2017年秋季学期新版新人教版九年级数学上册期末检测试题含答案
- 格式:doc
- 大小:335.50 KB
- 文档页数:6
2016-2017学年九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点(a,8)在二次函数y=ax2的图象上,则a的值是()A.2 B.﹣2 C.±2 D.±2.如果二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,那么()A.b2﹣4ac≥0 B.b2﹣4ac<0 C.b2﹣4ac>0 D.b2﹣4ac=03.国家实施惠农政策后,某镇农民人均收入经过两年由1万元提高到1.44万元.这两年该镇农民人均收入的平均增长率是()A.10% B.11% C.20% D.22%4.三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是()A.24 B.24或8C.48 D.85.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x﹣1)2+4 D.y=(x﹣1)2+26.抛物线y=x2+x﹣4的对称轴是()A.x=﹣2 B.x=2 C.x=﹣4 D.x=47.随机掷两枚硬币,落地后全部正面朝上的概率是()A.1 B.C.D.8.下列二次根式中,与是同类二次根式的是()A. B. C. D.9.如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB 的长是()A.2cm B.3cm C.4cm D.4cm10.如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5 B.4 C.3 D.211.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是()A.AD=BD B.∠ACB=∠AOE C.D.OD=DE12.关于二次函数y=x2+4x﹣7的最大(小)值,叙述正确的是()A.当x=2时,函数有最大值B.x=2时,函数有最小值C.当x=﹣1时,函数有最大值 D.当x=﹣2时,函数有最小值二、填空题(本大题共8小题,每小题3分,满分24分)13.方程x(x﹣1)=x的解为.14.抛物线y=x2+8x﹣4与直线x=4的交点坐标是.15.二次函数y=﹣x2+3的开口方向是.16.已知:△ABC中,∠C=90°,AC=5cm,AB=13cm,以B为圆心,以12cm长为半径作⊙B,则C点在⊙B.17.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.18.在同一时刻,一杆高为2m,影长为1.2m,某塔的影长为18m,则塔高为m.19.要用一条长为24cm的铁丝围成一个斜边长是10cm的直角三角形,则两直角边的长分别为.20.如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长26米,且斜坡AB的坡度为,则河堤的高BE为米.三、解答题(本大题共8小题,满分60分)21.计算:(﹣)﹣1+﹣2+|π﹣sin30°|0.22.已知抛物线y=x2﹣2x﹣8与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.23.如图,一根水平放置着的圆柱形输水管道的横截面如图所示,期中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是多少米?24.如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC.求证:CD=CE.25.已知:如图,△ABC内接于⊙O,AE是⊙O的直径,CD是△ABC中AB边上的高,求证:AC•BC=AE•CD.26.某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进60米到达点D,又测得点A的仰角为45度.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)27.已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.(1)求出cosB的值;(2)用含y的代数式表示AE;(3)求y与x之间的函数关系式,并求出x的取值范围;(4)设四边形DECF的面积为S,求出S的最大值.28.如图,抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于C点.(1)求A、B、C三点的坐标;(2)证明:△ABC为直角三角形;(3)在抛物线上除C点外,是否还存在另外一个点P,使△ABP是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2016-2017学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点(a,8)在二次函数y=ax2的图象上,则a的值是()A.2 B.﹣2 C.±2 D.±【考点】二次函数图象上点的坐标特征.【分析】因为点(a,8)在二次函数y=ax2的图象上,所以(a,8)符合解析式,代入解析式得8=a3,即a=2.【解答】解:把点(a,8)代入解析式得8=a3,即a=2.故选A.2.如果二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,那么()A.b2﹣4ac≥0 B.b2﹣4ac<0 C.b2﹣4ac>0 D.b2﹣4ac=0【考点】抛物线与x轴的交点.【分析】先看二次函数y=ax2+bx+c(a>0)的a的值a>0,故二次函数开口向上;再看二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,故可得此二次函数与x轴没有交点,由此得解.【解答】解:∵a>0,∴二次函数开口向上;又因为二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,所以此二次函数与x轴没有交点,所以b2﹣4ac<0.故选B.3.国家实施惠农政策后,某镇农民人均收入经过两年由1万元提高到1.44万元.这两年该镇农民人均收入的平均增长率是()A.10% B.11% C.20% D.22%【考点】一元二次方程的应用.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这两年该镇农民人均收入的平均增长率是x,那么由题意可得出1×(1+x)2=1.44,解方程即可求解.【解答】解:设这两年该镇农民人均收入的平均增长率是x,根据题意得:1×(1+x)2=1.44解得x=﹣2.2(不合题意舍去),x=0.2所以这两年该镇农民人均收入的平均增长率是20%.故选C.4.三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是()A.24 B.24或8C.48 D.8【考点】一元二次方程的应用;三角形三边关系;等腰三角形的性质;勾股定理的逆定理.【分析】本题应先解出x的值,然后讨论是何种三角形,接着对图形进行分析,最后运用三角形的面积公式S=×底×高求出面积.【解答】解:x2﹣16x+60=0⇒(x﹣6)(x﹣10)=0,∴x=6或x=10.当x=6时,该三角形为以6为腰,8为底的等腰三角形.∴高h==2,∴S△=×8×2=8;当x=10时,该三角形为以6和8为直角边,10为斜边的直角三角形.∴S△=×6×8=24.∴S=24或8.故选:B.5.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x﹣1)2+4 D.y=(x﹣1)2+2【考点】二次函数的三种形式.【分析】根据配方法进行整理即可得解.【解答】解:y=x2﹣2x+3,=(x2﹣2x+1)+2,=(x﹣1)2+2.故选:D.6.抛物线y=x2+x﹣4的对称轴是()A.x=﹣2 B.x=2 C.x=﹣4 D.x=4【考点】二次函数的性质.【分析】可以用配方法将抛物线的一般式写成顶点式,或者用对称轴公式x=.【解答】解:∵抛物线y=x2+x﹣4=(x﹣2)2﹣3,∴顶点横坐标为x=2,对称轴就是直线x=2.故选B.7.随机掷两枚硬币,落地后全部正面朝上的概率是()A.1 B.C.D.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出全部正面朝上的情况数,即可求出所求的概率.【解答】解:列表如下:所有等可能的情况有4种,其中全部正面朝上的情况有1种,则掷两枚硬币,落地后全部正面朝上的概率为.故选D.8.下列二次根式中,与是同类二次根式的是()A. B. C. D.【考点】同类二次根式.【分析】先将各二次根式化简为最简二次根式,然后根据同类二次根式的定义判断即可.【解答】解:A、=3,故A错误;B、,故B错误;C、=4,故C正确;D、=4,故D错误.故选:C.9.如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB 的长是()A.2cm B.3cm C.4cm D.4cm【考点】垂径定理;相交弦定理.【分析】利用垂径定理和相交弦定理求解.【解答】解:利用垂径定理可知,DP=CP=3,∵P是半径OB的中点.∴AP=3BP,AB=4BP,利用相交弦的定理可知:BP•3BP=3×3,解得BP=,即AB=4.故选D.10.如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5 B.4 C.3 D.2【考点】垂径定理;等边三角形的性质.【分析】当OM⊥AB时值最小.根据垂径定理和勾股定理求解.【解答】解:根据直线外一点到直线的线段中,垂线段最短,知:当OM⊥AB时,为最小值4,连接OA,根据垂径定理,得:BM=AB=3,根据勾股定理,得:OA==5,即⊙O的半径为5.故选A.11.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是()A.AD=BD B.∠ACB=∠AOE C.D.OD=DE【考点】圆周角定理;垂径定理.【分析】由垂径定理和圆周角定理可证,AD=BD,AD=BD,,而点D不一定是OE 的中点,故D错误.【解答】解:∵OD⊥AB∴由垂径定理知,点D是AB的中点,有AD=BD,,∴△AOB是等腰三角形,OD是∠AOB的平分线,有∠AOE=∠AOB,由圆周角定理知,∠C=∠AOB,∴∠ACB=∠AOE,故A、B、C正确,D中点D不一定是OE的中点,故错误.故选D.12.关于二次函数y=x2+4x﹣7的最大(小)值,叙述正确的是()A.当x=2时,函数有最大值B.x=2时,函数有最小值C.当x=﹣1时,函数有最大值 D.当x=﹣2时,函数有最小值【考点】二次函数的最值.【分析】本题考查二次函数最小(大)值的求法.【解答】解:原式可化为y=x2+4x+4﹣11=(x+2)2﹣11,由于二次项系数1>0,故当x=﹣2时,函数有最小值﹣11.故选D.二、填空题(本大题共8小题,每小题3分,满分24分)13.方程x(x﹣1)=x的解为x1=0,x2=2.【考点】解一元二次方程-因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣1)=x,x(x﹣1)﹣x=0,x(x﹣1﹣1)=0,x=0,x﹣1﹣1=0,x1=0,x2=2.故答案为:x1=0,x2=2.14.抛物线y=x2+8x﹣4与直线x=4的交点坐标是(4,44).【考点】二次函数图象上点的坐标特征.【分析】将x=4代入y=x2+8x﹣4中求y,可确定交点坐标.【解答】解:将x=4代入y=x2+8x﹣4中,得y=42+8×4﹣4=44,故交点坐标为(4,44).15.二次函数y=﹣x2+3的开口方向是向下.【考点】二次函数的性质.【分析】根据二次项系数的符号,直接判断开口方向.【解答】解:根据二次函数的性质可知a=﹣<0,所以开口向下.16.已知:△ABC中,∠C=90°,AC=5cm,AB=13cm,以B为圆心,以12cm长为半径作⊙B,则C点在⊙B上.【考点】点与圆的位置关系.【分析】首先根据勾股定理可求出BC的长,在根据点与圆的位置关系判定即可.【解答】解:∵∠C=90°,AC=5cm,AB=13cm,∴BC==12cm,∵以B为圆心,以12cm长为半径作⊙B,∴则C点在⊙B上,故答案为:上.17.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.【考点】概率公式;中心对称图形.【分析】让有中心对称图案的卡片的情况数除以总情况数即为所求的概率【解答】解:根据概率的求简单事件的概率的计算及中心对称图形概念的理解;理论上抽到中心对称图案卡片的概率是中心对称图案的卡片的个数除以所有所有卡片的个数,而中心对称图案有圆、矩形、菱形、正方形,所以概率为.18.在同一时刻,一杆高为2m,影长为1.2m,某塔的影长为18m,则塔高为30m.【考点】平行线分线段成比例.【分析】因为在同一时刻同一地点任何物体的高与其影子长的比值相同,所以利用题目的参照物就可以直接求出塔高.【解答】解:设塔高为x,根据同一时刻同一地点任何物体的高与其影子长的比值相同.得∴x=30.∴塔高为30m.19.要用一条长为24cm的铁丝围成一个斜边长是10cm的直角三角形,则两直角边的长分别为6cm,8cm.【考点】一元二次方程的应用;勾股定理.【分析】首先设一直角边长为xcm,则另一直角边长为(14﹣x)cm,由题意得等量关系:两直角边的平方和等于10的平方,进而列出方程,再解方程即可.【解答】解:设一直角边长为xcm,根据勾股定理得:(14﹣x)2+x2=102,解得x1=6,x2=8,故答案为:6cm,8cm.20.如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长26米,且斜坡AB的坡度为,则河堤的高BE为24米.【考点】解直角三角形的应用-坡度坡角问题.【分析】由已知斜坡AB的坡度,可得到BE、AE的比例关系,进而由勾股定理求得BE、AE的长,由此得解.