微波技术与天线考试复习重点(含答案)汇总
- 格式:doc
- 大小:4.43 MB
- 文档页数:25
微波技术与天线题库一、填空题1. 驻波比的取值范围为;当传输线上全反射时,反射系数为,此时驻波比ρ等于。
2. γ=α+jβ称为,其中α称为,它表示传输线上的波,β称为,它表示传输线上的波。
3. 特性阻抗50欧的均匀传输线终端接负载Z1为20j欧、50欧和20欧时,传输线上分别形10cm,如图所示:Z in=;Z in=;在z=5cm处的输入阻抗Z in=;2.5cm<z<5cm处,Z in呈性。
ρ=。
5. 无耗传输线的终端短路和开路时,阻抗分布曲线的主要区别是终端开路时在终端处等效为谐振电路,终端短路时在终端处等效为谐振电路。
6. 一段长度为l(0<l<λ/4)短路线和开路线的输入阻抗分别呈纯和纯。
7. 阻抗匹配分为阻抗匹配、阻抗匹配和阻抗匹配,它们反映Z0,根据各点在下图所示的阻抗圆( );( );⑤R<Z0,X=0 ( ); ⑥R=Z0,X=0 ( );⑦Г=0 ( ); ⑧SWR=1 ( );⑨=1Γ( ); ⑩ SWR=∞( ).9. 在导行波中, 截止波长λc最长的电磁波模称为该导波系统的主模。
矩形波导的主模为模, 因为该模式具有场结构简单、稳定、频带宽和损耗小等特点, 所以实用时几乎毫无例外地工作在该模式。
10. 与矩形波导一样,圆波导中也只能传输TE波和TM波;模是圆波导的主模,模是圆波导第一个高次模,而模的损耗最低,这三种模式是常用的模式。
11. 在直角坐标系中,TEM波的分量E z和H z为零;TE波的分量为零;TM波的分量为零。
12. 低频电路是参数电路,采用分析方法,微波电路是参数电路,采用分析方法。
13. 简并模式的特点就是具有相同的和不同的。
14. 微带线的弯区段、宽度上的阶变或接头的不连续性可能会导致电路性能的恶化,主要是因为这种不连续性会引入。
15. 写出下列微波元件的名称。
(a) (b) (c) (d)16. 下图(a)为微带威尔金森功分器,特性阻抗等于,其电长度L等于。
微波:是电磁波中介于超短波与红外线之间的波段,它属于无线电波中波长最短(频率最高)的波段,其频率范围从300Mhz (波长1m)至3000GHz(波长0.1m).微波的特性:1.似光性2.穿透性3.宽频带特性4.热效应特性5.散射特性6.抗低频干扰特性.与低频区别:趋肤效应,辐射效应,长线效应,分布参数。
微波传输线的三种类型:1.双导体传输线,2.金属波导管3.介质传输线。
集总参数:在一般的电路分析中,电路的所有参数,如阻抗、容抗、感抗都集中于空间的各个点上,各个元件上,各点之间的信号是瞬间传递的,这种理想化的电路模型称为集总电路。
这类电路所涉及电路元件的电磁过程都集中在元件内部进行。
用集总电路近似实际电路是有条件的,这个条件是实际电路的尺寸要远小于电路工作时的电磁波长。
对于集总参数电路,由基尔霍夫定律唯一地确定了电压电流。
分布参数:电路是指电路中同一瞬间相邻两点的电位和电流都不相同。
这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。
分布参数电路的实际尺寸能和电路的工作波长相比拟。
对于分布参数电路由传输线理论对其进行分析。
均匀传输线方程(电报方程):,传输线瞬时电压电流:特性阻抗:(无耗传输线R=G=0.)平行双导线(直径为d,间距为D):同轴线(内外导体半径a,b):相移常数:tt ziLt zRizt zu∂∂+=∂∂),(),(),(tt zuCt zGizt z i∂∂+=∂∂),(),(),()cos()cos(),(21zteAzteAt zu zzβωβωαα-++=-+)]cos()cos([1),(21zteAzteAZt zi zzβωβωαα-++=-+CjGLjRZωω++=dDZr2ln1200ε=abZrln600ε=λπωβ2==LC输入阻抗:反射系数:终端反射系数:输入阻抗与反射系数关系:驻波比:;1.行波状态沿线电压电流振幅不变,驻波比为1,终端反射系数0,传输线上各点阻抗等于传输线特性阻抗。
第一章1.均匀传输线(规则导波系统):截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统。
2.均匀传输线方程, 也称电报方程。
3.无色散波:对均匀无耗传输线, 由于β与ω成线性关系, 所以导行波的相速v p 与频率无关, 称为无色散波。
色散特性:当传输线有损耗时, β不再与ω成线性关系, 使相速v p 与频率ω有关,这就称为色散特性。
