高考文科数学试题(全国卷3)
- 格式:doc
- 大小:283.50 KB
- 文档页数:4
2020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题目时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合 1235711A ,,,,,, 315|B x x ,则A ∩B 中元素的个数为()A.2 B.3 C.4D.5【答案】B 【解析】【分析】采用列举法列举出A B ∩中元素的即可.【详解】由题意,{5,7,11}A B ,故A B ∩中元素的个数为3.故选:B【点晴】本题主要考查集合交集运算,考查学生对交集定义的理解,是一道容易题.2.若 11 z i i ,则z =()A.1–iB.1+iC.–iD.i【答案】D 【解析】【分析】先利用除法运算求得z ,再利用共轭复数的概念得到z 即可.【详解】因为21(1)21(1)(1)2i i iz i i i i ,所以z i =.故选:D【点晴】本题主要考查复数的除法运算,涉及到共轭复数的概念,是一道基础题.3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为()A.0.01B.0.1C.1D.10【答案】C 【解析】【分析】根据新数据与原数据关系确定方差关系,即得结果.【详解】因为数据(1,2,,)i ax b i n L ,的方差是数据(1,2,,)i x i n L ,的方差的2a 倍,所以所求数据方差为2100.01=1 故选:C【点睛】本题考查方差,考查基本分析求解能力,属基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t ,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A.60 B.63C.66D.69【答案】C 【解析】【分析】将t t 代入函数0.23531t KI t e结合 0.95I tK求得t即可得解.【详解】0.23531t KI t e∵,所以0.23530.951t KI t K e,则 0.235319t e ,所以,0.2353ln193t,解得353660.23t .故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5.已知πsin sin =31,则πsin =6()A.12B.3C.23D.22【答案】B 【解析】【分析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值.【详解】由题意可得:1sin sin cos 122,则:33sin cos 122 ,313sin cos 223,从而有:sin coscos sin 663,即3sin 63.故选:B.【点睛】本题主要考查两角和与差的正余弦公式及其应用,属于中等题.6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC,则点C 的轨迹为()A.圆 B.椭圆C.抛物线D.直线【答案】A 【解析】【分析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.【详解】设 20AB a a ,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则: ,0,,0A a B a ,设 ,C x y ,可得: ,,,AC x a y BC x a y,从而: 2AC BC x a x a y,结合题意可得: 21x a x a y ,整理可得:2221x y a ,即点C 的轨迹是以AB 中点为圆心,为半径的圆.故选:A.【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.7.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.(14,0) B.(12,0) C.(1,0) D.(2,0)【答案】B 【解析】【分析】根据题中所给的条件OD OE ,结合抛物线的对称性,可知4COx COx,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x 与抛物线22(0)y px p 交于,C D 两点,且OD OE ,根据抛物线的对称性可以确定4DOx COx,所以(2,2)C ,代入抛物线方程44p ,求得1p ,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.8.点(0,﹣1)到直线 1y k x 距离的最大值为()A.1B.C.D.2【答案】B 【解析】【分析】首先根据直线方程判断出直线过定点(1,0)P ,设(0,1)A ,当直线(1)y k x 与AP 垂直时,点A 到直线(1)y k x 距离最大,即可求得结果.【详解】由(1)y k x 可知直线过定点(1,0)P ,设(0,1)A ,当直线(1)y k x 与AP 垂直时,点A 到直线(1)y k x 距离最大,即为||AP .故选:B.【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.9.下图为某几何体的三视图,则该几何体的表面积是()A.B. C.6+2 D.【答案】C 【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S △△△根据勾股定理可得:AB AD DB ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD△该几何体的表面积是:632 .故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.10.设a =log 32,b =log 53,c =23,则()A.a <c <b B.a <b <cC.b <c <aD.c <a <b【答案】A 【解析】【分析】分别将a ,b 改写为331log 23a ,351log 33b ,再利用单调性比较即可.【详解】因为333112log 2log 9333a c ,355112log 3log 25333b c ,所以a c b .故选:A【点晴】本题考查对数式大小的比较,考查学生转化与回归的思想,是一道中档题.11.在△ABC 中,cos C =23,AC =4,BC =3,则tan B =()A.B. C. D.【答案】C 【解析】【分析】先根据余弦定理求c ,再根据余弦定理求cos B ,最后根据同角三角函数关系求tan .B 【详解】设,,AB c BC a CA b22222cos 916234933c a b ab C c2221cos sin tan 299a cb B B B ac 故选:C【点睛】本题考查余弦定理以及同角三角函数关系,考查基本分析求解能力,属基础题.12.已知函数f (x )=sin x +1sin x,则()A.f (x )的最小值为2B.f (x )的图像关于y 轴对称C.f (x )的图像关于直线x 对称D.f (x )的图像关于直线2x对称【答案】D 【解析】【分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D.【详解】sin x ∵可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x xQ Q ()f x 关于原点对称;11(2)sin (),()sin (),sin sin f x x f x f x x f x x x Q 故B 错;()f x 关于直线2x对称,故C 错,D 对故选:D【点睛】本题考查函数定义域与最值、奇偶性、对称性,考查基本分析判断能力,属中档题.