【解答】解:由已知斜坡AB的坡度,得:BE:AE=12:5,设AE=5x,则BE=12x,在直角三角形AEB中,根据勾股定理得:262=5x2+(12x)2,即169x2=676,解得:x=2或x=﹣2(舍去),5x=10,12x=24即河堤高BE等于24米.故答案为:24.三、解答题(本大题共8小题,满分60分)21.计算:(﹣)﹣1+﹣2+|π﹣sin30°|0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负整数指数幂法则计算,第二项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣2+3﹣5﹣2+1=﹣6+.22.已知抛物线y=x2﹣2x﹣8与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.【考点】抛物线与x轴的交点.【分析】分别求出抛物线顶点P坐标,与x轴交点A、B坐标,即可解决问题.【解答】解:∵抛物线y=x2﹣2x﹣8,令y=0得x2﹣2x﹣8=0,∴x=4或﹣2,∴点A(﹣2,0),点B(4,0),∵y=(x﹣1)2﹣9,∴顶点P(1,﹣9),∴S△ABP=×6×9=27.23.如图,一根水平放置着的圆柱形输水管道的横截面如图所示,期中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是多少米?【考点】垂径定理的应用;勾股定理.【分析】设⊙O的半径是R,过点O作OD⊥AB于点D,交⊙O于点C,连接OA,由垂径定理得出AD的长,在Rt△AOD中利用勾股定理即可求出OA的长.【解答】解:设⊙O的半径是R,过点O作OD⊥AB于点D,交⊙O于点C,连接OA,∵AB=0.8m,OD⊥AB,∴AD==0.4m,∵CD=0.2m,∴OD=R﹣CD=R﹣0.2,在Rt△OAD中,OD2+AD2=OA2,即(R﹣0.2)2+0.42=R2,解得R=0.5m.∴2R=2×0.5=1米.答:此输水管道的直径是1米.24.如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC.求证:CD=CE.【考点】圆心角、弧、弦的关系;全等三角形的判定.【分析】证CD和CE所在的三角形全等即可.【解答】证明:∵OA=OB AD=BE,∴OA﹣AD=OB﹣BE,即OD=OE.在△ODC和△OEC中,,∴△ODC≌△OEC(SAS).∴CD=CE.25.已知:如图,△ABC内接于⊙O,AE是⊙O的直径,CD是△ABC中AB边上的高,求证:AC•BC=AE•CD.【考点】三角形的外接圆与外心;相似三角形的判定与性质.【分析】通过分析易证△BDC∽△ECA,利用相似比得出.即可得出AC•BC=AE•CD.【解答】证明:连接EC.∵AE是⊙O的直径,CD是△ABC中AB边上的高,∴∠ACE=∠CDB=90°.又∵∠B=∠E,∴△BDC∽△ECA.∴.∴AC•BC=AE•CD.26.某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进60米到达点D,又测得点A的仰角为45度.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB及CD=BC﹣BD=60构造方程关系式,进而可解,即可求出答案.【解答】解:由已知,可得:∠ACB=30°,∠ADB=45°,∴在Rt△ABD中,BD=AB.又在Rt△ABC中,∵tan30°=,∴,即BC=AB.∵BC=CD+BD,∴AB=CD+AB,即(﹣1)AB=60,∴AB=米.答:教学楼的高度为30(+1)米.27.已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.(1)求出cosB的值;(2)用含y的代数式表示AE;(3)求y与x之间的函数关系式,并求出x的取值范围;(4)设四边形DECF的面积为S,求出S的最大值.【考点】相似三角形的判定与性质;二次函数的最值.【分析】(1)根据勾股定理求出AB后,然后根据角的三角函数即可求出结论;(2)根据题意求证四边形DECF为矩形,即可推出DF=EC=y,然后结合图形即可求出AE=8﹣y;(3)根据余角的性质即可推出∠A=∠BDF,继而求证△ADE∽△DBF,结合对应边成比例和BF=4﹣x,AE=8﹣y,即可求出y=﹣2x+8(0<x<4);(4)根据(3)所推出的结论,结合矩形的面积公式通过等量代换,即可求出二次函数S=DE•DF=﹣2x2+8x,然后根据二次函数的最值公式即可求出S的最大值.【解答】解:(1)∵∠C=90°,BC=4,AC=8,∴cosB=BC:AB=4:4=,(2)∵∠C=90°,DE⊥AC,DF⊥BC,∴四边形DECF为矩形,∵DF=y,∴DF=EC=y,∵AC=8,AE=AC﹣EC,∴AE=8﹣y,(3)∵∠C=90°,DE⊥AC,DF⊥BC,∴∠A+∠B=90°,∠BDF+∠ADE=90°,∴∠A=∠BDF,∴△ADE∽△DBF,∴,∵矩形DECF,DF=y,DE=x,∴CF=x,CE=y,∴BF=BC﹣CF=4﹣x,∵AE=8﹣y,∴,∴y=﹣2x+8(0<x<4),(4)∵y=﹣2x+8,DE=x,DF=y,∴S=DE•DF=xy=x(﹣2x+8)=﹣2x2+8x=﹣2(x2﹣4x+4)+8,即S=﹣2(x﹣2)2+8,∴当x=2时,S的值最大,S的最大值为8.28.如图,抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于C点.(1)求A、B、C三点的坐标;(2)证明:△ABC为直角三角形;(3)在抛物线上除C点外,是否还存在另外一个点P,使△ABP是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】抛物线与x轴的交点;勾股定理的逆定理.【分析】(1)抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于C点,分别将x=0,y=0代入求得A、B、C的坐标;(2)由(1)得到边AB,AC,BC的长,再根据勾股定理的逆定理来判定△ABC为直角三角形;(3)根据抛物线的对称性可得另一点的坐标.【解答】解:(1)∵抛物线y=﹣x2+x+2与x轴交于A、B两点,∴﹣x2+x+2=0.即x2﹣x﹣4=0.解之得:x1=﹣,x2=2.∴点A、B的坐标为A(﹣,0)、B(2,0).将x=0代入y=﹣x2+x+2,得C点的坐标为(0,2);(2)∵AC=,BC=2,AB=3,∴AB2=AC2+BC2,则∠ACB=90°,∴△ABC是直角三角形;(3)当PC∥x轴,即P点与C点是抛物线的对称点,而C点坐标为(0,2)设y=2,把y=2代入y=﹣x2+x+2得:﹣x2+x+2=2,∴x1=0,x2=.∴P点坐标为(,2).第21页(共21页)。
2017届九年级数学上期末试卷(含答案和解释) :篇一:2017届九年级上学期期末考试数学试题带答案(人教版)2016—2017学年上学期九年级数学期末检测试卷(全卷三个大题,共23个小题,共4页;满分120分,考试用时120分钟)注意事项:本卷为试题卷。
考生必须在答题卡上解题作答。
答案应写在答题卡的相应位置,在试卷上、草稿纸上作答无效。
一、填空题(本大题共6个小题,每小题3分,共18分) 1. 二次函数y=2(x﹣3)2+5的最小值为. 2. 如图,⊙O的直径AB经过弦CD的中点E,若∠C=25°, 则∠D= .3.若反比例函数的图象经过(-2,3),则其函数表达式为________________ .4. 若两个相似六边形的周长的比是3﹕2,其中较大一个六边形的面积为81,则较小一个六边形的面积为_____________ .2x,x是方程3x?2x?2?05.若1211??_________. x1x26. 一个圆锥的侧面展开图是半径为8cm、圆心角为120°的扇形,则此圆锥底面圆的半径为 cm.二、选择题(本大题共8个小题,每小题4分,共32分) 7. 下列既是轴对称图形又是中心对称图形的是()A.B.C. D.38. 反比例函数y??的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则xx1与x2的大小关系是()A. x1<x2B.x1=x2C.x1>x2D.不确定9. 事情“父亲的年龄比儿子的年龄大”属于()A.不可能事件B.可能事件C.不确定事件D.必然事件 10.直角三角形的两直角边长分别为3cm、4cm以直角顶点为圆心,2.4cm长为半径的圆与斜边的位置关系是() A.相交 B.相切 C.相离 D.无法确定11. 若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为()A.3B.-3C.1D.-112. 将抛物线y=x2向右平移2个单位,再向上平移3个单位后,平移后的抛物线的解析式为( )A.y=(x+2)2+3B.y=(x-2)2+3C.y=(x+2)2-3D.y=(x-2)2-3 13. 如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB 缩1小为原来的CD,则端点C的坐标为2( )A.(3,3)B.(4,3)C.(3,1)D.(4,1) 14. 如图,AD是正五边形ABCDE 的一条对角线,则∠BAD=().A.36°B.30°C.72°D.60°三、解答题(本大题共9个小题,共70分) 15.解方程(共2个小题,共10分)2x?27?12x (2)3x2?2x?4?0 (1)16. (8分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当AD?1,AC=3时,求BF的长. BD17. (7分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC向右平移5个单位,向上平移1个单位得△A1B1C1,再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求点A1运动到点A2的路径总长.18.(8分,第(1)题5分,第(2)题3分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求:(1)该种药品平均每次降价的百分率.(2)若按(1)中的百分率再降一次,则每瓶的售价将为多少元?19. (7分)小亮与小明学习概率初步知识后设计了如下游戏,小亮手中有三张分别标有数字-1,-2,-3的卡片,小明手中有三张分别标有数字1,2,3的卡片,均背面朝上,卡片形状、大小、质地等完全相同,现随机从小亮手中任取一张卡片,卡片的数用m表示;从小明手中任取一张卡片,卡片的数用n表示并记为点(m,n)(1)请你用树状图或列表法列出所有可能的结果;(2)求点(m,n)在函数y=-x的图象上的概率.20. (6分)如图,在平面直角坐标系xOy中,双曲线y?线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点的坐标.21. (8分)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA =CB.(1)求证:直线AB是⊙O的切线;(2)若∠A=30°,AC=6,求⊙O 的周长.m与直 xB22、(7分)如图,已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D. (1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O直线AB的距离为6,求AC的长.到23.(9分)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)篇二:上海市2017届九年级上期末考试数学试卷含答案2016-2017学年第一学期教学质量调研测试卷一. 选择题a2a?,那么的值为() b3a?b1233A. ; B. ; C. ; D. ; 35542. 已知Rt△ABC中,?C?90?,BC?3,AB?5,那么sinB的值是() 1. 已知A. 3344;B. ;C. ;D. ; 54533. 将抛物线y?x2先向右平移2个单位,再向下平移3个单位,所得抛物线的函数解析式是()A. y?(x?2)2?3;B. y?(x?2)2?3;C. y?(x?2)2?3;D. y?(x?2)2?3;4. 如图,在△ABC中,点D、E分别在AB、AC上,?AED??B,那么下列各式中一定正确的是()A. AE?AC?AD?AB;B. CE?CA?BD?AB;C. AC?AD?AE?AB;D. AE?EC?AD?DB;5. 已知两圆的半径分别是3和5,圆心距是1,那么这两圆的位置关系是()A. 内切;B. 外切;C. 相交;D. 内含;6. 如图所示,一张等腰三角形纸片,底边长18cm,底边上的高长18cm,现沿底边依次向下往上裁剪宽度均为3cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A. 第4张;B. 第5张;C. 第6张;D. 第7张;二. 填空题????7. 化简:2(a?2b)?3(a?b)?8. 如果在比例1:1000000的地图上,A、B两地的图上距离为2.4厘米,那么A、B两地的实际距离为千米;9. 抛物线y?(a?2)x2?3x?a的开口向下,那么a的取值范围是;10. 一斜面的坡度i?1:0.75,一物体由斜面底部沿斜面向前推进了20米,那么这个物体升高了11. 如果一个正多边形的一个外角是36°,那么该正多边形的边数为12. 已知AB是○O的直径,弦CD⊥AB于点E,如果AB?8,CD?6,那么OE?; 13. 如图所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子为线段AD,甲的影子为线段AC,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距米;14. 如图,点A(3,t)在第一象限,OA与x轴正半轴所夹的锐角为?,如果tan??3,那么t的值 2为;15. 