11010010110cos()sin()tan()()tan()cos()sin()in U z jI Z z Z jZ z Z z Z U Z jZ z I z j z Z ββββββ++==++2p v f πλβ===/2处的阻抗相同, 称为λ/2重复性z1 终端负载221021101()j z j zj zj zZ Z A e z e e Z Z A eββββ----Γ===Γ+ 1101110j Z Z e Z Z φ-Γ==Γ+ 终端反射系数 均匀无耗传输线上, 任意点反射系数Γ(z)大小均相等,沿线只有相位按周期变化, 其周期为λ/2, 即反射系数也具有λ/2重复性4.00()()()in in Z z Z z Z z Z -Γ=+ 0()1()()()1()in U z Z Z Z Z I z Z +Γ==-Γ111ρρ-Γ=+ 1111/1/1Γ-Γ+=-+=+-+-U U U U ρ电压驻波比 其倒数称为行波系数, 用K 表示5.行波状态就是无反射的传输状态, 此时反射系数Γl =0, 负载阻抗等于传输线的特性阻抗, 即Z l =Z 0, 称此时的负载为匹配负载。
综上所述, 对无耗传输线的行波状态有以下结论: ① 沿线电压和电流振幅不变, 驻波比ρ=1;② 电压和电流在任意点上都同相; ③ 传输线上各点阻抗均等于传输线特性阻抗6终端负载短路:负载阻抗Z l =0, Γl =-1, ρ→∞, 传输线上任意点z 处的反射系数为Γ(z)=-e-j2βz此时传输线上任意一点z 处的输入阻抗为0()tan in Z Z jZ z β=① 沿线各点电压和电流振幅按余弦变化, 电压和电流相位差 90°, 功率为无功功率, 即无能量传输; ② 在z=n λ/2(n=0, 1, 2, …)处电压为零, 电流的振幅值最大且等于2|A 1|/Z 0, 称这些位置为电压波节点;在z=(2n+1)λ/4 (n=0, 1, 2, …)处电压的振幅值最大且等于2|A 1|, 而电流为零, 称这些位置为电压波腹点。
微波:是电磁波中介于超短波与红外线之路中的电压和电流除了是时间的函数外,(频率最高)的波段,其频率范围从300Mhz分布参数电路的实际尺寸能和电路的工作(波长 Im)至 3000GHz (波长 0.1m) •微波的特性:1•似光性2•穿透性3•宽频带特对于分布参数电路市传输线理论对其进行集总参数.在一般的电路分析中,电路的所= [A 少'cos( t+ z)+ A € *CO8( t- z)]有参数,如阻抗、容抗.感抗都集中于空间 的各个点上,各个元件上,各点之间的信号特性阻抗:Z 尸曙# (无耗传输线这类电路所涉及电路元件的电磁过程都集中在元件内部进行。
用集总电路近似实位和电流都不相同。
这说明分布参数电间的波段,它属于无线电波中波长最短还是空间坐标的函数。
性4•热效应特性5•散射特性6•抗低频干扰 分析。
特性. 与低频区别:趋肤效应,辐射效应,长线 效应,分布参数。
微波传输线的三种类型:1•双导体传输线,2.均匀传输线方程(电报方程): 竺卫=用D + L 些宀>Qzdt E=Gfer ) + C 竺迪dzdt传输线瞬时电压电流:金属波导管3•介质传输线。
“(ZJ)=A [护"cos( t+ 2)+ A ^cos( t- z)是瞬间传递的,这种理想化的电路模型称为 R=G=0・)集总电路。
平行双导线(直径为d,间距为D ):波长相比拟。
际电路是有条件的,这个条件定实际电路 同轴线(内外导体半径a,b ) :Zo = #inL的尺寸要远小于电路工作时的电磁波长。
相移常数: 对于集总参数电路,由基尔霍夫定律唯输入阻抗:一地确定了电压电流。
分布参数:电路是指电路中同一瞬间相邻两点的电 反射系数:Z _^Z| + Zotan( z)E ° z(, + Zj tan( Z)Z| + Zo终端反射系数:r =Z L Z。
=|「I '"Z| + ZoRma 严 Z u //4阻抗变换性:任意距离为/4的两点处共轨阻抗匹配传输线上各点阻抗等于传输线特性阻抗。
设特性阻抗为 Z °的无耗传输线的驻波比,第一个电压波节点离负载的距离为《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为50的均匀传输线终端接负载 R 100 ,求负载反射系数i,在离负载0.2 ,0.25及0.5处的输入阻抗及反射系数分别为多少?1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两 导体间填充介电常数r 2.25的介质,求其特性阻抗及f 300MHz 时的波长。
则空气同轴线 乙 60ln b65.9a 当 r 2.25时,z 。
-60ln b43.9V r a 当f 300MHz 时的波长:0.67m1.3题解:1 (Z 1 Z °).( Z 1 Z 0) 1 3 (0.2 )j2 z1 j0.8 1ee 3(0.5 )13(二分之一波长重复性) 1 (0.25 ) 3Z 1 jZ 0tan 丨Z in (0.2 ) z 。
一129.4323.79乙n (0.25 ) 502/100 25(四分之一波长阻抗变换性)乙 n (0.5 ) 100(二分之一波长重复性)解:同轴线的特性阻抗Z 0Z2Z in -2500R 11.5方。