二、填空题目:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x,,则z =3x +2y 的最大值为_________.【答案】7【解析】【分析】作出可行域,利用截距的几何意义解决.【详解】不等式组所表示的可行域如图因为32z x y ,所以322x zy ,易知截距2z 越大,则z 越大,平移直线32x y ,当322x zy 经过A 点时截距最大,此时z 最大,由21y x x,得12x y ,(1,2)A ,所以max 31227z .故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.设双曲线C :22221x y a b(a >0,b >0)的一条渐近线为yx ,则C 的离心率为_________.【解析】【分析】根据已知可得ba,结合双曲线中,,a b c 的关系,即可求解.【详解】由双曲线方程22221x y a b可得其焦点在x 轴上,因为其一条渐近线为y,所以b a ,c e a【点睛】本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.15.设函数e ()xf x x a.若(1)4e f ,则a =_________.【答案】1【解析】【分析】由题意首先求得导函数的解析式,然后得到关于实数a 的方程,解方程即可确定实数a 的值【详解】由函数的解析式可得:221x xx e x a e e x a f x x a x a,则:12211111e a aef a a,据此可得:241aeea,整理可得:2210a a ,解得:1a .故答案为:1.【点睛】本题主要考查导数的运算法则,导数的计算,方程的数学思想等知识,属于中等题.16.已知圆锥底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】3【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM,故122S△A BC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S △△△△111222AB r BC r AC r13322r 解得:22r =,其体积:34233V r .故答案为:3.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设等比数列{a n }满足124a a ,318a a .(1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S ,求m .【答案】(1)13 n n a ;(2)6m .【解析】【分析】(1)设等比数列 n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式;(2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.【详解】(1)设等比数列 n a 的公比为q ,根据题意,有1121148a a q a q a ,解得113a q ,所以13 n n a ;(2)令313log log 31n n n b a n ,所以(01)(1)22n n n n n S,根据13m m m S S S ,可得(1)(1)(2)(3)222m m m m m m,整理得2560m m ,因为0m ,所以6m ,【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22列联表,计算出2K的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天空气质量等级为1的概率为216250.43 100,等级为2的概率为510120.27100 ,等级为3的概率为6780.21100,等级为4的概率为7200.09100;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100(3)22 列联表如下:人次400人次400空气质量不好3337空气质量好228221003383722 5.820 3.84155457030K ,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D 中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED ,12BF FB .证明:(1)当AB BC 时,EF AC ;(2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据正方形性质得AC BD ,根据长方体性质得1AC BB ,进而可证AC 平面11BB D D ,即得结果;(2)只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC ,再通过平行四边形性质进行证明即可.【详解】(1)因为长方体1111ABCD A B C D ,所以1BB 平面ABCD 1AC BB ,因为长方体1111,ABCD A B C D AB BC ,所以四边形ABCD 为正方形AC BD 因为11,BB BD B BB BD I 、平面11BB D D ,因此AC 平面11BB D D ,因为EF 平面11BB D D ,所以AC EF ;(2)在1CC 上取点M 使得12CM MC ,连,DM MF ,因为111112,//,=D E ED DD CC DD CC ,所以11,//,ED MC ED MC 所以四边形1DMC E 为平行四边形,1//DM EC 因为//,=,MF DA MF DA 所以四边形MFAD 为平行四边形,1//,//DM AF EC AF 因此1C 在平面AEF 内【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题.20.已知函数32()f x x kx k .(1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.【答案】(1)详见解析;(2)4(0,)27.【解析】【分析】(1)'2()3f x x k ,对k 分0k 和0k 两种情况讨论即可;(2)()f x 有三个零点,由(1)知0k,且(00f f,解不等式组得到k 的范围,再利用零点存在性定理加以说明即可.【详解】(1)由题,'2()3f x x k ,当0k 时,'()0f x 恒成立,所以()f x 在(,) 上单调递增;当0k 时,令'()0f x,得x '()0f x,得x ,令'()0f x,得x或x ,所以()f x在(上单调递减,在(,,) 上单调递增.(2)由(1)知,()f x 有三个零点,则0k,且(00f f即22203203k k,解得4027k,当4027k20f k ,所以()f x 在上有唯一一个零点,同理1k ,32(1)(1)0f k k k ,所以()f x 在(1,k 上有唯一一个零点,又()f x 在(上有唯一一个零点,所以()f x 有三个零点,综上可知k 的取值范围为4(0,)27.【点晴】本题主要考查利用导数研究函数的单调性以及已知零点个数求参数的范围问题,考查学生逻辑推理能力、数学运算能力,是一道中档题.21.已知椭圆222:1(05)25x y C m m 的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,求APQ 的面积.【答案】(1)221612525x y ;(2)52.