如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD 交于点F,CD?2DE,如果△DEF的面积为1,那么平行四边形ABCD的面积为;16. 如图,在矩形ABCD中,AB?3,BC?5,以B为圆心BC为半径画弧交AD于点E,如果点F是弧EC的中点,联结FB,那么tan?FBC的值为;17. 新定义:我们把两条中线互相垂直的三角形称为“中垂三角形”,如图所示,△ABC中,AF、BE是中线,且AF?BE,垂足为P,像△ABC这样的三角形称为“中垂三角形”,如果?ABE?30?,AB?4,那么此时AC的长为;18. 如图,等边△ABC中,D是边BC上的一点,且BD:DC?1:3,把△ABC折叠,使点A落在边BC上的点D处,那么三. 解答题19. 计算:AM的值为; ANcot45??tan60??cot30?; 2(sin60??cos60?)20. 已知,平行四边形ABCD中,点E在DC边上,且DE?3EC,AC与BE交于点F;????????????????(1)如果AB?a,AD?b,那么请用a、b来表示AF;????????????(2)在原图中求作向量AF在AB、AD方向上的分向量;(不要求写作法,但要指出所作图中表示结论的向量)21. 如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C 和点D、E、F, DE2?,AC?14; EF5(1)求AB、BC的长;(2)如果AD?7,CF?14,求BE的长;22. 目前,崇明县正在积极创建全国县级文明城市,交通部门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知 ?CAN?45?,?CBN?60?,BC?200米,此车超速了吗?请说明理由;?1.41?1.73)23. 如图1,△ABC中,?ACB?90?,CD?AB,垂足为D;(1)求证:△ACD∽△CBD;(2)如图2,延长DC至点G,联结BG,过点A作AF?BG,垂足为F,AF交CD于点E,求证:CD2?DE?DG;24. 如图,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于C点,其中B(3,0),C(0,4),点A在x轴的负半轴上,OC?4OA;(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上一个动点,过点P作PM∥BC 交射线AC于点M,联结CP,若△CPM的面积为2,则请求出点P的坐标;25. 如图,已知矩形ABCD中,AB?6,BC?8,E是BC边上一点(不与B、C重合),过点E作EF?AE交AC、CD于点M、F,过点B作BG?AC,垂足为G,BG交AE于点H;(1)求证:△ABH∽△ECM;EH?y,求y关于x的函数解析式,并写出定义域; EM(3)当△BHE为等腰三角形时,求BE的长;(2)设BE?x,中考数学一模卷一、选择题(本大题共6题,每题4分,满分24分)1.B2.C3.D4.A5.D6.B二、填空题(本大题共12题,每题4分,满分48分)??7.?a?7b8.24 9.a<-210.1611.1013.1 14.17. 18.91 15.1216.235 7三、解答题(本大题共7题,满分78分)19.(本题满分10分)【解】原式? (5)分? …………………………………………………………………1分?2 (3)分 ?2……………………………………………………………………………1分20.(本题满分10分,第1小题5分,第2小题5分)【解】(1)∵四边形ABCD是平行四边形∴AD∥BC且AD=BC,CD∥AB且CD=AB ??????????????∴BC?AD?b 又∵AB?a ?????????????? ∴AC?AB?BC?a?b ……………………………………………………2分∵DE=3EC ∴DC=4EC又∵AB=CD∴AB=4EC篇三:最新2017年九年级上期末数学试卷含答案解析九年级(上)期末数学试卷一、选择题(2015秋江北区期末)若3x=2y,则x:y的值为() A.2:3 B.3:2 C.3:5 D.2:52.如果∠A是锐角,且sinA=cosA,那么∠A=()A.30° B.45° C.60° D.90°3.圆锥的母线长为4,侧面积为12π,则底面半径为()A.6 B.5 C.4 D.34.6只黄球,5只白球,一个袋子中有7只黑球,一次性取出12只球,其中出现黑球是()A.不可能事件 B.必然事件C.随机事件 D.以上说法均不对5.下列函数中有最小值的是()C.y=2x2+3xA.y=2x﹣1 B.y=﹣ D.y=﹣x2+16.如果用表示1个立方体,用表示两个立方体叠加,用表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图是()A. B. C. D.7.⊙O内有一点P,过点P的所有弦中,最长的为10,最短的为8,则OP的长为()A.6 B.5 C.4 D.38.下列m的取值中,能使抛物线y=x2+(2m﹣4)x+m﹣1顶点在第三象限的是()A.4 B.3 C.2 D.19.四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属同一种投影的有()A.L、K B.C C.K D.L、K、C 10.如图,圆内接四边形ABCD的BA,CD的延长线交于P,AC,BD交于E,则图中相似三角形有()A.2对 B.3对 C.4对 D.5对11.如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足=,连接AF并延长交⊙0于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是()A.①②④ B.①②③ C.②③④ D.①③④ 12.如图,在平面直角坐标系中,⊙P与y轴相切,交直线y=x于A,B两点,已知圆心P的坐标为(2,a)(a>2),AB=2,则a的值为()A.4 B.2+ C. D.二、填空题。
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形中,是中心对称图形的是()A.B.C.D.2.如图,抛物线y=﹣2x2+4x与x轴交于点O、A,把抛物线在x轴及其上方的部分记为C1,将C1以y铀为对称轴作轴对称得到C2,C2与x轴交于点B,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.0<m<98B.98<m<258C.0<m<258D.m<98或m<2583.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac③a+b+c<0;④2a+b+c=0,其中正确的是()A.①④B.②④C.①②③D.①②③④4.关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是()A.k5<B.k5<且k1≠C.k5≤D.k5≤且k1≠5.四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A.1:3:2:4B.7:5:10:8C.13:1:5:17D.1:2:3:4 6.若⊙O的半径为6cm,PO=8cm,则点P的位置是()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定7.已知反比例函数y=﹣6x,下列结论中不正确的是()A.函数图象经过点(﹣3,2)B.函数图象分别位于第二、四象限C.若x<﹣2,则0<y<3D.y随x的增大而增大8.某商店现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元利润,应将销售单价定为()A.56元B.57元C.59元D.57元或59元9.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A1B1C1,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1,则点A的对应点A2的坐标是()A.(5,2)B.(1,0)C.(3,﹣1)D.(5,﹣2)10.均匀的四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是()A.316B.14C.168D.116二、填空题11.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为_____;12.抛物线y=x2﹣6x+5向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是_____.13.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为_______.14.某鱼塘养了200条鲤鱼、若干条草鱼和150条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为__.15..如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC 的长度是_______.16.如图,PA PB 、切O 于点AB 、,10PA cm ,CD 切O 于点E ,交PA PB 、于点CD 、,则PCD 的周长是________.三、解答题17.解一元二次方程:3x 2﹣1=2x+5.18.一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.19.如图,AB是⊙O的直径,AB=12,弦CD⊥AB于点E,∠DAB=30°.(1)求扇形OAC的面积;(2)求弦CD的长.20.已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.21.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,作AC⊥x轴于点C.(1)求k的值;(2)直线y=ax+b(a≠0)图象经过点A交x轴于点B,且OB=2AC.求a的值.22.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?23.如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1.(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.24.如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.25.如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),顶点为D.(1)求抛物线的解析式;(2)设点M(1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.参考答案1.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选D.【点睛】本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.2.A首先求出点A 和点B 的坐标,然后求出C 2解析式,分别求出直线y=x+m 与抛物线C 1相切时m 的值以及直线y=x+m 过原点时m 的值,结合图形即可得到答案.【详解】令2240y x x =-+=,解得:x =0或x =2,则点A (2,0),B (−2,0),∵C 1与C 2关于y 铀对称,C 1:22242(1)2,y x x x =-+=--+∴C 2解析式为222(1)224(20)y x x x x =-++=---≤≤,当y =x +m 与C 1相切时,如图所示:令224y x m y x x=+==-+,即2230x x m -+=,890m =-+= ,解得98m =,当y =x +m 过原点时,m =0,∴当908m <<时直线y =x +m 与C 1、C 2共有3个不同的交点,故选:A.【点睛】考查抛物线与x 轴的交点,二次函数的性质,二次函数与一次函数的综合,数形结合是解题的关键.3.C根据二次函数的图象与性质即可求出答案.【详解】①由图象可知:2ba->0,∴ab <0,故①正确;②由抛物线与x 轴的图象可知:△>0,∴b 2>4ac ,故②正确;③由图象可知:x =1,y <0,∴a+b+c <0,故③正确;④∵2ba-=1,∴b =﹣2a ,令x =﹣1,y >0,∴2a+b+c =c <0,故④错误.故选C .【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想,本题属于中等题型.4.D 【分析】根据一元二次方程的根的判别式及一元二次方程的定义,建立关于k 的不等式租,解不等式组,求出k 的取值范围即可.【详解】∵关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,∴244(1)010k k ⎧--≥⎨-≠⎩,解得:k≤5,且k≠1,故选D.【点睛】本题考查了一元二次方程的定义及一元二次方程根的判别式的应用,根据题意列出不等式并注意一元二次方程的二次项系数不为0的隐含条件是解题关键.5.C【解析】【分析】根据圆内接四边形的对角互补得到∠A和∠C的份数和等于∠B和∠D的份数的和,由此分别进行判断即可.【详解】解:A、1+2≠3+4,所以A选项不正确;B、7+10≠5+8,所以B选项不正确;C、13+5=1+17,所以C选项正确;D、1+3≠2+4,所以D选项不正确.故选C.【点睛】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.6.A【解析】【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.【详解】解:根据点到圆心的距离8cm大于圆的半径6cm,则该点在圆外.故选A.