证明:令传输线上任意一点看进去的输入阻抗为Z in ,与其相距处看进去的输入阻抗为4Z n ,则有:Z 1 jZ °tan zZ 0jZ 1 tan zl min1,试证明此时的终端负载应为乙 Z o证明:对于无耗传输线而言:Z1Zj tan丨 min 1 Z in( 1 min 1)Z 0ZZ1j tan丨 min 1Zin(l min1)Z/由两式相等推导出:乙Z 01 j tan lmin1jtan lmin 1传输线上的波长为:cf 2 g— 2mr因而,传输线的实际长度为:I -0.5m4终端反射系数为:R1 Z0 R1 Z49490.96151输入反射系数为:1ej2 1in 1490.96151根据传输线的4的阻抗变换性,输入端的阻抗为:试证明无耗传输线上任意相距入/4的两点处的阻抗的乘积等于传输线特性阻抗的平Z in1 j tan I minijtan 1min 11.4特性阻抗为Z 0 100长度为 /8的均匀无耗传输线,终端接有负载① ② ③ 解:传输线始端的电压。
第一章 学习知识要点1.微波的定义— 把波长从1米到0.1毫米范围内的电磁波称为微波。
微波波段对应的频率范围为: 300M Hz ~3000GHz 。
在整个电磁波谱中,微波处于普通无线电波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽1000倍。
一般情况下,微波又可划分为分米波、厘米波和毫米波和亚毫米四个波段。
2.微波具有如下主要特点:1) 似光性;2) 穿透性;3) 宽频带特性与与信息性;4) 热效应特性;5)散射特性;6)非电离特性;7)抗低频干扰特性;8)视距传输特性;9)分布参数的不确定性;10)电磁兼容和电磁环境污染。
3.微波技术的主要应用:1) 在雷达上的应用;2) 在通讯方面的应用;3) 在科学研究方面的应用;4) 在生物医学方面的应用;5) 微波能的应用。
4.长线与短线长线:指几何长度L 与工作波长λ可相比拟的传输线,采用分布参数电路描述。
电长度满足L/λ≥0.05的传输线 称为长线。
短线:指几何长度L 与工作波长λ相比可以忽略的传输线,采用集总参数电路描述。
电长度满足L/λ<0.05的传输线 称为短线。
5.传输线分类:双导体传输线;封闭金属波导;介质传输线。
6.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。
一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。
第二章 学习知识要点1. 传输线可用来传输电磁信号能量和构成各种微波元器件。
微波传输线是一种分布参数电路,线上的电压和电流是时间和空间位置的二元函数,它们沿线的变化规律可由传输线方程来描述。
微波必考知识点复习1、微波是一般指频率从300M至3000GHz范围内的电磁波,其相应的波长从1m 至0.1mm。
从电子学和物理学的观点看,微波有似光性、似声性、穿透性、非电离性、信息性等重要特点。
2、导行波的模式,简称导模,是指能够沿导行系统独立存在的场型,其特点是:(1)在导行系统横截面上的电磁波呈驻波分布,且是完全确定的。
这一分布与频率无关,并与横截面在导行系统上的位置无关;(2)导模是离散的,具有离散谱;当工作频率一定时,每个导模具有唯一的传播常数;(3)导模之间相互正交,彼此独立,互不耦合;(4)具有截止特性,截止条件和截止波长因导行系统和因模式而异。
3、广义地讲,凡是能够导引电磁波沿一定的方向传播的导体、介质或由它们组成的导波系统,都可以称为传输线。
若按传输线所导引的电磁波波形(或称模、场结构、场分布),可分为三种类型:(1)TEM波传输线,如平行双导线、同轴线、带状线和微带线,他们都是双导线传输系统;(2)TE波和TM波传输线,如矩形、圆形、脊形和椭圆形波导等,他们是由金属管构成的,属于单导体传输系统;(3)表面波传输系统,如介质波导(光波导)、介质镜象线等,电磁波聚集在传输线内部及其表面附近沿轴线方向传播,一般是TE或TM波的叠加。
对传输线的基本要求是:工作频带宽、功率容量大、工作稳定性好、损耗小、易耦合、尺寸小和成本低。
一般地,在米波或分米波段,可采用双导线或同轴线;在厘米波段可采用空心金属波导管及带状线和微带线等;在毫米波段采用空心金属波导管、介质波导、介质镜像线和微带线;在光频波段采用光波导(光纤)。
以上划分主要是从减少损耗和结构工艺等方面考虑。
传输线理论主要包括两方面的内容:一是研究所传输波形的电磁波在传输线横截面内电场和磁场的分布规律(也称场结构、模、波型),称横向问题;二是研究电磁波沿传输线轴向的传播特性和场的分布规律,称为纵向问题。
横向问题要通过求解电磁场的边值问题来解决;各类传输线的纵向问题却有很多共同之处。