【解析】【分析】(1)因为222:1(05)25x y C m m ,可得5a ,b m ,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N ,可得PMB BNQ △△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1)∵222:1(05)25x y C m m 5a ,b m ,根据离心率4c e a ,解得54m或54m (舍), C 的方程为:22214255x y ,即221612525x y ;(2)∵点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N根据题意画出图形,如图∵||||BP BQ ,BP BQ ,90PMB QNB ,又∵90PBM QBN ,90BQN QBN ,PBM BQN ,根据三角形全等条件“AAS ”,可得:PMB BNQ △△,∵221612525x y , (5,0)B ,651PM BN ,设P 点为(,)P P x y ,可得P 点纵坐标为1P y ,将其代入221612525x y,可得:21612525P x ,解得:3P x 或3P x ,P 点为(3,1)或(3,1) ,①当P 点为(3,1)时,故532MB ,∵PMB BNQ △△,||||2MB NQ ,可得:Q 点为(6,2),画出图象,如图∵(5,0)A ,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y ,根据点到直线距离公式可得P 到直线AQ的距离为:5d,根据两点间距离公式可得:AQ,APQ 面积为:155252;②当P 点为(3,1) 时,故5+38MB ,∵PMB BNQ △△,||||8MB NQ ,可得:Q 点为(6,8),画出图象,如图∵(5,0)A (6,8)Q ,可求得直线AQ 的直线方程为:811400x y ,根据点到直线距离公式可得P 到直线AQ 的距离为:d,根据两点间距离公式可得:AQAPQ面积为:1522,综上所述,APQ 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2222x t t y t t,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点.(1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3cos sin 120 【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值;(2)由,A B坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x ,则220t t ,解得2t 或1t (舍),则26412y ,即(0,12)A .令0y ,则2320t t ,解得2t 或1t (舍),则2244x ,即(4,0)B .AB ;(2)由(1)可知12030(4)AB k,则直线AB 的方程为3(4)y x ,即3120x y .由cos ,sin x y 可得,直线AB 的极坐标方程为3cos sin 120 .【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4-5:不等式选讲]23.设a ,b ,c R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.【解析】【分析】(1)由2222()2220a b c a b c ab ac bc 结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a ,由题意得出0,,0a b c ,由222322b c b c bc a a a bc bc,结合基本不等式,即可得出证明.【详解】(1)2222()2220a b c a b c ab ac bc ∵,22212ab bc ca a b c .,,a b c ∵均不为0,则2220a b c , 222120ab bc ca a b c;(2)不妨设max{,,}a b c a ,由0,1a b c abc 可知,0,0,0a b c ,1,a b c a bc ∵, 222322224b c b c bc bc bc a a a bc bc bc.当且仅当b c 时,取等号,a,即max{,,}a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.祝福语祝你马到成功,万事顺意!。
2020年全国卷(3)文科数学2020年普通高等学校招生全国统一考试全国卷(Ⅲ)文科数学适用地区:云南、贵州、四川、广西、西藏等一、选择题:1.已知集合 $A=\{1,2,3,5,7,11\}$,$B=\{x|3<x<15\}$,则$A \cap B$ 中元素的个数为 A。
2 B。
3 C。
4 D。
52.复数 $z\cdot(1+i)=1-i$,则 $z=$ A。
$1-i$ B。
$1+i$ C。
$-i$ D。
$i$3.设一组样本数据 $x_1,x_2,\dots,x_n$ 的方差为 0.01,则数据 $10x_1,10x_2,\dots,10x_n$ 的方差为 A。
0.01 B。
1 C。
100 D。
4.Logistic 模型是常用数学模型之一,可应用于流行病学领域。
有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数 $I(t)$($t$ 的单位:天)的 Logistic 模型$I(t)=\frac{K}{1+e^{-0.23(t-53)}}$,其中 $K$ 为最大确诊病例数。
当 $I(t^*)=0.95K$ 时,标志着已初步遏制疫情,则$t^*$ 约为($\ln 19 \approx 3$) A。
60 B。
63 C。
66 D。
695.若 $\sin\theta+\sin(\theta+\frac{\pi}{3})=1$,则$\sin(\theta+\frac{\pi}{3})=$ A。
$\frac{3}{4}$ B。
$\frac{1}{4}$ C。
$-\frac{1}{4}$ D。
$-\frac{3}{4}$6.在平面内,$A,B$ 是两个定点,$C$ 是动点,$AC\cdot BC=1$,则点 $C$ 的轨迹是 A。
圆 B。
椭圆 C。
抛物线 D。
直线7.设 $O$ 为坐标原点,直线 $x=2$ 与抛物线$C:y^2=2px(p>0)$ 交于 $D,E$ 两点,若 $OD\perp OE$,则$C$ 的焦点坐标为 A。
.2019 年一般高等学校招生全国一致考试全国卷 3 文科数学考试时间: 2019 年 6 月 7 日 15: 00—— 17: 00使用省份:云南、广西、贵州、四川、西藏本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分, 满分 150 分,考试时间 120 分钟。
注意事项:1.答卷前,考生务势必自己的姓名和准考据号填写在答题卡上。
2.回答选择题时,选出每题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需变动,用橡皮擦洁净后,再选涂其余答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题,共60 分)一、选择题:此题共12 小题,每题5 分,共 60 分。
在每题给的四个选项中,只有一项为哪一项切合题目要求的。