【点睛】本题考查了点和圆的位置关系与数量之间的联系:当点到圆心的距离大于圆的半径时,则点在圆外.7.D【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】A 、∵当x =﹣3时,y =2,∴此函数图象过点(﹣3,2),故本选项正确;B 、∵k =﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C 、∵当x =﹣2时,y =3,∴当x <﹣2时,0<y <3,故本选项正确;D 、∵k =﹣6<0,∴在每个象限内,y 随着x 的增大而增大,故本选项错误;故选:D .【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.8.A 【分析】设降价元,根据商家获利金额列出一元二次方程并求解,因为要顾客得实惠,所以要保留较大的值并求出售价.【详解】设降价元,则售价为()60x -元,销量为()30020+x 件.由题意得:()()6040300206080x x --+=,展开得220100800x x -+-=,因式分解得()()20140x x ---=,所以121,4x x ==.因为要顾客得实惠,所以取4x =,此时60456-=(元),即应将售价定为56元.故答案选:A.【点睛】本题主要考查了一元二次方程.9.A 【解析】【分析】根据平移变换,旋转变换的性质画出图象即可解决问题;【详解】解:如图,△A 2B 2C 1即为所求.观察图象可知:A2(5,2)故选A.【点睛】本题考查旋转变换,平移变换等知识,解题的关键是熟练掌握基本知识,正确作出图形是解决问题的关键.10.B【分析】列举出所有情况,看着地的一面数字之和为5的情况占总情况的多少即可.【详解】同时抛掷两个这样的正四面体,可能出现的结果有16种,数字之和为5的有4种,所以着地的一面数字之和为5的概率是41 164故选:B.【点睛】本题考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.11.2018【分析】根据一元二次方程根与系数的关系,结合“α,β是方程x2-x-2019=0的两个实数根”,得到α+β的值,再把α代入方程x2-x-2019=0,经过整理变化,即可得到答案.【详解】解:∵α,β是方程x2﹣x﹣2019=0的两个实数根,∴α+β=1,∵α3-2021α-β=α(α2-2020)-(α+β)=α(α2-2020)-1,∵α2-α-2019=0,∴α2-2020=α-1,把α2-2020=α-1代入原式得:原式=α(α-1)-1=α2-α-1=2019-1=2018.故答案为2018.【点睛】本题考查了根与系数的关系以及一元二次方程的解,正确掌握一元二次方程根与系数的关系是解题的关键.12.y=(x﹣1)2﹣1.【分析】先将所给的抛物线解析式写成顶点式,然后再根据“左加右减、上加下减”的原则进行解答即可.【详解】y=x2﹣6x+5=(x-3)2-4,向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是y=(x-3+2)2-4+3,即:y=(x﹣1)2﹣1,故答案为:y=(x﹣1)2﹣1.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.90°.【分析】由△COD是由△AOB绕点O按逆时针方向旋转而得,可知旋转的角度是∠BOD的大小,然后由图形即可求得答案.【详解】如图:∵△COD 是由△AOB 绕点O 按逆时针方向旋转而得,∴OB=OD ,∴旋转的角度是∠BOD 的大小,∵∠BOD=90°,∴旋转的角度为90°.故答案为:90°.【点睛】此题考查旋转的性质.解题关键是理解△COD 是由△AOB 绕点O 按逆时针方向旋转而得的含义,找到旋转角.14.27【解析】【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【详解】设草鱼有x 条,捕捞到草鱼的频率稳定在0.5左右,则0.5,200150x x =++解得:350.x =捞到鲤鱼的概率为20022003501507=++,故答案为27.【点睛】考查样本估计总体,解题的关键是根据草鱼出现的频率计算出鱼的数量.15.【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA ,最后用勾股定理即可得出结论.【详解】设圆锥底面圆的半径为r ,∵AC=6,∠ACB=120°,∴1206180l π⨯⨯==2πr ,∴r=2,即:OA=2,在Rt △AOC 中,OA=2,AC=6,根据勾股定理得,故答案为.【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出OA 的长是解本题的关键.16.20【分析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案.【详解】由切线长定理得:10,,PA PB CA CE DB DE====所以PCD ∆的周长为101020PC PD CD PC AC DB PD PA PB ++=+++=+=+=【点睛】本题主要考查切线的性质,利用切线长定理求得PA =PB 、AC =CE 和BD =ED 是解题的关键.17.x 1=13+,x 2=13.【解析】【分析】先把方程化为一般式,然后利用求根公式法解方程.【详解】3x 2﹣1=2x +5,3x 2﹣2x ﹣6=0∵a =3,b =﹣2,c =﹣6,△=(﹣2)2﹣4×3×(﹣6)=76,∴x =,∴x 1,x 2.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法18.(Ⅰ)画树状图见解析;(Ⅱ)两次取出的小球标号相同的概率为14;(Ⅲ)两次取出的小球标号的和大于6的概率为3 16.【分析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.【详解】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为416=14;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为3 16.【点睛】此题考查列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.(1)12π;(2)【分析】(1)根据垂径定理得到,根据圆周角定理求出∠CAB,根据三角形内角和定理求出∠AOC,根据扇形面积公式计算;(2)根据正弦的定义求出CE,根据垂径定理计算即可.【详解】(1)∵弦CD⊥AB,∴,∴∠CAB=∠DAB=30°,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠AOC=120°,∴扇形OAC的面积==12π;(2)由圆周角定理得,∠COE=2∠CAB=60°,∴CE=OC×sin∠COE=3,∵弦CD⊥AB,∴CD=2CE=6.【点睛】本题考查了扇形面积计算,圆周角定理,垂径定理的应用,掌握扇形面积公式是解题的关键.20.(1)94m≥-;(2)1m=【分析】(1)因为方程有实数根,所以根的判别式要大于等于0,即△≥0,据此即可求出m的取值范围;(2)根据一元二次方程根与系数的关系,将x1+x2=-3、x1x2=﹣m代入x12+x22=(x1+x2)2﹣2x1•x2=11,解关于m的方程即可.【详解】(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.【点睛】本题考查了一元二次方程根的判别式及根与系数的关系,解题的关键是熟练掌握根与系数的关系.21.(1)k=4;(2)a的值为13或﹣1.【解析】【分析】(1)∵图形过A点,∴A点坐标符合函数关系式,代入求解即可.(2)B点可以在C点左边,也可以在C点右边,并通过待定系数法即可求解.【详解】解:(1)∵函数y=(x>0)的图象经过点A(2,2),∴k=2×2=4;(2)∵OB=2AC,AC=2,∴OB=4.分两种情况:①如果B(﹣4,0).∵直线y=ax+b(a≠0)图象经过点A交x轴于点B,∴2a+b=2,-4a+b=0,求得a=13,b=43.②如果B(4,0).∵直线y=ax+b(a≠0)图象经过点A交x轴于点B,∴2a+b=2,4a+b=0,求得a=-1,b=4.综上,所求a的值为13或﹣1.【点睛】需要注意的是线段长度与点的坐标的关系,注意进行分情况讨论,考虑问题要全面. 22.(1)40%;(2)2616.【分析】(1)设A市投资“改水工程”的年平均增长率是x.根据:2008年,A市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.【详解】解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.解之,得0.4x =或 2.4x =-(不合题意,舍去).所以,A 市投资“改水工程”年平均增长率为40%.(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.23.(1),B 点坐标为(3,0);(2)①;②.【分析】(1)由对称轴公式可求得b ,由A 点坐标可求得c ,则可求得抛物线解析式;再令y=0可求得B 点坐标;(2)①用t 可表示出ON 和OM ,则可表示出P 点坐标,即可表示出PM 的长,由矩形的性质可得ON=PM ,可得到关于t 的方程,可求得t 的值;②由题意可知OB=OA ,故当△BOQ 为等腰三角形时,只能有OB=BQ 或OQ=BQ ,用t 可表示出Q 点的坐标,则可表示出OQ 和BQ 的长,分别得到关于t 的方程,可求得t 的值.【详解】(1)∵抛物线2y x bx c =-++对称轴是直线x=1,∴﹣2(1)b ⨯-=1,解得b=2,∵抛物线过A (0,3),∴c=3,∴抛物线解析式为2y x 2x 3=-++,令y=0可得2230x x -++=,解得x=﹣1或x=3,∴B 点坐标为(3,0);(2)①由题意可知ON=3t ,OM=2t ,∵P 在抛物线上,∴P (2t ,2443t t -++),∵四边形OMPN 为矩形,∴ON=PM ,∴3t=2443t t -++,解得t=1或t=﹣34(舍去),∴当t 的值为1时,四边形OMPN 为矩形;②∵A(0,3),B(3,0),∴OA=OB=3,且可求得直线AB解析式为y=﹣x+3,∴当t>0时,OQ≠OB,∴当△BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,∴Q(2t,﹣2t+3),∴﹣3|,又由题意可知0<t<1,当OB=QB|2t﹣3|=3,解得t=64+(舍去)或t=64-;当OQ=BQ=|2t﹣3|,解得t=34;综上可知当t34时,△BOQ为等腰三角形.24.(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS可证明△OAD≌△OCD,可得∠ADO=∠CDO,根据等腰三角形“三线合一”的性质可得DE⊥AC,由AB是直径可得∠ACB=90°,即可证明OD//BC;(2)设BC=a,则AC=2a,利用勾股定理可得,根据中位线的性质可用a表示出OE、AE的长,即可表示出OD的长,根据勾股定理逆定理可得∠OAD=90°,即可证明DA与⊙O相切.【详解】(1)连接OC,在△OAD和△OCD中,OA OC AD CD OD OD=⎧⎪=⎨⎪=⎩,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,∵AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,即BC⊥AC,∴OD ∥BC ;(2)设BC =a ,∵AC =2BC ,∴AC =2a ,∴AD =AB ,∵OE ∥BC ,且AO =BO ,∴OE 为△ABC 的中位线,∴OE =12BC =12a ,AE =CE =12AC =a ,在△AED 中,DE 2a ,∴OD=OE+DE=52a ,在△AOD 中,AO 2+AD 2)2+)2=254a 2,OD 2=(52a )2=254a 2,∴AO 2+AD 2=OD 2,∴∠OAD =90°,∵AB 是直径,∴DA 与⊙O 相切.【点睛】本题考查圆周角定理、切线的判定、三角形中位线的性质勾股定理,三角形的中位线平行于第三边,且等于第三边的一半;直径所对的圆周角是直角;经过半径的外端点,且垂直于这条半径的直线是圆的切线;熟练掌握相关性质及定理是解题关键.25.(1)223y x x =--+;(2)185;(3)278.【分析】()1将A ,B ,C 点的坐标代入解析式,用待定系数法可得函数解析式;(2)求出顶点D 的坐标为()1,4-,作B 点关于直线1x =的对称点'B ,可求出直线'DB 的函数关系式为11955y x =-+,当()1,M m 在直线'DN 上时,MN MD +的值最小;(3)作PE x ⊥轴交AC 于E 点,求得AC 的解析式为3y x =+,设()2,23P m m m --+,(),3E m m +,得23PE m m =--,所以,()2113322APC A S PE x m m =⋅=--⨯ ,求函数的最大值即可.【详解】()1将A ,B ,C 点的坐标代入解析式,得方程组:9304233a b c a b c c -+=⎧⎪-+=⎨⎪=⎩解得123a b c =-⎧⎪=-⎨⎪=⎩抛物线的解析式为223y x x =--+()2配方,得2(1)4y x =-++,顶点D 的坐标为()1,4-作B 点关于直线1x =的对称点'B ,如图1,则()'4,3B ,由()1得()1,4D -,可求出直线'DB 的函数关系式为11955y x =-+,当()1,M m 在直线'DN 上时,MN MD +的值最小,则119181555m =-⨯+=.()3作PE x ⊥轴交AC 于E 点,如图2,AC 的解析式为3y x =+,设()2,23P m m m --+,(),3E m m +,()222333PE m m m m m =--+-+=--()2211332733()22228APC A S PE x m m m =⋅=--⨯=-++ ,当32m =-时,APC 的面积的最大值是278;【点睛】本题考核知识点:二次函数综合运用.解题关键点:画出图形,数形结合分析问题,把问题转化为相应函数问题解决.。