《微波技术与天线》题集一、选择题(每题2分,共20分)1.微波的频率范围是:A. 300 MHz - 300 GHzB. 300 kHz - 300 MHzC. 300 GHz - 300 THzD. 300 Hz - 300 kHz2.微波在自由空间传播时,其衰减的主要原因是:A. 散射B. 反射C. 绕射D. 折射3.下列哪种天线常用于微波通信?A. 偶极子天线B. 螺旋天线C. 抛物面天线D. 环形天线4.微波传输线中,最常用的传输线是:A. 同轴线B. 双绞线C. 平行线D. 光纤5.微波器件中,用于反射微波的器件是:A. 微波晶体管B. 微波二极管C. 微波反射器D. 微波振荡器6.在微波电路中,常用的介质材料是:A. 导体B. 绝缘体C. 半导体D. 超导体7.微波集成电路(MIC)的主要优点是:A. 高集成度B. 低功耗C. 低成本D. 大尺寸8.微波通信中,用于调制微波信号的常用方法是:A. 调幅B. 调频C. 调相D. 脉冲编码调制9.下列哪种效应是微波加热的主要机制?A. 热辐射效应B. 电磁感应效应C. 介电加热效应D. 光电效应10.在雷达系统中,发射天线的主要作用是:A. 接收目标反射的微波信号B. 发射微波信号照射目标C. 处理接收到的微波信号D. 放大微波信号二、填空题(每空2分,共20分)1.微波的波长范围是_____至_____毫米。
2.微波在自由空间传播时,其传播速度接近光速,约为_____米/秒。
3.抛物面天线的主要优点是具有较高的_____和_____。
4.微波传输线中,同轴线的内导体通常采用_____材料制成。
5.微波器件中,用于产生微波振荡的器件是_____。
6.微波加热中,被加热物体必须是_____材料。
7.微波集成电路(MIC)是在_____基片上制作的微波电路。
8.雷达系统中,接收天线的主要作用是_____。
9.微波通信中,为了减小传输损耗,通常采用_____方式进行传输。
第一章1、天线的任务:用来辐射或接收无线电波的专用装置。
发射天线的作用:是将高频电流(或导波)能量变成电磁波能量,向规定的方向发射出去。
接收天线的作用:是将来自一定方向的无线电波能量还原为高频电流(或导波)能量,经过馈线送入接收机的输入回路。
天线的分类:按波长分:长波天线、中波天线、短波天线、超短波天线和微波天线;按结构分:线天线和面天线。
线天线一般用于长、中、短波。
面天线一般用于微波波段。
2、电基本振子的近场区为什么称为感应场? 远区场又称辐射场?因电基本振子可看成是由很短的传输线展开的,具有很大的容抗,电动势滞后于电流接近于90度,因而是电场滞后于磁场90度,所以又称感应场。
我们把电磁波能量离开场源流向空间不再返回的现象称为辐射。
因此电基本振子远区场称为辐射场。
3、天线的电参数的重要性:天线是无线电设备的重要部分,天线性能好坏将直接影响整个系统的性能指标。
因此,定量表征天线性能、功能的物理量就是天线的电参数,为选择和设计天线提供依据。
发射天线的电参数有哪些:天线的方向性及方向性参数、天线的效率与增益系数、天线的极化特性、天线的工作频带宽度、天线的有效长度、输入阻抗。
4、方向图各参数:D 为天线的方向系数、G 为天线的增益、ηA 为天线的效率。
D 用dB 表示时取10 lg, G=ηA D 。
通常超短波和微波天线的ηA 近似为1。
5、天线的输入阻抗的定义Z in =U o /Io U 为馈电点的高频电压。
Io 为该点电流。
辐射阻抗:将天线辐射的功率看成是被一个等效阻抗所吸收的功率,这个等效电阻就是辐射阻抗Z r 。
频带宽度:把天线的各种特性参数不超过规定变化范围的频率范围称为天线的频带宽度,简称天线宽度。
窄带天线:Δf f o×100% Δf=f max -f min 对宽带天线:常用f max /f min 表示。
6、S=D λ24π,S 称为接收天线的有效接收面积。
它代表接收天线吸收外来电波的能力。
微波技术与天线基础总复习题一、填空题1、微波是一般指频率从 至 范围内的电磁波,其相应的波长从 至 。
并划为 四个波段;从电子学和物理学的观点看,微波有 、 、 、 、 等重要特点。
2、无耗传输线上的三种工作状态分别为: 、 、 。
3、传输线几个重要的参数:(1) 波阻抗: ;介质的固有波阻抗为 。
(2) 特性阻抗: ,或 ,Z 0=++I U 其表达式为Z 0= ,是一个复数; 其倒数为传输线的 .(3) 输入阻抗(分布参数阻抗): ,即Z in (d)= 。
传输线输入阻抗的特点是: a) b) c) d)(4) 传播常数:(5) 反射系数:(6) 驻波系数:(7) 无耗线在行波状态的条件是: ;工作在驻波状态的条件是: ;工作在行驻波状态的条件是: 。
4、负载获得最大输出功率时,负载Z 0与源阻抗Z g 间关系: 。
5、负载获得最大输出功率时,负载与源阻抗间关系: 。
6、史密斯圆图是求街均匀传输线有关 和 问题的一类曲线坐标图,图上有两组坐标线,即归一化阻抗或导纳的 的等值线簇与反射系数的 等值线簇,所有这些等值线都是圆或圆弧,故也称阻抗圆图或导纳圆图。
阻抗圆图上的等值线分别标有 ,而 和 ,并没有在圆图上表示出来。
导纳圆图可以通过对 旋转180°得到。
阻抗圆图的实轴左半部和右半部的刻度分别表示 或 和 或 。
圆图上的电刻度表示 ,图上0~180°是表示 。
7、阻抗匹配是使微波电路或系统无反射运载行波或尽量接近行波的技术措施,阻抗匹配主要包括三个方面的问题,它们是:(1);(2);(3)。