1 .已知会合2A {1,0,1,2} , B{ x x1} ,则 AIB ()A .1,0,1B . 0,1C .1,1D 0,1,2.2.若 z(1 i) 2i ,则 z =()C 1i1+iA . 1 i B1+iD ...3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A .1B .1C .1D .164324 .《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学珍宝,并称为中国古典小说四大名著 .某中学为认识本校学生阅读四大名著的状况,随机检查了 100 学生,此中阅读过《西游记》或《红楼梦》的学生共有 90 位,阅读过《红楼梦》的学生共有80 位,阅读过《西游记》且阅读过《红楼梦》的学生共 有 60 位,则该检阅读过《西游记》的学生人数与该校学生总数比值的预计值为()A .B .C .D .5 .函数 f (x)2sin xsin2 x 在 [0 , 2 π] 的零点个数为()A . 2B . 3C . 4D . 56 .已知各项均为正数的等比数列{ a n } 的前 4 项和为 15 ,且 a 5 =3a 3+4 a 1,则 a 3=( )A . 16B . 8C . 4D . 27 .已知曲线 y ae xx ln x 在点( 1 , a e )处的切线方程为 y =2 x +b ,则( ). , . , . -1 -1, b1Ab =-1B a= e b =1 a= e , b =1D . a= ea= e C8 .如图,点 N 为正方形 ABCD 的中心, △ ECD 为正三角形,平面ECD ⊥ 平面 ABCD , M 是线段 ED 的中点,则()A . BM =EN ,且直线 BM 、 EN 是订交直线 B . BM EN ,且直线 BM , EN 是≠ 订交直线 C . BM =EN ,且直线 BM 、 EN 是异面直线 D . BM ≠EN ,且直线 BM , EN 是异面直线9 .履行下面的程序框图,假如输入的为 0.01 ,则输出s 的值等于( )..1A. 24210 .已知 F 是双曲线C:的面积(为)2B.2 2x y45111C.2D.2567222的一个焦点,点P 在 C 上, O 坐为原标点,若OP = OF△ OP F,则1A.32B.52x y? 6,C.7D.92命题p : (x ,y )2表示的平面区域为. D , 2x? y;命题D11 .记不等式组2x y0q :(x , y ) D , 2x,y .下1面给出了四个命题① p q②p q这四个命中题,全部真命题的号编是()A.①③B.①②12 .设是定义域R为的偶函数,且在f x0,③ p q④p q C.②③D.③④单一递减,(则)A.f( log1)>34B.f( log1)>34f(2f( 23223)>)>ff((222)332)32)>2 C.f(22)>3 D.f(21 f (2)> f (log334)31f (2)> f (log324)第Ⅱ卷(非选择,题共90 分)二、填空题:此题共4 小题,每题5分,共20 分。
2020年高考真题文科数学(全国III卷)1. 已知集合,,则中元素的个数为A2B3C4D52. 若,则ABCD3.设一组样本数据的方差为0.01,则数据的方差为A0.01B0.1C1D104. Logistic模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的Logistic模型:,其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为(In193)A60B63C66D695.已知,则ABCD6.在平面内,是两个定点,是动点,若,则点的轨迹为A圆B椭圆C抛物线D直线7.设为坐标原点,直线与抛物线交于两点,若,则的焦点坐标为ABD8.点到直线距离的最大值为A1BCD29.右图为某几何体的三视图,则该几何体的表面积是ABD10.设,,,则ABCD11. 在中,,,则AB2C4D812. 已知函数,则A的最小值为2B的图像关于轴对称C的图像关于直线对称D的图像关于直线对称13. 若x,y满足约束条件,则z=3x+2y的最大值为_____.14.设双曲线的一条渐近线为,则的离心率为______.15. 设函数,若,则a=____.16. 已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的切球表体积三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:供60分。
(1)求的通项公式;18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);19.(12分)如图,在长方体中,在,分别在棱,上,且,,证明:20.(12分)已知函数.21.(12分)已知椭圆的离心率为分别为的左、右顶点.(二)选考题:共10分,请考生在第22、23题中任选一题作答。
2019年普通高等学校招生全国统一考试全国卷3文科数学考试时间:2019年6月7日15:00——17:00使用省份:云南、广西、贵州、四川、西藏本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x=-=≤,,则A B=()A.{}1,0,1-B.{}0,1C.{}1,1-D.{}0,1,22.若(1i)2iz+=,则z=()A.1i--B.1+i-C.1i-D.1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.16B.14C.13D.124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6C.0.7D.0.85.函数()2sin sin2f x x x=-在[0,2π]的零点个数为()A.2B.3C.4D.56.已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A. 16B. 8C.4 D. 27.已知曲线e lnxy a x x=+在点(1,a e)处的切线方程为y=2x+b,则()A .a=e ,b =-1B .a=e ,b =1C .a=e -1,b =1D .a=e -1,1b =-8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于( ) A.4122- B.5122- C.6122- D.7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为( ) A .32B .52C .72D .9211.记不等式组6,20x y x y +⎧⎨-≥⎩表示的平面区域为D .命题:(,),29p x y D x y ∃∈+;命题:(,),212q x y D x y ∀∈+.下面给出了四个命题①p q ∨②p q ⌝∨③p q ∧⌝④p q ⌝∧⌝这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则( )A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 第Ⅱ卷(非选择题,共90分) 二、填空题:本题共4小题,每小题5分,共20分。