人教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列手机手势解锁图案中,是中心对称图形的是()A .B .C .D .2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件3.下列方程中,是一元二次方程的是()A .x +1x=0B .ax 2+bx +c =0C .x 2+1=0D .x ﹣y ﹣1=04.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.抛物线y=(x+2)2-3的对称轴是()A .直线x =2B .直线x=-2C .直线x=-3D .直线x=36.关于反比例函数y =﹣4x的图象,下列说法正确的是()A .经过点(﹣1,﹣4)B .图象是轴对称图形,但不是中心对称图形C .无论x 取何值时,y 随x 的增大而增大D .点(12,﹣8)在该函数的图象上7.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°8.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则实数k 的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k≥﹣19.如图,直线y=2x与双曲线2yx在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)10.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2;④4a+2b+c<0,其中说法正确的()A.①②B.①②③C.①②④D.②③④二、填空题11.点P(4,﹣6)关于原点对称的点的坐标是_____.12.抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为_____.13.已知正六边形的边长为10,那么它的外接圆的半径为_____.14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.15.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=6x(x>0)和y=﹣8x(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.16.如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则BB'的长为_____.三、解答题17.解方程:x2﹣4x﹣12=0.18.网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.19.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有1名男生和1名女生获得音乐奖.(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.20.如图,破残的圆形轮片上,弦AB的垂直平分线交 AB于点C,交弦AB于点D.已知CD=c m.12AB=cm,4(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.21.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.22.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.23.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.24.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.25.已知抛物线y=1x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.2(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.参考答案1.B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C【解析】【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【详解】A.该方程不是整式方程,故本选项不符合题意.B.当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意.C.该方程符合一元二次方程的定义,故本选项不符合题意.D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意.故选:C.【点睛】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键.4.B【分析】常数项移到方程左边,两边都加上一次项系数一半的平方,最后再把左边写成完全平方式,右边化简即可.【详解】解:∵x2-2x-5=0∴x 2-2x=5∴x 2-2x+1=5+1∴()216x -=.故答案为:B .【点睛】本题考查用配方法解一元二次方程.其关键是化二次项系数为1,算准一项系数一半的平方及用准完全平方公式.当一项系数为负时,用完全平方差公式;当一项系数为正时,用完全平方和公式5.B 【详解】试题解析:在抛物线顶点式方程2()y a x h k =-+中,抛物线的对称轴方程为x =h ,2(2)3y x =+- ,∴抛物线的对称轴是直线x =-2,故选B.6.D 【分析】反比例函数()0ky k x=≠的图象k 0>时位于第一、三象限,在每个象限内,y 随x 的增大而减小;0k <时位于第二、四象限,在每个象限内,y 随x 的增大而增大;在不同象限内,y 随x 的增大而增大,根据这个性质选择则可.【详解】∵当12x =时,4842y =-=-∴点(12,﹣8)在该函数的图象上正确,故A 、B 、C 错误,不符合题意.故选:D .【点睛】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.7.B 【分析】连接OA ,由切线的性质可得∠OAP=90°,继而根据直角三角形两锐角互余可得∠AOP=50°,再根据圆周角定理即可求得答案.【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.【点睛】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.8.D 【分析】根据根的判别式(240b ac =-≥△)即可求出答案.【详解】当原方程为一元一次方程时,k=0,此时方程y=-2x-1有实数解当原方程为一元二次方程时,由题意可知:440k +≥△=时,方程有实数解∴1k ≥-故选:D .【点睛】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k 的取值范围.9.D 【解析】试题分析:联立直线与反比例解析式得:y 2x{2y x==,消去y 得到:x 2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A (1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,分顺时针和逆时针旋转两种情况:根据旋转的性质,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1).故选D .10.B 【分析】根据题意和函数图象,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确是①②③,故选:B .【点睛】本题考查了二次函数的性质,掌握二次函数的图像和性质是解题的关键.11.(﹣4,6)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】点P (4,﹣6)关于原点对称的点的坐标是(﹣4,6),故答案为:(﹣4,6).【点睛】本题考查了一点关于原点对称的问题,横纵坐标取相反数就是对称点的坐标.12.(0,﹣7)【分析】根据题意得出0x =,然后求出y 的值,即可以得到与y 轴的交点坐标.【详解】令0x =,得7y =-,故与y 轴的交点坐标是:(0,﹣7).故答案为:(0,﹣7).【点睛】本题考查了抛物线与y 轴的交点坐标问题,掌握与y 轴的交点坐标的特点(0x =)是解题的关键.13.10【分析】利用正六边形的概念以及正六边形外接圆的性质进而计算.【详解】边长为10的正六边形可以分成六个边长为10的正三角形,∴外接圆半径是10,故答案为:10.【点睛】本题考查了正六边形的概念以及正六边形外接圆的性质,掌握正六边形的外接圆的半径等于其边长是解题的关键.14.5【分析】设共有x 个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:()1102x x -=⨯,把相关数值代入求正数解即可.【详解】设共有x 个飞机场.()1102x x -=⨯,解得15=x ,24x =-(不合题意,舍去),故答案为:5.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.15.7【分析】根据反比例函数比例系数k 的几何意义得到S △OQM =4,S △OPM =3,然后利用S △POQ =S △OQM +S △OPM 进行计算.【详解】解:如图,∵直线l ∥x 轴,∴S △OQM =12×|﹣8|=4,S △OPM =12×|6|=3,∴S △POQ =S △OQM +S △OPM =7.故答案为7.考点:反比例函数系数k 的几何意义.16.π【分析】根据图示知45BAB ∠'=︒,所以根据弧长公式180n r l π=求得 'BB 的长.【详解】根据图示知,45BAB ∠'=︒,∴ 'BB 的长为:454180ππ⨯=.故答案为:π.【点睛】本题考查了弧长的计算公式,掌握弧长的计算方法是解题的关键.17.x 1=6,x 2=﹣2.【解析】试题分析:用因式分解法解方程即可.试题解析:()()620x x -+=,60x =﹣或20x +=,所以1262x x ==-,.18.2017年至2019年“双十一”交易额的年平均增长率为20%.【分析】设2017年至2019年“双十一”交易额的年平均增长率为x ,根据该平台2017年及2019年的交易额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设2017年至2019年“双十一”交易额的年平均增长率为x ,根据题意得:()25001720x -=,解得:10.2==20%x ,2 2.2x =-(舍去).答:2017年至2019年“双十一”交易额的年平均增长率为20%.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.19.(1)25;(2)12【分析】(1)直接根据概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解.【详解】解:(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是25;故答案为:2 5;(2)画树状图为:共有6种等可能的结果数,其中刚好是一男生一女生的结果数为3,概率31 62 ==所以刚好是一男生一女生的概率为1 2.【点睛】本题考查了概率问题,掌握概率公式以及树状图的画法是解题的关键.20.(1)作图见解析;(2)(1)作图见解析;(2)132 cm;【分析】(1).由垂径定理知,垂直于弦的直径是弦的中垂线,因为CD垂直平分AB,故作AC的中垂线交CD延长线于点O,则点O是弧ACB所在圆的圆心;(2).在Rt△OAD中,由勾股定理可求得半径OA的长即可.【详解】(1)如图点O即为所求圆的圆心.(2)连接OA,设OA=xcm,根据勾股定理得:x2=62+(x-4)2解得:x=132 cm,故半径为:132 cm.【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.21.(1)75°(2)见解析【分析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF =90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=12(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.22.(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.5.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△P AB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=k x,得k=3,∴反比例函数的表达式y=3 x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=5,∴直线AD 的解析式为y =﹣2x +5,令y =0,得x =52,∴点P 坐标(52,0),(3)S △P AB =S △ABD ﹣S △PBD =12×2×2﹣12×2×12=2﹣12=1.5.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.23.(1)见解析;(2)见解析;(3)BE =16.【分析】(1)如图,连接OE .