8、矩形波导的的主模是模,导模传输条件是,其中截止频率为,TE10模矩形波导的等效阻抗为,矩形波导保证只传输主模的条件是。
9、矩形波导的管壁电流的特点是:(1)、(2)、(3)。
10、模式简并现象是指,主模也称基模,其定义是。
单模波导是指;多模传输是。
11、圆波导中的主模为,轴对称模为,低损耗模为。
《微波技术与天线》复习知识要点绪论●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
●微波的频率*围:300MHz~3000GHz ,其对应波长*围是1m~0.1mm●微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论●均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)=Z in(z+λ/2)2、λ/4变换性:Z in(z)-Z in(z+λ/4)=Z02证明题:(作业题)●均匀无耗传输线的三种传输状态(要会判断)1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态(知道概念)▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
共轭匹配的目的就是使负载得到最大功率。
●传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)●阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。
1.反射系数圆图:Γ(z)=|Γ1|e j(Φ1-2βz)=|Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角。
1. 为什么空心的金属波导内不能传播TEM 波?空心金属波导内不能存在TEM 波。
这是因为:如果内部存在TEM 波,则要求磁场完全在波导的横截面内,而且是闭合曲线。
有麦克斯韦第一方程可知,闭合曲线上磁场的积分等于与曲线相交链的电流。
由于空心金属波导中不存在轴向即传播方向的传导电流,故必要求有传播方向的位移电流,由位移电流的定义式可知,要求一定有电场存在,显然这个结论与TEM 波的定义相矛盾,所以,规则金属内不能传输TEM 波。
2. 说明圆波导中TE01模为什么具有低损耗特性。
答:TE 01模磁场只有径向和轴向分量,故波导管壁电流无纵向分量,只有周向电流。
因此当传输功率一定时,随着频率升高,管壁的热损耗将单调下降,故其损耗相对其它模式来说是低的,故可将工作在TE 01模的圆波导用于毫米波的远距离传输或制作高Q 值的谐振腔。
3. 列出微波等效电路网络常用有 5 种等效电路的矩阵表示,并说明矩阵中的参数是如何测量得到的。
答:(1)阻抗参量当端口②开路时,I 2=0,网络阻抗参量方程变为:221111221112112111I I U Z I U Z I U U Z Z I I ======则当端口①开路时, I 1=0,网络阻抗参量方程变为:(2)导纳参量当端口②短路时,U 2=0,网络导纳参量方程变为:当端口①短路时,U 1=0,网络导纳参量方程变为:(3)转移参量当端口②开路时,I 2=0,网络转移参量方程变为:当端口②短路时,U 2=0,网络转移参量方程变为:A 11:端口②开路时,端口①到端口②电压传输系数的倒数; A 21:端口②开路时,端口①与端口②之间的转移导纳;111122222212122222I I U Z I U Z I U U Z Z I I ======则11122122Y Y Y Y Y ⎡⎤=⎢⎥⎣⎦2211112211121121110UUI Y U I Y U I I Y Y U U ======则11112222221212222200U U I Y U I Y U I I Y Y U U ======则11112221212222U A A U U A I A A I I ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦22111212121111212200I I U A U I A U U I A A U U ======则()()()()2211221222111222220UUU A I I A I U I A A I I ===-=-==--则A 22:端口②短路时,端口①到端口②电流传输系数的倒数; A 12:端口②短路时,端口①与端口②之间的转移阻抗。