2019年普通高等学校招生全国统一考试全国卷3文科数学考试时间:2019年6月7日15:00——17:00使用省份:云南、广西、贵州、四川、西藏本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合,则()A.B.C.D.2.若,则z=()A.B.C.D.3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.B.C.D.4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7D.0.85.函数在[0,2π]的零点个数为()A.2 B.3 C.4D.56.已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3=()A. 16 B. 8 C. 4D. 27.已知曲线在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=-1 B.a=e,b=1 C.a=e-1,b=1D.a=e-1,8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.执行下边的程序框图,如果输入的为,则输出的值等于()A. B. C.D.10.已知F是双曲线C:的一个焦点,点P 在C上,O为坐标原点,若,则的面积为()A.B.C.D.11.记不等式组表示的平面区域为D.命题;命题.下面给出了四个命题①②③④这四个命题中,所有真命题的编号是()A.①③B.①②C.②③D.③④12.设是定义域为R的偶函数,且在单调递减,则()A.(log3)>()>()B.(log3)>()>()C.()>()>(log3)D.()>()>(log3)第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分。
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2020年普通高等学校招生全国统一考试·全国Ⅲ卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1235711A =,,,,,,{}|315B x x =<<,则A B 中元素的个数为 ( )A .2B .3C .4D .52.若()1i 1i z +=-,则z = A .1i -B .1i +C .i -D .i3.设一组样本数据1x ,2x ,…,n x 的方差为0.01,则数据110x ,210x ,…,10n x 的方差为( )A .0.01B .0.1C .1D .104.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()()0.23531t K I t e --=+,其中K 为最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为(ln193≈)( ) A .60B .63C .66D .69 5.已知πsin sin 13θθ⎛⎫++= ⎪⎝⎭,则πsin 6θ⎛⎫+=⎪⎝⎭( )A .12BC .23D.2 6.在平面内,A ,B 是两个定点,C 是动点.若1AC BC ⋅=,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线7.设O 为坐标原点,直线2x =与抛物线()2:20C y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( )A .104⎛⎫ ⎪⎝⎭,B .102⎛⎫ ⎪⎝⎭, C .()10,D .()20,8.点()01-,到直线()1y k x =+距离的最大值为( )A .1BCD .2 9.下图为某几何体的三视图,则该几何体的表面积是( )A. B.C.D.10.设3log 2a =,5log 3b =,23c =,则( )A .a c b <<B .a b c <<C .b c a <<D .c a b << 11.在ABC △中,2cos 3C =,4AC =,3BC =,则tan B =( )AB. C.D.12.已知函数()1sin sin f x x x=+,则( )A .()f x 的最小值为2B .()f x 的图像关于y 轴对称C .()f x 的图像关于直线πx =对称D .()f x 的图像关于直线π2x =对称毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0201x y x y x +⎧⎪-⎨⎪⎩≥,≥,≤,则32z x y =+的最大值为________.14.设双曲线2222:1x y C a b-=()00a b >,>的一条渐近线为y =,则C 的离心率为________. 15.设函数()xe f x x a =+,若()14ef '=,则a =________. 16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的切球表面积为________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)设等比数列{}n a 满足124a a +=,318a a -=. (1)求{}n a 的通项公式;(2)记n S 为数列{}3log n a 的前n 项和.若13m m m S S S +++=,求m .18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天空气质量不好附:()()()()2n ad bc a b c d a c K b d -=++++,.19.(12分)如图,在长方体1111ABCD A B C D -中,在E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =,证明:数学试卷 第5页(共20页) 数学试卷 第6页(共20页)(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.20.(12分)已知函数()32f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.21.(12分)已知椭圆()222:10525x y C m m+=<<,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,求APQ △的面积.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为()222123x t tt t y t t ⎧=--⎪≠⎨=-+⎪⎩为参数且,C 与坐标轴交于A ,B 两点. (1)求AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.23.[选修4—5:不等式选讲](10分) 设a ,b ,c ∈R ,0a b c ++=,1abc =. (1)证明:0ab bc ca ++<;(2)用{}max a b c ,,表示a ,b ,c 中的最大值,证明:{}max a b c ,,毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2020年普通高等学校招生全国统一考试·全国Ⅲ卷文科数学答案解析一、选择题 1.【答案】B【解析】采用列举法列举出AB 中元素的即可.由题意,{}5711AB =,,,故AB 中元素的个数为3. 故选:B【考点】集合的交集运算 2.【答案】D【解析】先利用除法运算求得z ,再利用共轭复数的概念得到z 即可.因为()()()21i 1i 2ii 1i 1i 1i 2z ---====-++-,所以i z =.故选:D . 【考点】复数的除法运算,共轭复数的概念 3.【答案】C【解析】根据新数据与原数据关系确定方差关系,即得结果.因为数据i ax b +,()12i n =,,…,的方差是数据i x ,()12i n =,,…,的方差的2a 倍,所以所求数据方差为2100.011⨯=,故选:C . 【考点】方差 4.【答案】C【解析】将t t *=代入函数()()0.23531t K I t e--=+结合()0.95I t K *=求得t *即可得解.