欲证明PE 是⊙O 的切线,只需推知OE ⊥PE 即可;(2)由圆周角定理得到90AEB CED ∠=∠=︒,根据“同角的余角相等”推知34∠=∠,结合已知条件证得结论;(3)设EF x =,则2CF x =,由勾股定理可求EF 的长,即可求BE 的长.【详解】(1)如图,连接OE .∵CD 是圆O 的直径,∴90CED ∠=︒.∵OC OE =,∴12∠=∠.又∵PED C ∠=∠,即1PED ∠=∠,∴2PED ∠=∠,∴=2=90PED OED OED ∠+∠∠+∠︒,即90OEP ∠=︒,∴OE EP ⊥,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)∵AB 、CD 为⊙O 的直径,∴==90AEB CED ∠∠︒,∴34∠=∠(同角的余角相等).又∵1PED ∠=∠,∴4PED ∠=∠,即ED 平分∠BEP ;(3)设EF x =,则2CF x =,∵⊙O 的半径为10,∴210OF x =-,在Rt △OEF 中,222OE OF EF +=,即()22210210x x +-=,解得8x =,∴8EF =,∴216BE EF ==.【点睛】本题考查了圆和三角形的几何问题,掌握切线的性质、圆周角定理和勾股定理是解题的关键.24.(1)y =﹣x 2+2x +3;(2)①S =﹣m 2+3m ,1≤m ≤3;②P (32,3);(3)存在,点P 的坐标为(32,3)或(﹣12﹣).【分析】(1)将点B ,C 的坐标代入2y x bx c =-++即可;(2)①求出顶点坐标,直线MB 的解析式,由PD ⊥x 轴且OD m =知P (m ,﹣2m +6),即可用含m 的代数式表示出S ;②在①的情况下,将S 与m 的关系式化为顶点式,由二次函数的图象及性质即可写出点P 的坐标;(3)分情况讨论,如图2﹣1,当90CPD ∠=︒时,推出3PD CO ==,则点P 纵坐标为3,即可写出点P 坐标;如图2﹣2,当90PCD ∠=︒时,证PDC OCD ∠=∠,由锐角三角函数可求出m 的值,即可写出点P 坐标;当90PDC ∠=︒时,不存在点P .【详解】(1)将点B (3,0),C (0,3)代入2y x bx c =-++,得09333b c =-++⎧⎨=⎩,解得23b c ì=ïí=ïî,∴二次函数的解析式为2y x 2x 3=-++;(2)①∵()222314y x x x =++=--+-,∴顶点M (1,4),设直线BM 的解析式为y kx b =+,将点B (3,0),M (1,4)代入,得304k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线BM 的解析式为=26y x -+,∵PD ⊥x 轴且OD m =,∴P (m ,﹣2m +6),∴()21126322PCD S S PD OD m m m m -++ ====-,即23S m m =-+,∵点P 在线段BM 上,且B (3,0),M (1,4),∴13m ≤≤;②∵2239324S m m m ⎛⎫=-+=--+ ⎪⎝⎭,∵10-<,∴当32m =时,S 取最大值94,∴P (32,3);(3)存在,理由如下:①如图2﹣1,当90CPD ∠=︒时,∵90COD ODP CPD ∠=∠∠=︒=,∴四边形CODP 为矩形,∴3PD CO ==,将3y =代入直线=26y x -+,得32x =,∴P (32,3);②如图2﹣2,当∠PCD =90°时,∵3OC =,OD m =,∴22229CD OC OD m =++=,∵//PD OC ,∴PDC OCD ∠=∠,∴cos PDC cos OCD ∠=∠,∴DC OCPD DC =,∴2DC PD OC = ,∴()29326m m =+-+,解得1 3m -=-(舍去),23m +=-,∴P (3-+12-),③当90PDC ∠=︒时,∵PD ⊥x 轴,∴不存在,综上所述,点P 的坐标为(32,3)或(3-+12-.【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.25.(1)y =12x 2﹣x ﹣4;(2)S =﹣(m ﹣2)2+16,S 的最大值为16;(3)点P 的坐标为:(1,﹣)或(1,﹣1).【分析】(1)根据交点式可求出抛物线的解析式;(2)由S=S △OBC +S △OCD +S △ODA ,即可求解;(3)∠BPC=45°,则BC 对应的圆心角为90°,可作△BCP 的外接圆R ,则∠BRC=90°,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,证明△BMR ≌△RNC (AAS )可求出点R (1,-1),即点R 在函数对称轴上,即可求解.【详解】解:(1)∵抛物线y =12x 2+bx+c 与x 轴交于A (4,0)、B (﹣2,0),∴抛物线的表达式为:y =12(x ﹣4)(x+2)=12x 2﹣x ﹣4;(2)设点D (m ,12m 2﹣m ﹣4),可求点C 坐标为(0,-4),∴S =S △OBC +S △OCD +S △ODA =211112444[(4)]2222m m m ⨯⨯+⨯+⨯---=﹣(m ﹣2)2+16,当m =2时,S 有最大值为16;(3)∠BPC =45°,则BC 对应的圆心角为90°,如图作圆R ,则∠BRC =90°,圆R 交函数对称轴为点P ,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,设点R (m ,n ).∵∠BMR+∠MRB =90°,∠MRB+∠CRN =90°,∴∠CRN =∠MBR ,∠BMR =∠RNC =90°,BR =RC ,∴△BMR ≌△RNC (AAS ),∴CN =RM ,RN =BM ,即m+2=n+4,﹣n =m ,解得:m =1,n =﹣1,即点R (1,﹣1),即点R 在函数对称轴上,,则点P的坐标为:(1,﹣)或(1,﹣1).【点睛】本题考查的是二次函数与几何综合运用,涉及圆周角定理、二次函数解析式的求法、图形的面积计算等,其中(3),要注意分类求解,避免遗漏,能灵活运用数形结合的思想是解题的关键,(3)的难点是作出辅助圆.。
人教版2016-2017学年九年级(上册)期末数学试卷及答案2016-2017学年九年级(上册)期末数学试卷一、选择题(共8小题,每小题4分,满分32分)1.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同。
若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球比摸到白球的可能性相等D.摸到红球比摸到白球的可能性大2.圆内接四边形ABCD中,已知∠A=70°,则∠C=()A.20°B.30°C.70°D.110°3.若关于x的方程2x²-ax+a-2=0有两个相等的实根,则a 的值是()A.-4B.4C.4或-4D.24.二次函数y=-x²+2x+4的最大值为()A.3B.4C.5D.65.在平面直角坐标系中,点A的坐标为(-1,-2),将OA绕原点O逆时针旋转180°得到OA',点A'的坐标为(a,b),则a-b等于()A.1B.-1C.3D.-36.如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,-2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)7.若c(c≠0)为关于x的一元二次方程x²+bx+c=0的根,则c+b的值为()A.1B.-1C.2D.-28.如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB边所在的直线为轴,将△ABC旋转一周,则所得几何体的表面积是()A.πB.24πC.πD.12π二、填空题(共6小题,每小题3分,满分18分)9.小红有一个正方体玩具,6个面上分别画有线段、角、平行四边形、圆、菱形和等边三角形这6个图形。
抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是_______。
2017学年第一学期期末教学质量监测九年级 数学试卷考生须知:1.本试卷分试题卷和答题卷两部分。
满分100分,考试时间90分钟。
2.答题前,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场、座位码。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号对应。
4.考试结束后,只需上交答题卷。
试题卷一、选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.两个相似三角形的面积比为2:3,则这两个三角形的面积比为( ) A. 2:3B.2:3C. 4:9D. 9:42.已知圆O 的半径为2,点P 在同一平面内,PO=3,那么点P 与圆O 的位置关系是( ) A. 点P 在圆O 内 B. 点P 在圆O 上 C. 点P 在圆O 外 D. 无法确定3.下列函数中有最小值的是( ) A. y=2x -1 B.y=x3-C.y=-2x +1 C.y=22x+3x4.“a 是实数,|a|⩾0”这一事件是( ) A. 必然事件 B. 不确定事件 C. 不可能事件 D. 随机事件5.在Rt △ABC 中,∠C=90∘, ∠B=58∘,BC=3 , 则AB 的长为( ) A. ︒58sin 3B.︒58cos 3C. 3sin58∘D. 3cos58∘6.已知圆心角为120°的扇形的面积为12π,则扇形的弧长为( ) A. 4π B.2π C. 4 D.27.如图,圆O 是△ABC 的外接圆,BC 的中垂线与弧AC 相交于D 点,若∠A =60°,∠C =40°,则弧AD 的度数为( ) A. 80°B. 70°D. 30°8.如图,在相同的4×4的正方形网格中,三角形相似的是()A.①和②B.②和④C.②和③D.①和③9.定义符号min{a ,b}的含义为:当a ≥b 时,min{a ,b}=b ;当a <b 时,min{a ,b}=a.如:min{5,-2}=-2,min{-6,-3}=-6,则min{2-x+3,x}的最大值是( )A.2131+ B.2131+- C.3 D.213-1-10.如图,AB 是圆O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足CF :FD=3:7,连接AF 并延长交圆O 于点E ,连接AD 、DE ,若CF=3,AF=3,给出下列结论:①FG=2; ②tan ∠E=55 ③S △DEF=6549 其中正确的有( )个。
人教版九年级上册数学期末检测试卷一、选择题(每题3分,共24分) 1. 已知⊙O 的半径为6cm ,点O 到直线l 的距离为7cm ,则直线l 与O 的位置关系是( ) A. 相交 B. 相离 C. 相切 D. 无法确定2. 线段2cm ,8cm 的比例中项为 cm 。
( ) A. 4 B. 4.5 C. ±4 D. ±83. 如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F 、AC=3,CE=6,BD=2,DF= ( ) A. 4 B.4.5 C. 3 D. 3.54. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 米. ( ) A. 3.2 B. 4.8 C.5.2 D. 5.6第3题图 第8题图5. 把抛物线y =2x ²向左平移2个单位,则平移后抛物线对应的函数表达式是 ( ) A. y=2x ²+2 B. y=2(x-2)² C. y=2x ²+2 D. y=2(x+2)²6. 在△ABC 中,若|21sinA -|+(cosB 22-)²=0,则∠C 的度数是 ( ) A. 45° B. 75° C. 105° D. 120°7. 如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )8. 如图,矩形ABCD 的四个顶点分别在直线l3,l4,l2,l1上。
若直线l1∥l2∥l3∥l4且间距相等,AB =5,BC =3,则tan α的值为 ( ) A. 103 B. 53C. 126D. 25二、填空题(每题3分,共24分)9. 二次函数y=(x-1)²+2的顶点坐标为 。
10. 已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为 厘米。
人教版2015-2016年度九年级数学上学期期末考试试卷及答案时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题3分,共30分) 1.(2013•内江)若抛物线y=x 2﹣2x+c 与y 轴的交点为(0,﹣3),则下列说法2.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等 于( ) A .1B .2C .1或2D .03.三角形的两边长分别为3和6,第三边的长是方程2680x x -+=的一个根,则这个三角形的周长是( )A.9 B.11 C.13 D 、144.(2015•兰州)下列函数解析式中,一定为二次函数的是( )A . y =3x ﹣1B . y =ax 2+bx +cC . s =2t 2﹣2t +1D . y =x 2+5.(2010 内蒙古包头)关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .256.(2013•荆门)在平面直角坐标系中,线段OP 的两个端点坐标分别是O (0,0),P (4,3),将线段OP 绕点O 逆时针旋转90°到OP ′位置,则点P ′的坐标为( )它完全相同。
小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )A .6B .16C .18D .248.如图,四边形ABCD 内接于⊙O ,BC 是直径,AD =DC ,∠ADB =20º,则∠ACB ,∠DBC 分别 为( )A .15º与30ºB .20º与35ºC .20º与40ºD .30º与35º9.如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向行走。
