:1.提高通信系统的容量和频谱利用率; 1.5分
2.增大基站的覆盖面积; 1.5分
3.提高数据传输速率; 1.5分
4.降低基站发射功率,节省系统成本,减少了信号干扰与电磁环境污染。
1.5分
3、解释对称振子的波长缩短效应,分析产生的原因。
答:对称振子的相移常数β大于自由空间的波数k,亦即对称振子上的波长短于自由空间波长,称为波长缩短想象。
2分
原因:(1)对称振子辐射引起振子电流衰减,使振子电流相速减小,相移常数β大于自由空间的波数k,致使波长缩短。
2分
(2)由于振子导体有一定半经,末端分布电容增大,末端电流实际不为零,这等效于振子长度增加,因而造成波长缩短。
2分
4、试分析夜晚听到的电台数目多且杂音大的原因
答:电离层所能反射的频率范围是有限的,一般在短波范围。
电离层分为四层:D、E、F1、F2,D层是吸收层,夜间消失。
3分
短波范围较窄,因此短波电台特别拥挤,电台干扰很大,夜间电离层吸收减少,电波传播条件有所改善,台间干扰更大。
杂音较大。
3分四、分析计算题:(共46分)
1、设某一均匀无耗传输线特性阻抗为Z0=50Ω,终端接有未知负载Z1,现在传输线上测得电压最大值和最小值分别为100mV和20mV,第一个电压波节点
2分
4、某定向耦合器的耦合度为33dB ,定向度为24dB ,端口①的入射功率为25W ,计算直通端②和耦合端口③输出功率。
(6分)
解:C=10lgP 1/P 3=33dB P 1/P 3=10-3.3 P 3=P 1×10-3.3=0.0125W 2分 D=10lgP 3/P 4=24dB P 4=0.00005W=50μW 2分 则直通端的输出为: P 2=24.9875W 2分
5、画出两个沿x 方向排列间距为λ/2且平行于z 轴放置的振子天线在等幅同相激励时的H 面方向图。
(6分)
解: 由题意知, 2分
d=λ/2, ζ=0, 将其代入上式,H 面方向图得到二元阵的H 面方向图函数为
2分 方向图: 2分 如有侵权请联系告知删除,感谢你们的配合!
()cos(cos )2
H F πϕϕ=1()cos (cos )2H F kd ϕϕζ=+ 0.2
0.4 0.6 0.8 13021024030060°30°330°
300°
240°210°150°120°
270°
0°
180°90°。