()()0.23531t K I t e --=+,所以()()0.23530.951t KI tK e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *+≈≈. 故选:C .【考点】对数的运算,指数与对数的互化 5.【答案】B【解析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值.由题意可 得:1sin sin 12θθθ+=,则:3sin 12θθ=1cos 2θθ+,从而有:sin coscos sin663ππθθ+=,即πsin 6θ⎛⎫+= ⎪⎝⎭.故选:B .【考点】两角和与差的正余弦公式及其应用 6.【答案】A【解析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.设()20AB a a =>,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则:()0A a -,,()0B a ,,设()C x y ,,可得:()AC x a y →=+,,()BC x a y →=-,,从而:()()2AC BC x a x a y →→⋅=+-+,结合题意可得:()()21x a x a y +-+=,整理可得:2221x y a +=+,即点C 的轨迹是以AB .故选:A .【考点】平面向量及其数量积的坐标运算,轨迹方程的求解 7.【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.因为直线2x =与抛物线()220y px p =>交于E ,D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以数学试卷 第9页(共20页) 数学试卷 第10页(共20页)()22D ,,代入抛物线方程44p =,求得1p =,所以其焦点坐标为102⎛⎫⎪⎝⎭,,故选:B . 【考点】圆锥曲线,直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标 8.【答案】B【解析】首先根据直线方程判断出直线过定点()10P -,,设()01A -,,当直线()1y k x =+与AP 垂直时,点A 到直线()1y k x =+距离最大,即可求得结果.由()1y k x =+可知直线过定点()10P -,,设()01A -,,当直线()1y k x =+与AP 垂直时,点A 到直线()1y k x =+距离最大,即为AP =.故选:B . 【考点】解析几何初步的问题,直线过定点,利用几何性质 9.【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S ===⨯⨯=△△△,根据勾股定理可得:AB AD DB ===∴ADB △是边长为(2°11sin 6022ADB S AB AD =⋅⋅==△,∴该几何体的表面积是:632⨯++故选:C .【考点】根据三视图求立体图形的表面积,根据三视图画出立体图形 10.【答案】A【解析】分别将a ,b 改写为331log 23a =,351log 33b =,再利用单调性比较即可.因为333112log 2log 9333a c ===<,355112log 3log 25333b c ===>,所以a c b <<.故选:A .【考点】对数式大小的比较 11.【答案】C【解析】先根据余弦定理求c ,再根据余弦定理求cos B ,最后根据同角三角函数关系求tan B .设AB c =,BC a =,CA b =,22222cos 91623493c a b ab C =+-=+-⨯⨯⨯=,3c ∴=,2221cos9a c bB +-==,sinB ∴=tan B ∴=.故选:C . 【考点】余弦定理,同角三角函数关系 12.【答案】D【解析】根据基本不等式使用条件可判断A ;根据奇偶性可判断B ;根据对称性判断C ,D .sin x 可以为负,所以A 错;sin 0x ≠,()x k k π∴≠∈Z ,()()1sin sin f x x f x x-=--=-,()f x ∴关于原点对称;()()12sin sin f x x f x x π-=--≠,()()1sin sin f x x f x xπ-=+=,故B 错;()f x ∴关于直线2x π=对称,故C 错,D 对.故选:D .【考点】函数定义域与最值,奇偶性,对称性 二、填空题 13.【答案】7【解析】作出可行域,利用截距的几何意义解决.不等式组所表示的可行域如图.因为32z x y =+,所以322x z y =-+,易知截距2z 越大,则z 越大,平移直线32x y=-,当322x zy =-+经过A点时截距最大,此时数学试卷 第11页(共20页) 数学试卷 第12页(共20页)z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,()12A ,,所以max 31227z =⨯+⨯=.故答案为:7.【考点】简单线性规划的应用,线性目标函数的最大值【解析】根据已知可得a=结合双曲线中a ,b ,c 的关系,即可求解.由双曲线方程22221x y a b -=可得 其焦点在x 轴上,因为其一条渐近线为y=,所以ba=c e a ===故【考点】双曲线性质 15.【答案】1【解析】由题意首先求得导函数的解析式,然后得到关于实数a 的方程,解方程即可确定实数a 的值.由函数的解析式可得:()()()()()221x xx e x a e e x a f x x a x a +-+-'==++,则:()()()()12211111e a aef a a ⨯+-'==++,据此可得:()241aeea =+,整理可得:2210a a -+=,解得:1a =.故答案为:1.【解析】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2BC =,3AB AC ==,且点M 为BC边上的中点,设内切圆的圆心为O ,由于AM ==122S =⨯⨯=△ABC r,则: ()11113322222ABC AOB BOC AOCS S S S AB r BC r AC r r =++=⨯⨯+⨯⨯+⨯⨯=⨯++⨯=△△△△,解得:r =,其体积:343Vr π==.. 三、解答题17.【答案】(1)13n n a -= (2)6m =数学试卷 第13页(共20页) 数学试卷 第14页(共20页)【解析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式.设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=-=⎧⎨⎩,解得113a q =⎧⎨=⎩,所以13n n a -=.(2)由(1)求出{}3log n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.令313log log 31n n n b a n -===-,所以()()01122n n n n n S +--==,根据13m m m S S S +++=,可得()()()()1123222m m m m m m -++++=,整理得2560m m --=,因为0m >,所以6m =.【考点】比数列通项公式基本量的计算,等差数列求和公式的应用18.【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09 (2)350锻炼的人次与该市 当天的空气质量有关.【解析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率.由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=. (2)利用每组的中点值乘以频数,相加后除以100可得结果.