数学试题卷参考答案及评分建议1.B2.C故选:C.3.C【解析】试题分析:根据题意可得:△ABC和△BDC相似,AD=BD=BC,设AD=x,则CD=2-x,然后根据BD:AC=BC:CD,即x:2=(2-x):x,解得:x=-1±5,则x=5-1.考点:三角形相似的性质4.A【解析】A. 等弧所对的弦相等;故本选项正确;B. 平分(非直径的)弦的直径垂直弦并平分弦所对的弧;故本选项错误;C. 若抛物线与x标轴只有一个交点,则b2−4ac=0;故本选项错误;D. 在同圆或等圆中,相等的圆心角所对的弧相等;故本选项错误。
故选A.5.A.【解析】试题解析:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,则此时PM+PN最小,∵点A坐标(2,3),∴点A′坐标(2,-3),∵点B(3,4),∴A′=∴MN=A′B-BN-A′,∴PM+PN 的最小值为.故选A .考点:圆的综合题.6.C【解析】试题分析:阴影部分的面积等于扇形ABA ′的面积+Rt △A ′C ′B 的面积-Rt △ABC 的面积-扇形BCC ′的面积.考点:扇形的面积计算.7.D .【解析】试题解析:当0≤t≤4时,S=S 正方形ABCD ﹣S △ADF ﹣S △ABE ﹣S △CEF=4×4﹣12×4×(4﹣t )﹣12×4×(4﹣t )﹣12×t ×t =﹣12t 2+4t =﹣12(t ﹣4)2+8; 当4<t≤8时,S=12•(8﹣t )2=12(t ﹣8)2. 故选D .考点:动点问题的函数图象.8.B【解析】设正方形的边长为2,则CD=2,CF=1,在Rt △CDF 中,,∴∴,∴CG CD =2,∴矩形DCGH 为黄金矩形,故选B. 9.B【解析】试题解析:如图所示,A ,C 之间的距离为6,2017÷6=336…1,故点P 离x 轴的距离与点P'离x 轴的距离相同,在y=-x 2+4x+2中,当x=1时,y=5,即点P'离x 轴的距离为5,∴P'M'=5,2025-2017=8,故点Q 与点P 的水平距离为8,即M'N'=MN=8,点Q 离x 轴的距离与点Q'离x 轴的距离相同,由题可得,抛物线的顶点B 的坐标为(2,6),故A ,B 之间的水平距离为6,且k=12, ∵点D 与点Q'的水平距离为1+8-6-2=1,点C 与点Q'的水平距离为1+2=3,∴在y=12x中,当x=3时,y=4,即点Q'离x轴的距离为4,∴Q'N'=4,∵四边形P'M'N'Q'的面积为84+52()=36,∴四边形PMNQ的面积为36,故选B.10.D【解析】①,延长AO交圆于点N,连接BN,可证明∠ABO=∠HBC.因此①正确;②原式可写成=,无法直接用相似来求出,那么可通过相等的比例关系式来进行转换,不难发现三角形BEC中,∠ABC=60°,那么BC和BE存在倍数关系,即BC=2BE,因此如果证得=,可发现这个比例关系式正好是相似三角形BEH和BAF的两组对应线段,因此本题的结论也是正确的.③要证MB=BD,先看与BD相等的线段有哪些,不难通过相似三角形ABN和BFC(一组直角,∠OBA=∠OAB=∠FBC)得出,将这个结论和②的结论进行置换即可得出:BD=BO=BH=BG,因此可证MB和圆的半径相等即可得出BM=BD的结论.如果连接NC,在三角形ANC中∠ANC=∠ABC=60°,因此AN=2NC,NC就是半径的长.通过相似三角形BME和CAE可得出,而在直角三角形BEC中,BE:EC=tan30°,而在直角三角形ANC中,NC:AC=tan30°,因此,即可得出BM=NC=BO=BD.因此该结论也成立.④在③中已经得出了BD=BG=BO=BH,而∠ABC=60°,因此三角形BGD是等边三角形.本结论也成立.因此四个结论都成立,解:①延长AO交圆于点N,连接BN,则∠ABN=90°,又∠ACB=∠BNA,∠ABO=∠BAO,所以∠ABO=∠HBC.因此①正确;②原式可写成=,∠ABC=60°,那么BC=2BE,因此=,所以本题的结论也是正确的.③∵△ABN∽△BFC(一组直角,∠OBA=∠OAB=∠FBC)∴,BD=BO=BH=BG,BM=BD.连接NC,在三角形ANC中∠ANC=∠ABC=60°,∴AN=2NC,BE:EC=tan30°,在直角三角形ANC中,NC:AC=tan30°,,∴BM=NC=BO=BD.因此该结论也成立.④在③中已经得出了BD=BG=BO=BH,而∠ABC=60°,因此三角形BGD是等边三角形.本结论也成立.因此四个结论都成立,故选D.11.1 612.或4.8【解析】试题分析:当CP和CB是对应边时,△CPQ∽△CBA,所以,即,解得t=4.8;当CP和CA是对应边时,△CPQ∽△CAB,所以,即,解得t=.综上所述,当t=4.8秒或秒时,△CPQ与△CBA相似.点睛:本题考查了相似三角形的判定,主要利用了相似三角形对应边成比例,难点在于分情况讨论.分CP和CB是对应边,CP和CA是对应边两种情况,利用相似三角形对应边成比例列式计算即可得解.13.25【解析】如图所示:阴影部分即为矩形DEFG的面积,∵y=x2+2x+3向下平移10个单位得L2,∴DE=10,∵l1、l2的表达式分别是l1:x=-2,l2:x=,∴DG=52,∴则图中阴影部分的面积是:10×52=25,故答案为:25.14.9π【解析】试题解析:连接PD,过点P作PE⊥CD与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,如图所示.∵PE⊥CD,AB∥CD,∴PF⊥AB.又∵AB为⊙P的弦,∴AF=BF,∴DE=CE=12CD=12AB=3,∴CD边扫过的面积为π(PD2-PE2)=π•DE2=9π.【方法点睛】连接PD,过点P作PE⊥CD与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,利用垂径定理即可得出AF=BF,进而可得出DE=CE=3,再根据圆环的面积公式结合勾股定理即可得出CD边扫过的面积.15.①②③④【解析】①如图1,作AU⊥NQ于U,交BD于H,连接AN,AC,∵∠AMN=∠ABC=90°,∴A,B,N,M四点共圆,∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,∴∠ANM=∠NAM=45°,∴AM=MN;②由同角的余角相等知,∠HAM=∠PMN,∴Rt△AHM≌Rt△MPN,∴MP=AH=12AC=12BD ; ③∵∠BAN+∠QAD=∠NAQ=45°,∴在∠NAM 作AU=AB=AD ,且使∠BAN=∠NAU,∠DAQ=∠QAU,∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU ,DQ=UQ ,∴点U 在NQ 上,有BN+DQ=QU+UN=NQ ;④如图2,作MS⊥AB,垂足为S ,作MW⊥BC,垂足为W ,点M 是对角线BD 上的点, ∴四边形SMWB 是正方形,有MS=MW=BS=BW ,∴△AMS≌△NMW∴AS=NW,∴AB+BN=SB+BW=2BW,∴AB BN BM +==. 故答案为:①②③④点睛:本题考查了正方形的性质,四点共圆的判定,圆周角定理,等腰直角三角形的性质,全等三角形的判定和性质;熟练掌握正方形的性质,正确作出辅助线并运用有关知识理清图形中西安段间的关系,证明三角形全等是解决问题的关键.16. (5,) (+896)π【解析】如图作B 3E⊥x 轴于E ,易知OE=5,B 3E=, ∴B 3(5,),观察图象可知3三次一个循环,一个循环点M 的运动路径为++=()π,∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672•()π+π=(+896)π.17.(1)作图参见解析;(2)60.【解析】试题分析:(1)先找到圆心,利用尺规作图,作出线段AB 和BC 的垂直平分线,两垂直平分线的交点即为圆心O ,以O 为圆心,OA 或OB 或OC 长为半径画圆,即为弧AC 所在的圆O ;(2)利用边边边判定三角形ABO 和三角形BOC 全等,从而算出∠CBO=60度,然后能判断出三角形BOC 是等边三角形,进而求出圆O 的半径.18.(1)y=﹣x 2+2x+3;(2)9(3)相似【解析】试题分析:(1)易得c=3,故设抛物线解析式为y=ax 2+bx+3,根据抛物线所过的三点的坐标,可得方程组,解可得a 、b 的值,即可得解析式;(2)易由顶点坐标公式得顶点坐标,根据图形间的关系可得四边形ABDE 的面积=ABO DFE BOFD S S S ++梯形,代入数值可得答案;(3)根据题意,易得∠AOB=∠DBE=90°,且A OB O B D B E ==即可判断出两三角形相似.考点:二次函数综合题19. 【解析】试题分析:先画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;即可知道棋子走到哪一点的可能性最大,根据概率的概念也可求出棋子走到该点的概率. 解:画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;所以棋子走E 点的可能性最大,棋子走到E 点的概率==.考点:列表法与树状图法.20.(1)2(2)100°(3)AC=.【解析】试题分析:(1)过点O 作OE ⊥AB 于E ,则AE=BE=AB ,在Rt △BOE 中,利用∠B 的余弦可求出BE 的长,然后可得出AB 的长;(2)连接OA ,根据OA=OD=OB,可得∠D =∠DAO=" 20°," ∠B=∠BAO = 30°,然后可求出∠DAB = 50°,再利用圆周角定理可得∠BOD=2∠DAB = 100°;(3)利用三角形的外角的性质可得∠BCO=∠A+∠D ,然后分析可得出只能是△DAC ∽△BOC ,此时∠DCA=∠BCO=90°,∠DAC=60°,在Rt △BOE 中,利用∠DAC 的三角函数值可求出AC 的长.试题解析:解:(1)过点O 作OE ⊥AB 于E ,则AE=BE=AB ,∠OEB=90°,∵OB=2,∠B=30°,∴BE=OB•cos ∠B=2×=,∴AB=2;故答案为:2; (2)连接OA ,∵OA=OB ,OA=OD ,∴∠BAO=∠B ,∠DAO=∠D ,∴∠DAB=∠BAO+∠DAO=∠B+∠D ,又∵∠B=30°,∠D=20°,∴∠DAB=50°,∴∠BOD=2∠DAB=100°;(3)∵∠BCO=∠A+∠D ,∴∠BCO >∠A ,∠BCO >∠D ,∴要使△DAC 与△BOC 相似,只能∠DCA=∠BCO=90°,此时∠BOC=60°,∠BOD=120°,∴∠DAC=60°,∴△DAC ∽△BOC ,∵∠BCO=90°,即OC ⊥AB ,∴AC=AB=. ∴当AC 的长度为时,以A 、C 、D 为顶点的三角形与以B 、C 、0为顶点的三角形相似. 考点:垂经定理、解直角三角形、相似三角形的判定与性质.21.(1)40套;(2)当10<x ≤40时, w = x (60- x )=260x x -+;当x >40时, w =(90-70)x =20x ;(3)当x =30,最低售价为100元.【解析】试题分析:(1)根据最低价和原价之差可求出服装的套数;(2)根据题意,根据利润=单价×套数,可分当10<x ≤40时和当x >40时,列函数关系式;(3)根据(2)中的关系,由一次函数和二次函数的最值求解.试题解析:(1)由题意得:(120-90)÷1+10=40(套);(2)当10<x ≤40时, w = x (60- x )=260x x -+;当x >40时, w =(90-70)x =20x(3)当x >40时, w =20x ,w 随x 的增大而增大,符合题意;当10<x ≤40时,w =260x x -+=()230900x --+∵a =﹣1<0,∴抛物线开口向下.对称轴是直线x=30∴ 10<x ≤30, w 随着x 的增大而增大,而当x =30时, w 最大值=900;∵要求卖的数量越多赚的钱越多,即w 随x 的增大而增大,∴由以上可知,当x =30,最低售价为120﹣(30﹣10)=100元.22.(1)详见解析;(2)∠ACB=96°或114°;(3)CD=. 【解析】试题分析:(1)由∠A=40°,∠B=60°可得∠ACB=80°,即△ABC 不是等腰三角形,再判定△ACD 是等腰三角形,△BCD ∽△BAC,即可得CD 为△ABC 的完美分割线;(2)分AD=CD ,AD=AC ,AC=CD 三种情况,根据这三种情况分别求出∠ACB 的度数,不合题意的舍去;(3)由△BCD ∽△BAC 可得,设BD=x ,代入可得,由于x >0,即可知x=-1.再由△BCD ∽△BAC,所以,解得CD=.试题解析:(1)∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC 不是等腰三角形,又因CD 为角平分线, ∴∠ACD=∠BCD=∠ABC=40°,∴∠ACD=∠A=40°,∴△ACD 是等腰三角形,∵∠BCD=∠A=40°,∠B=∠B,∴△BCD ∽△BAC,∴CD 为△ABC 的完美分割线;(2)当AD=CD 时(如图①),∠ACD=∠A=48°,∵△BDC ∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°;当AD=AC 时(如图②),∠ACD=∠ADC=,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°;当AC=CD时(如图③),∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍去.∴∠ACB=96°或114°;(3)由已知AC=AD=2,∵△BCD∽△BAC,∴,设BD=x∴解得x=-1±,∵x>0,∴x=-1.∵△BCD∽△BAC,∴,∴CD=.考点:阅读理解题;相似三角形的综合题.23.(1)BD=24(2)△AMN是直角三角形(3)2或6或12【解析】试题分析:(1)根据菱形的性质证△ABD是等边三角形即可;(2)求出P Q走的距离,再根据等腰三角形性质即可推出答案;(3)分为三种情况:根据相似,得到比例式,求出Q走的距离,即可求出答案.