微波技术与天线复习题答案《微波技术与天线》习题答案章节微波传输线理路1.1设⼀特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输⼊阻抗及反射系数分别为多少?解:31)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ(⼆分之⼀波长重复性)31)25.0(-=ΓλΩ-∠=++=ο79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之⼀波长阻抗变换性)Ω=100)5.0(λin Z (⼆分之⼀波长重复性)1.2求外导体直径分别为0.25cm 和0.75cm 的空⽓同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空⽓同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600aε当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的⽆耗传输线的驻波⽐ρ,第⼀个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--?=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--?=∴=++?=由两式相等推导出:对于⽆耗传输线⽽⾔:)(Θ1.4传输线上的波长为:m fr2cg ==ελ因⽽,传输线的实际长度为: m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输⼊反射系数为: 961.051Γ=Γ-lj in eβ根据传输线的4λ的阻抗变换性,输⼊端的阻抗为:Ω==2500120R ZZ in1.5试证明⽆耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平⽅。
微波技术与天线复习要点微波技术与天线是电子工程中非常重要的两个领域。
微波技术涉及了微波器件、微波电路和微波系统等方面的知识,而天线则涉及到电磁波传输和接收的技术。
下面将从微波技术和天线的基本原理、设计和应用等方面进行复习要点的总结。
一、微波技术的复习要点:1.微波的概念:微波是指频率在0.3GHz到300GHz之间的电磁波。
其特点是波长短、能量集中、穿透能力强。
2.微波器件:包括微波管、微波集成电路和微波半导体器件等。
微波管是一种用于产生、放大、调制和检波微波信号的器件。
微波集成电路是将微波器件集成在一块微波板上,实现微波信号的处理功能。
3.微波电路:包括微波传输线、微波滤波器和微波功率分配器等。
微波传输线用于在电路中传输微波信号,常用的微波传输线有阻抗线、共面波导和同轴线等。
微波滤波器用于选择性地通过或阻断特定频率范围内的微波信号。
微波功率分配器用于将微波信号分配到不同的传输线或输出端口。
4.微波系统:包括微波通信系统、微波雷达系统和微波遥感系统等。
微波通信系统是利用微波信号进行通信的系统,其特点是高速率、抗干扰性强。
微波雷达系统是利用微波信号检测目标的系统,其特点是高分辨率、远距离探测。
微波遥感系统是利用微波信号获取地球表面信息的系统,其特点是穿透云雾、对地物覆盖情况敏感。
二、天线的复习要点:1.天线的基本原理:天线是用于辐射电磁波或接收电磁波的装置。
其基本原理是由电流产生的电场和磁场辐射出去形成电磁波。
根据发射和接收的方式不同,天线分为发射天线和接收天线。
2.天线的参数:包括增益、方向性、波束宽度和极化等。
增益是指天线辐射能量的能力,方向性是指天线在不同方向上的辐射强度不同,波束宽度是指天线辐射的主瓣宽度,极化是指电场矢量的方向。
3.天线的设计:包括天线的结构设计和参数设计。
结构设计涉及到天线的形状和尺寸,参数设计涉及到天线的频率和阻抗匹配。
4.天线的应用:包括通信系统、雷达系统和无线电广播等。
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少?解:31)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++=ο79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(Θ1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为: m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
微波技术与天线复习提纲(2011级)一、思考题1. 什么是微波?微波有什么特点?答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ 到3000GHZ ,波长从0.1mm 到1m ;微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。
2. 试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现象有哪些?一般是采用哪些物理量来描述?答:长线是指传输线的几何长度与工作波长相比拟的的传输线;以长线为基础的物理现象:传输线的反射和衰落;主要描述的物理量有:输入阻抗、反射系数、传输系数和驻波系数。