由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=.(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结()21003383722 5.820 3.84155457030K ⨯⨯-⨯=⨯⨯⨯≈>,因此,有95%的把握认为一天中到该公园锻炼的人次与该市 当天的空气质量有关.【考点】利用频数分布表计算频率和平均数,独立性检验的应用19.【答案】(1)因为长方体1111ABCD A B C D -,所以1BB ABCD ⊥平面,1AC BB ∴⊥,因为长方体1111ABCD A B C D -,AB BC =,所以四边形ABCD 为正方形,AC BD ∴⊥.因为1BB BD B =,111BB BD BB D D ⊂、平面,因此11AC BB D D ⊥平面,因为11EF BB D D ⊂平面,所以AC EF ⊥.(2)在1CC 上取点M 使得12CM MC =,连DM ,MF ,因为12D E ED =,11DD CC ∥,11DD CC =,所以1ED MC =,1ED MC ∥,所以四边形1DMC E 为平行四边形,1DM EC ∴∥.因为MF DA ∥,MF DA =,所以四边形MFAD 为平行四边形,DM AF ∴∥,1EC AF ∴∥,因此1C 在平面AEF 内. 【解析】(1)根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证数学试卷 第15页(共20页) 数学试卷 第16页(共20页)11AC BB D D ⊥平面,即得结果.因为长方体1111ABCD A B C D -,所以1BB ABCD ⊥平面,1AC BB ∴⊥,因为长方体1111ABCD A B C D -,AB BC =,所以四边形ABCD 为正方形,AC BD ∴⊥.因为1BB BD B =,111BB BD BB D D ⊂、平面,因此11AC BB D D ⊥平面,因为11EF BB D D ⊂平面,所以AC EF ⊥.(2)只需证明1EC AF ∥即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进行证明即可.在1CC 上取点M 使得12CM MC =,连DM ,MF ,因为12D E ED =,11DD CC ∥,11DD CC =,所以1ED MC =,1ED MC ∥,所以四边形1DMC E 为平行四边形,1DM EC ∴∥.因为MF DA ∥,MF DA =,所以四边形MFAD 为平行四边形,DM AF ∴∥,1EC AF ∴∥,因此1C 在平面AEF 内.【考点】线面垂直判定定理,线线平行判定20.【答案】(1)由题,()23f x x k '=-,当0k ≤时,()0f x '≥恒成立,所以()f x 在()-∞+∞,上单调递 增;当0k >时,令()0f x '=,得x =,令()0f x '<,得x ,令()0f x '>,得x -<x 所以()f x在⎛上单调递减,在⎛-∞ ,,⎫+∞⎪⎪上单调递增. 【解析】(1)()23f x x k '=-,对k 分0k ≤和0k >两种情况讨论即可.由题,()23f x x k '=-,当0k ≤时,()0f x '≥恒成立,所以()f x 在()-∞+∞,上单调递增;当0k >时,令()0f x '=,得x =,令()0f x'<, 得x ,令()0f x '>,得x -<x ()f x在⎛ ⎝上单调递减,在⎛-∞⎝,⎫+∞⎪⎪⎭上单调递增. (2)()f x 有三个零点,由(1)知0k >,且00ff ⎧⎛⎪ ⎪⎝⎨⎪⎪⎩><,解不等式组得到k 的范围,再利用零点存在性定理加以说明即可.由(1)知,()f x 有三个零点,则0k >,且00f f ⎧⎛⎪ ⎪⎝⎨⎪⎪⎩><,即22203203k k ⎧+⎪⎪⎨⎪-⎪⎩,解 得4027k <<,当4027k <<且20fk =>,所以()f x 在上有唯一一个零 点,同理1k --<()()23110f k k k --=--+<,所以()f x 在1k ⎛--⎝,上有唯一一个零点,又()f x 在⎛ ⎝上有唯一一个零点,所以()f x 有三个零点,综上可知k 的取值范数学试卷 第17页(共20页) 数学试卷 第18页(共20页)围为4027⎛⎫ ⎪⎝⎭,.【解析】(1)因为()2:10525x yC m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案.()222:10525x y C m+=<<,5a ∴=,b m =,根据离心率c e a ====解得54m =或54m =-(舍),C ∴的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=. (2)点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ △的面积.点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N .根据题意画出图形,如图BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=,又90PBM QBN ∠+∠=,90BQN QBN ∠+∠=,PBM BQN ∴∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=, ()50B ∴,,651PM BN ∴==-=,设P 点为()P P x y ,,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,P ∴点为()31,或()31-,, ①当P 点为()31,时,故532MB =-=,PMB BNQ ≅△△,2MB NQ ∴==,可得:Q 点为()62,,画 出图象,如图()50A -,,()62Q ,,可求得直线AQ 的直线方程为:211100xy -+=,根据点到直线距离公式可得P 到 直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ =APQ ∴△面积为:15252⨯=;②当P 点为()31-,时,故5+38MB ==,PMB BNQ ≅△△,8MB NQ ∴==,可得:Q 点为()68,, 画出图象,如图()50A -,,()68Q ,,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P数学试卷 第19页(共20页) 数学试卷 第20页(共20页)到直线AQ 的距离为:d ===根据两点间距离公式可得:AQ ==APQ ∴△面积为:1522=,综上所述,APQ △面积为:52.【考点】椭圆标准方程,三角形面积,椭圆的离心率定义,数形结合求三角形面积【解析】(1)由参数方程得出A ,B 的坐标,最后由两点间距离公式,即可得出AB 的值.令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即()012A ,.令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即()40B -,.AB ∴=(2)由A ,B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.由(1)可知()120304AB k -==--, 则直线AB 的方程为()34y x =+,即3120x y -+=.由cos x ρθ=,sin y ρθ=可得,直线AB 的极坐标方程 为3cos sin 120ρθρθ-+=.【考点】利用参数方程求点的坐标,直角坐标方程化极坐标方程 23.