试题解析:(1)∵菱形ABCD,∴AB=AD,∵∠A=60°,∴△ABD是等边三角形,∴BD=AB=24厘米.答:BD=24厘米.(2)12秒时,P走了4×12=48,∵AB+BD=24+24=48,∴P到D点,同理Q到AB的中点上,∵AD=BD,∴MN⊥AB,∴△AMN是直角三角形.(3)有三种情况:如图(2)∠ANM=∠EFB=90°,∠A=∠DBF=60°,DE=3×4=12=AD,根据相似三角形性质得:BF=AN=6,∴NB+BF=12+6=18,∴a=18÷3=6,同理:如图(1)求出a=2;如图(3)a=12.∴a的值是2或6或12.考点:1、相似三角形的判定与性质;2、等腰三角形的性质;3、等边三角形的性质;4、等边三角形的判定;5、菱形的性质.24.(1)y=﹣x2+x+2;(2)存在,y=0.5x-1;(3)存在,当点P为P1(0,1)时,点Q为Q1(2,2),Q2(﹣2,2);当点P为P2(1,2)时,点Q为Q3(3,2),Q4(﹣1,2);(4)存在,H(0.5,3)【解析】解:(1)∵矩形OABC,∴BC=OA=1,OC=AB,∠B=90°,∵tan∠ACB=2,∴AB:BC=2∴OC:OA=2,则OC=2,∵将矩形OABC绕点O按顺时针方向旋转90°后得到矩形ODEF,∴OF=2,则有A(﹣1,0)C(0,2)F(2,0)∵抛物线y=ax2+bx+2的图象过点A,C,F,把点A、C、F坐标代入得a-b+c=0,4a+2b+c=0,c=2∴解得a=-1,b=1,c=2∴函数表达式为y=﹣x2+x+2,(2)存在,当∠DOM=∠DEO时,△DOM∽△DEO∴此时有DM:DO=DO:DE.∴DM2=0.5,∴点M坐标为(0.5,1),设经过点M的反比例函数表达式为y=kx-1,把点M代入解得k=0.5∴经过M点的反比例函数的表达式为y=0.5x-1,(3)存在符合条件的点P,Q.∵S矩形ABCD=2×1=2,∴以O,F,P,Q为顶点平行四边形的面积为4,∵OF=2,∴以O,F,P,Q为顶点平行四边形的高为2,∵点P在抛物线上,设点P坐标为(m,2),∴﹣m2+m+2=2,解得m1=0,m2=1,∴点P坐标为P1(0,2),P2(1,2)∵以O,F,P,Q为顶点的四边形为平行四边形,∴PQ∥OF,PQ=OF=2.∴当点P坐标为P1(0,1)时,点Q的坐标分别为Q1(2,2),Q2(﹣2,2);当点P坐标为P2(1,2)时,点Q的坐标分别为Q3(3,2),Q4(﹣1,2);(4)若使得HA﹣HC的值最大,则此时点A、C、H应在同一直线上,设直线AC的函数解析式为y=kx+b,把点A(﹣1,0),点C(0,2)代入得-k+b=0,b=2解得k=2,b=2∴直线AC的函数解析式为y=2x+2,∵抛物线函数表达式为y=﹣x2+x+2,∴对称轴为x=0.5∴把x=0.5代入y=2x+2 解得y=3∴点H的坐标为(0.5,3)。
期末检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.(2016·广安)下列图形中既是轴对称图形又是中心对称图形的是( D )2.把抛物线y =12x 2-1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为( B )A .y =12(x +1)2-3B .y =12(x -1)2-3 C .y =12(x +1)2+1 D .y =12(x -1)2+1 3.(2016·安顺)已知命题“关于x 的一元二次方程x 2+bx +1=0,必有实数解”是假命题,则在下列选项中,b 的值可以是( C )A .b =-3B .b =-2C .b =-1D .b =24.如图,△ABC 内接于⊙O ,AB =BC ,∠ABC =120°,AD 为⊙O 的直径,AD =6,那么AB 的值为( A )A .3B .2 3C .3 3D .2,第4题图) ,第5题图),第6题图) ,第7题图)5.(2016·杭州)如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A ,C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E ,若∠AOB =3∠ADB ,则( D )A .DE =EB B.2DE =EB C.3DE =DO D .DE =OB6.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC 绕点O 顺时针旋转90°得到△BOD ,则AB ︵的长为( D )A .πB .6πC .3πD .1.5π7.二次函数y =a(x +m)2+n 的图象如图所示,则一次函数y =mx +n 的图象经过( C )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限8.(2016·呼和浩特)已知a ≥2,m 2-2am +2=0,n 2-2an +2=0,则(m -1)2+(n -1)2的最小值是( A )A .6B .3C .-3D .09.如图,在平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(-3,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为( B )A .1B .1或5C .3D .510.如图,二次函数y =ax 2+bx +c(a ≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0).下列结论:①ab <0;②b 2>4a ;③0<a +b +c <2;④0<b <1;⑤当x >-1时,y >0.其中正确结论的个数是( B )A .5个B .4个C .3个D .2个二、填空题(每小题3分,共24分)11.二次函数y =x 2-2x +6的最小值是__5__.12.从-5,0,4,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是__25__. 13.(2016·永州)如图,在⊙O 中,A ,B 是圆上的两点,已知∠AOB =40°,直径CD ∥AB ,连接AC ,则∠BAC =__35__度.14.用等腰直角三角板画∠AOB =45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的夹角α为__22°__.,第13题图) ,第14题图) ,第15题图),第16题图) 15.如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD ,若BD =10,DF =4,则菱形ABCD 的边长为__9__.16.(2016·泰州)如图,⊙O 的半径为2,点A ,C 在⊙O 上,线段BD 经过圆心O ,∠ABD =∠CDB =90°,AB =1,CD =3,则图中阴影部分的面积为__53π__. 17.一个底面直径是80 cm ,母线长为90 cm 的圆锥的侧面展开图的圆心角的度数为__160°__.18.(2016·十堰)已知关于x 的二次函数y =ax 2+bx +c 的图象经过点(-2,y 1),(-1,y 2),(1,0),且y 1<0<y 2,对于以下结论:①abc >0;②a +3b +2c ≤0;③对于自变量x 的任意一个取值,都有a b x 2+x ≥-b 4a ;④在-2<x <-1中存在一个实数x 0,使得x 0=-a +b a,其中结论错误的是__②__.(只填写序号)三、解答题(共66分)19.(5分)解方程:(x +1)(x -1)=22x.解:x 1=2+3,x 2=2-320.(7分)设x 1,x 2是关于x 的方程x 2-4x +k +1=0的两个实数根,是否存在实数k ,使得x 1x 2>x 1+x 2成立?请说明理由.解:不存在.理由:由题意得Δ=16-4(k +1)≥0,解得k ≤3.∵x 1,x 2是一元二次方程的两个实数根,∴x 1+x 2=4,x 1x 2=k +1,由x 1x 2>x 1+x 2得k +1>4,∴k >3,∴不存在实数k 使得x 1x 2>x 1+x 2成立21.(8分)如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C ;平移△ABC ,若点A 的对应点A 2的坐标为(0,-4),画出平移后对应的△A 2B 2C 2;(2)若将△A 1B 1C 绕某一点旋转可以得到△A 2B 2C 2,请直接写出旋转中心的坐标;(3)在x 轴上有一点P ,使得PA +PB 的值最小,请直接写出点P 的坐标.解:(1)图略 (2)旋转中心为(1.5,-1) (3)P (-2,0)22.(8分)(2016·扬州)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为__14__; (2)求他们三人在同一个半天去游玩的概率.解:(1)根据题意,画树状图如图,由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为28=14(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为28=1423.(8分)如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径作半圆⊙O 交AC 于点D ,点E 为BC 的中点,连接DE.(1)求证:DE 是半圆⊙O 的切线;(2)若∠BAC =30°,DE =2,求AD 的长.解:(1)连接OD ,OE ,BD.∵AB 为⊙O 的直径,∴∠ADB =∠BDC =90°,在Rt △BDC 中,E 为斜边BC 的中点,∴DE =BE.从而由SSS 可证△OBE ≌△ODE ,∴∠ODE=∠ABC =90°,则DE 为⊙O 的切线 (2)在Rt △ABC 中,∠BAC =30°,∴BC =12AC.∵BC =2DE =4,∴AC =8.又∵∠C =60°,DE =EC ,∴△DEC 为等边三角形,即DC =DE =2,则AD =AC -DC =624.(10分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y =-2x +80.设这种产品每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?解:(1)由题意得w =(x -20)·y =(x -20)(-2x +80)=-2x 2+120x -1600,故w 与x 的函数关系式为w =-2x 2+120x -1600 (2)w =-2x 2+120x -1600=-2(x -30)2+200.∵-2<0,∴当x =30时,w 有最大值,w 最大值为200,则该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润为200元 (3)当w =150时,可得方程-2(x -30)2+200=150.解得x 1=25,x 2=35.∵35>28,∴x 2=35不符合题意,应舍去,则该农户想要每天获得150元的销售利润,销售价应定为每千克25元25.(8分)已知∠AOB =90°,在∠AOB 的平分线OM 上有一点C ,将一个三角板的直角顶点与C 重合,它的两条直角边分别与OA ,OB(或它们的反向延长线)相交于点D ,E.当三角板绕点C 旋转到CD 与OA 垂直时(如图①),易证:OD +OE =2OC ;当三角板绕点C 旋转到CD 与OA 不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段OD ,OE ,OC 之间又有怎样的数量关系?请写出你的猜想,不需证明.解:图②中OD +OE =2OC 成立.证明:过点C 分别作OA ,OB 的垂线,垂足分别为P ,Q.有△CPD ≌△CQE ,∴DP =EQ ,∵OP =OD +DP ,OQ =OE -EQ ,又∵OP +OQ =2OC ,即OD +DP +OE -EQ =2OC ,∴OD +OE =2OC.图③不成立,有数量关系:OE -OD =2OC26.(12分)(2016·德州)已知m ,n 是一元二次方程x 2+4x +3=0的两个实数根,且|m|<|n|,抛物线y =x 2+bx +c 的图象经过点A(m ,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为C ,抛物线的顶点为D ,试求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P 为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.解:(1)y =x 2-2x -3 (2)令y =0,则x 2-2x -3=0,∴x 1=-1,x 2=3,∴C (3,0),∵y =x 2-2x -3=(x -1)2-4,∴顶点坐标D (1,-4),过点D 作DE ⊥y 轴,∵OB =OC =3,OE =4,DE =1,∴BE =DE =1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC =∠DBE =45°,∴∠CBD =90°,∴△BCD 是直角三角形(3)如图,∵B (0,-3),C (3,0),∴直线BC 的解析式为y =x -3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t -3),M (t ,t 2-2t -3),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ =2,∴QF =1,当点P 在点M 上方时,即0<t <3时,PM =t -3-(t 2-2t -3)=-t 2+3t ,∴S =12PM ·QF =12(-t 2+3t )=-12t 2+32t ;当点P 在点M 下方时,即t <0或t >3时,PM =t 2-2t -3-(t -3)=t 2-3t ,∴S =12PM ·QF =12(t 2-3t )=12t 2-32t。