3. 均匀传输线如何建立等效电路,等效电路中各个等效元件如何定义?4. 均匀传输线方程通解的含义5. 如何求得传输线方程的解?6. 试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长) 答:传输线的工作特性参数主要有特征阻抗Z 0,传输常数错误!未找到引用源。
,相速及波长。
1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波电流比值的负值,其表达式为0Z =它仅由自身的分布参数决定而与负载及信号源无关;2)传输常数j γαβ=+是描述传输线上导行波的衰减和相移的参数,其中,α和β分别称为衰减常数和相移常数,其一般的表达式为γ=传输线上电压、电流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即p v ωβ=;4)传输线上电磁波的波长λ与自由空间波长0λ的关系2πλβ==。
7. 传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并分析三者之间的关系答:输入阻抗:传输线上任一点的阻抗Z in 定义为该点的电压和电流之比,与导波系统的状态特性无关,10001tan ()tan in Z jZ z Z z Z Z jZ zββ+=+ 反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系数,对于无耗传输线,它的表达式为2(2)10110()||j z j z Z Z z e Z Z βφβ---Γ==Γ+ 驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比,也称为驻波系数。
反射系数与输入阻抗的关系:当传输线的特性阻抗一定时,输入阻抗与反射系数一一对应,因此,输入阻抗可通过反射系数的测量来确定;当10Z Z =时,1Γ=0,此时传输线上任一点的反射系数都等于0,称之为负载匹配。
驻波比与反射系数的关系:111||1||ρ+Γ=-Γ,驻波比的取值范围是1ρ≤<∞;当传输线上无反射时,驻波比为1,当传输线全反射时,驻波比趋于无穷大。
显然,驻波比反映了传输线上驻波的程度,即驻波比越大,传输线的驻波就越严重。
8. 均匀传输线输入阻抗的特性,与哪些参数有关?9. 均匀传输线反射系数的特性10. 简述传输线的行波状态,驻波状态和行驻波状态。
11. 什么是行波状态,行波状态的特点12. 什么是驻波状态,驻波状态的特性13. 分析无耗传输线呈纯驻波状态时终端可接哪几种负载,各自对应的电压电流分布14. 介绍传输功率、回波损耗、插入损耗15. 阻抗匹配的意义,阻抗匹配有哪三者类型,并说明这三种匹配如何实现?16.负载获得最大输出功率时,负载与源阻抗间关系:*g in Z Z = 。
17.史密斯圆图是求解均匀传输线有关 阻抗匹配 和 功率匹配 问题的一类曲线坐标图,图上有两组坐标线,即归一化阻抗或导纳的 实部和虚部 的等值线簇与 反射系数 的 幅和模角 等值线簇,所有这些等值线都是圆或圆弧,故也称阻抗圆图或导纳圆图。
导纳圆图可以通过对 阻抗圆图 旋转180°得到。
阻抗圆图的上半部分呈 感 性,下半部分呈 容 性。
Smith 圆图与实轴左边的交点为 短路 点,与横轴右边的交点为 开路 点。
Smith 圆图实轴上的点代表 纯电阻 点,左半轴上的点为电压波 节 点,右半轴上的点为电压波 腹 点。
在传输线上负载向电源方向移动时,对应在圆图上应 顺时针 旋转,反之在传输线上电源向负载方向移动时,对应在圆图上应 逆时针 旋转。
18. TEM 、TE 和TM 波是如何定义的?什么是波导的截止性?分别说明矩形波导、圆波导、同轴线、带状线和微带线的主模是什么?答:1)TE 波,TM 波,TEM 波是属于电磁波的三种模式。
TE 波指电矢量与传播方向垂直,或者说传播方向上没有电矢量。
TM 波是指磁矢量与传播方向垂直。
TEM 波指电矢量和磁矢量都与传播方向垂直;2)c k 是与波导横截面尺寸、形状及传输模式有关的一个参量,当相移常数β=0时,意味导波系统不再传播,亦称为截止, 此时k k c =, 故将c k 称为截止波数3)矩形波导的主模是TE 10模;圆波导的主模是TE 11模;同轴线的主模是TEM 模;带状线的主模是TEM 模;微带线的主模是准TEM 模。
19.简述述矩形波导传输特性的主要参数定义:相移常数,截至波长,截至波数,波导波长,相速度,TE 波和TM 波的波阻抗1) 相移常数和截止波数:相移常数β和截止波数c k的关系是β=2) 相速p v :电磁波的等相位面移动速度称为相速,即p v ωβ== 3) 波导波长g λ:导行波的波长称为波导波长,它与波数的关系式为22/12kk c k c r r g -==εμπβωλ 4) 波阻抗:某个波形的横向电场和横向磁场之比,即t t E Z H =20.导波系统中截止波长、工作波长和波导波长的区别。
答:导行波的波长称为波导波长,用λg 表示,它与波数的关系式为22/1122k k k c g -==πβπλ其中,k /2π为工作波长。