【答案】(1)()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <.a b c =--,1a bc=,()222322224b c b c bc bc bc a a a bc bc bc ++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴{}3max 4a b c ,,.【解析】(1)由()22222220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明.()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++.a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由题意得出0a >,0b c ,<,由()222322b c b c bca aa bcbc+++=⋅==,结合基本不等式,即可得出证明.不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <,a b c =--,1a bc=,()222322224b c b c bc bc bca a a bcbcbc++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴{}3max 4a b c ,,.【考点】不等式的基本性质,基本不等式的应用。
2006年普通高等学校招生全国统一考试
文科数学(全国卷3)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
注意事项:
1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:
如果时间A 、B 互斥,那么()()()P A B P A P B +=+
如果时间A 、B 相互独立,那么()()()P A B P A P B =
如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n k k k n n P k C P P -=-
球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=
,其中R 表示球的半径 一、选择题
⑴、已知向量a b 、满足1,4,a b ==,且2a b =,则a 与b 的夹角为
A .6π
B .4π
C .3π
D .2
π ⑵、设集合{}20M x x x =-<,{}2N x x =<,则
A .M
N =∅ B .M N M = C .M N M = D .M N R =
⑶、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则
A .()22()x
f x e x R =∈ B .()2ln 2ln (0)f x x x => C .()22()x
f x e x R =∈ D .()2ln ln 2(0)f x x x =+> ⑷、双曲线22
1mx y +=的虚轴长是实轴长的2倍,则m =
A .14-
B .4-
C .4
D .14
⑸、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =
A .8
B .7
C .6
D .5
⑹、函数()tan 4f x x π⎛
⎫=+ ⎪⎝⎭
的单调增区间为 A .,,22k k k Z ππππ⎛
⎫-+∈ ⎪⎝⎭
B .()(),1,k k k Z ππ+∈
C .3,,44k k k Z ππππ⎛
⎫-+∈ ⎪⎝⎭ D .3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭
⑺、从圆222210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角
的余弦值为
A .12
B .35
C .0 ⑻、ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B =
A .14
B .34
C .4
D .3 ⑼、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是
A .16π
B .20π
C .24π
D .32π
抛物线2y x =-上的点到直线4380x y +-=距离的最小值是
A .43
B .75
C .85
D .3 ⑽、在1012x x ⎛⎫- ⎪⎝
⎭的展开式中,4x 的系数为 A .120- B .120 C .15- D .15
⑾、抛物线2
y x =-上的点到直线4380x y +-=距离的最小值是 A .43 B .75 C .85
D .3 ⑿、用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为
A .2
B .2
C .2
D .220cm 2006年普通高等学校招生全国统一考试
理科数学
第Ⅱ卷
注意事项:
1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.第Ⅱ卷共2页,请用黑色签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。
3.本卷共10小题,共90分。
二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上。
⒀、已知函数()1,1
x f x a z =-+,若()f x 为奇函数,则a =________。
⒁、已知正四棱锥的体积为12,底面对角线的长为等于_______________。
⒂、设2z y x =-,式中变量x y 、满足下列条件 21x y -≥-
3223x y +≤
1y ≥
则z 的最大值为_____________。
⒃、安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有__________种。
(用数字作答)
三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。
⒄、(本小题满分12分)
已知{}n a 为等比数列,324202,3
a a a =+=
,求{}n a 的通项式。
⒅、(本小题满分12分) ABC ∆的三个内角为A B C 、、,求当A 为何值时,cos 2cos
2
B C A ++取得最大值,并求出这个最大值。
⒆、(本小题满分12分)
A 、
B 是治疗同一种疾病的两种药,用若干试验组进行对比试验。
每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效。
若在一个试验组中,服用A 有效的小白鼠的只数比服用B 有效的多,就称该试验组为甲类组。
设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12。
(Ⅰ)求一个试验组为甲类组的概率;
(Ⅱ)观察3个试验组,求这3个试验组中至少有一个甲类组的概率。
⒇、(本小题满分12分)
如图,1l 、2l 是互相垂直的异面直线,MN 是它
们的公垂线段。
点A 、B 在1l 上,C 在2l 上,
AM MB MN
==。
(Ⅰ)证明AB ⊥NB ;
(Ⅱ)若60O
ACB ∠=,求NB 与平面ABC 所
成角的余弦值。
(21)、(本小题满分12分) 设P 是椭圆()2
2211x y a a
+=>短轴的一个端点,Q 为椭圆上的一个动点,求PQ 的最大值。
(22)、(本小题满分14分)
设a 为实数,函数()()
3221f x x ax a x =-+-在(),0-∞和()1,+∞都是增函数,求a 的取值范围。