21.为什么空心的金属波导内不能传播TEM 波?答:空心金属波导内不能存在TEM 波。
这是因为:如果内部存在TEM 波,则要求磁场完全在波导的横截面内,而且是闭合曲线。
有麦克斯韦第一方程可知,闭合曲线上磁场的积分等于与曲线相交链的电流。
由于空心金属波导中不存在轴向即传播方向的传导电流,故必要求有传播方向的位移电流,由位移电流的定义式可知,要求一定有电场存在,显然这个结论与TEM 波的定义相矛盾,所以,规则金属内不能传输TEM 波。
22.圆波导中的主模为 TE 11模 ,轴对称模为 TM 01模 ,低损耗模为 TE 01模 。
23.说明圆波导中TE01模为什么具有低损耗特性。
答:TE 01模磁场只有径向和轴向分量,故波导管壁电流无纵向分量,只有周向电流。
因此当传输功率一定时,随着频率升高,管壁的热损耗将单调下降,故其损耗相对其它模式来说是低的,故可将工作在TE 01模的圆波导用于毫米波的远距离传输或制作高Q 值的谐振腔。
24.什么叫模式简并现象?矩形波的和圆波导的模式简并有何异同? 答:波导中的电磁波是各种TM mn 模和TE mn 模的各种线性组合,m 为x 方向变化的半周期数,n 是y 方向变化的半周期数;如果当两个模式TM mn 和TE mn 的截止波长相等时,也就说明这两种模式在矩形波导里出现的可能性相同,这种现象就叫做简并。
25.解释圆波导中的模式简并和极化简并26.为什么一般矩形(主模工作条件下)测量线探针开槽开在波导宽壁的中心线上?27. 带状线传输主模TEM 模时,必须抑制高次模 TE 模 和 TM 模 ;微带线的高次模有 波导模式 和 表面波模式 。
28. 微带线的特性阻抗随着w/h 的增大而 减小 。
相同尺寸的条件下,εr 越大,特性阻抗越 小 。
29. 微波网络基础中,如何将波导管等效成平行传输线的?30. 列出微波等效电路网络常用有5 种等效电路的矩阵表示,并说明矩阵中的参数是如何测量得到的。
31. S 参数如何测量。
32. 二端口网络的S 参数(S11,S12,S21,S22)的物理意义。
33.多口网络[]S 矩阵的性质:网络互易有[][]S S T =,网络无耗有[][][]I S S =+,网络对称时有[][]jj ii S S =。
34. 阻抗匹配元器件的定义,作用,并举例说明有哪些阻抗匹配元件。
35. 写出理想的双口元件的[]S 矩阵,理想衰减器的[]S =⎥⎦⎤⎢⎣⎡--00l l ee αα,理想相移器[]S =⎥⎦⎤⎢⎣⎡--00θθj j e e ,理想隔离器[]S =⎥⎦⎤⎢⎣⎡0100。
36. 功率分配元器件的定义,并举例说明有哪些?答:将一路微波功率按比例分成几路的元件称为功率分配元件,主要包括定向耦合器、功率分配器以及各种微波分支器件。
37. 简述双分支定向耦合器的工作原理,并写出3dB 双分支定向耦合器的[S]矩阵。
答:假设输入电压信号从端口“①”经A 点输入,则到的D 点的信号有两路,一路由分支线直达,其波行程为λg /4,另一路由A →B →C →D ,波行程为3λg /4,;故两条路径到达的波行程差为λg /2,相应的相位差为π,即相位相反。
因此若选择合适的特性阻抗,使到达的两路信号的振幅相等,则端口“④”处的两路信号相互抵消,从而实现隔离。
同样由A →C 的两路信号为同相信号,故在端口“③”有耦合输出信号,即端口“③”为耦合端。
耦合端输出信号的大小同样取决于各线的特性阻抗。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=01000110001021][j j j j S38. 简述天线的定义和功能答:用来辐射和接收无线电波的装置称为天线。
基本功能:1)天线应能将导波能量尽可能多地转变成电磁波能量;2)天线具有方向性;3)天线有适当的极化。
4)天线应有足够的工作频带。
39. 简述天线近场区和远场区的特点答:近区场:θπθωεπθωεπϕθsin 4sin 24cos 2420302rIl H r Il j E r Il j E r =⋅-=⋅-=,, ① 在近区, 电场θE 和r E 与静电场问题中的电偶极子的电场相似, 磁场ϕH 和恒定电流场问题中的电流元的磁场相似, 所以近区场称为准静态场。
② 由于场强与r /1的高次方成正比, 所以近区场随距离的增大而迅速减小, 即离天线较远时, 可认为近区场近似为零。
③ 电场与磁场相位相差90°,说明玻印廷矢量为虚数, 也就是说, 电磁能量在场源和场之间来回振荡, 没有能量向外辐射, 所以近区场又称为感应场。
远区场:jkr jkr e r Il j H e r Il j E --==θλθλπϕθsin 2sin 60,①在远场,电基本振子的场只有θE 和ϕH 两个分量,它们在空间上相互垂直,在时间上同相位,所以其玻印亭矢量*21H E S ⨯=是实数,且指向r 方向。
这说明电基本振子的远区场是一个沿着径向向外传播的横电磁波,故远区场又称辐射场。