理论力学期末标准试卷及详解答案讲解
- 格式:doc
- 大小:912.50 KB
- 文档页数:20
一、选择题(每题2分,共20分)1.若平面力系对一点A 的主矩等于零,则此力系( )。
A .不可能合成为一个力 B .不可能合成为一个力偶C .一定平衡D .可能合成为一个力偶,也可能平衡2.刚体在四个力的作用下处于平衡,若其中三个力的作用线汇交于一点,则第四个力的作用线( )。
A .一定通过汇交点B .不一定通过汇交点C .一定不通过汇交点3.将平面力系向平面内任意两点简化,所得主矢相等,主矩也相等,且主矩不为零,则该力系简化的最后结果为( )。
A .一个力 B .一个力偶 C .平衡4.图1中,已知P =60kN ,F =20kN静摩擦系数f s =0.5,动摩擦系数f d =0.4,则物体所受 摩擦力的大小为( )。
A .25kN B .20kN C .17.3kN5.一点做曲线运动,开始时的速度s m v /100=,恒定切向加速度2/4s m a =τ,则2s 末该点的速度大小为( )。
A .2m/sB .18m/sC .12m/sD .无法确定6.圆轮绕某固定轴O 转动,某瞬时轮缘上一点的速度v 和加速度a 如图2所示,试问哪些情况下是不可能的?( ) A .(a )、(b )运动是不可能的 B .(a )、(c )运动是不可能的 C .(b )、(c )运动是不可能的 D .均不可能7.如图3所示平行四边形机构,在图示瞬时,杆O 1A以角速度ω转动,滑块M 相对AB 杆运动,若取M 动点,动系固联在AB 上,则该瞬时动点M 的牵连速度与杆AB 间的夹角为( )。
A .00 B .300 C .600图28.平面机构如图4所示,选小环M 为动点,动系固联 在曲柄OCD 杆上,则动点M 的科氏加速度的方向( )。
A .垂直于CD B .垂直于AB C .垂直于OM D .垂直于纸面9.如图5所示,两物块A 、B ,质量分别为A m 和B m 初始静止。
如A 沿斜面下滑的相对速度为r v ,设B 向左运动的速度为v ,根据动量守恒定律理有(A .v m v mB r A =θcos B.v m v m B r A=C.v m v v m B r A =+)cos (θD. v m v v m B r A =-)cos (θ10.已知刚体质心C 到相互平行的z '、z 轴之间的距离分别为a 、b ,刚体的质量为m ,对z 轴的转动惯量为z J ,则'z J 的计算公式为( )。
大学理论力学期末考试题库及答案1. 题目:简述牛顿三定律的内容。
答案:牛顿第一定律(惯性定律)指出,物体在没有受到外力作用时,将保持静止或匀速直线运动状态;牛顿第二定律(加速度定律)表明,物体的加速度与作用在物体上的合外力成正比,与物体质量成反比,方向与合外力方向相同;牛顿第三定律(作用与反作用定律)说明,对于任何两个相互作用的物体,它们之间的力是大小相等、方向相反的。
2. 题目:什么是角动量守恒定律?答案:角动量守恒定律是指在没有外力矩作用的情况下,一个系统的总角动量保持不变。
3. 题目:请解释达朗贝尔原理。
答案:达朗贝尔原理是将动力学问题转化为静力学问题的一种方法。
它基于牛顿第二定律,通过引入惯性力,将动力学方程转化为平衡方程。
4. 题目:什么是虚功原理?答案:虚功原理是分析力学中的一个基本原理,它指出,一个保守系统中,如果系统从一个平衡位置发生微小的虚位移,那么系统内所有力对这些虚位移所做的虚功之和为零。
5. 题目:简述拉格朗日方程的一般形式。
答案:拉格朗日方程的一般形式为:\( \frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_i}) -\frac{\partial L}{\partial q_i} = Q_i \),其中 \( L \) 是拉格朗日量,\( q_i \) 是广义坐标,\( \dot{q}_i \) 是广义速度,\( Q_i \) 是广义力。
6. 题目:请解释什么是哈密顿原理。
答案:哈密顿原理,也称为最小作用量原理,它指出在所有可能的路径中,实际发生的过程是使作用量取极小值的路径。
作用量是拉格朗日量 \( L \) 对时间的积分。
7. 题目:什么是刚体的转动惯量?答案:刚体的转动惯量是衡量刚体对旋转运动的抵抗程度的物理量,它与刚体的质量分布和旋转轴的位置有关。
8. 题目:请解释什么是势能。
答案:势能是物体由于其位置或状态而具有的能量形式,它与物体的位形有关,通常与保守力相关。
《理论力学》期末考试试卷附答案B卷一、填空题(共30分,共10空,每空3 分)1. 如图所示的悬臂梁结构,在图中受力情况下,固定端A处的约束反力为:M A = ;F Ax = ;F Ay = 。
2. 已知正方形板ABCD作定轴转动,转轴垂直于板面,A点的速度v A=10cm/s,加速度a A=cm/s2,方向如图所示。
则正方形板的角加速度的大小为。
AA BD题1图题2图3. 图示滚压机构中,曲柄OA = r,以匀角速度绕垂直于图面的O轴转动,半径为R的轮子沿水平面作纯滚动,轮子中心B与O轴位于同一水平线上。
则有ωAB = ,ωB = 。
4. 如图所示,已知圆环的半径为R,弹簧的刚度系数为k,弹簧的原长为R。
弹簧的一端与圆环上的O点铰接,当弹簧从A端移动到B端时弹簧所做的功为;当弹簧从A端移动到C端时弹簧所做的功为。
o B题3图题4图5.质点的达朗贝尔原理是指:作用在质点上的主动力、和在形式上组成平衡力系。
二、选择题(共25分,共5 题,每题5 分)1. 图示机构中,已知均质杆AB的质量为m,且O1A=O2B=r,O1O2=AB=l,O1O=OO2=l/2,若曲柄转动的角速度为ω,则杆对O轴的动量矩L O的大小为( )。
A. L O = mr2ωB. L O = 2mr2ωC. L O = 12mr2ω D. L O= 0B2. 质点系动量守恒的条件是:( )A. 作用于质点系上外力冲量和恒为零B. 作用于质点系的内力矢量和为零C. 作用于质点系上外力的矢量和为零D. 作用于质点系内力冲量和为零3. 将质量为m的质点,以速度v铅直上抛,试计算质点从开始上抛至再回到原处的过程中质点动量的改变量:( )A. 质点动量没有改变B. 质点动量的改变量大小为2m v,方向铅垂向上C. 质点动量的改变量大小为2m v,方向铅垂向下D. 质点动量的改变量大小为m v,方向铅垂向下4. 图示的桁架结构,铰链D处作用一外力F,下列哪组杆的内力均为零?( )A. 杆CG与杆GFB. 杆BC与杆BGC. 杆BG与杆BFD. 杆EF与杆AF5. 如图所示,已知均质光球重为Q,由无重杆支撑,靠在重为P的物块M上。
理论力学 期末考试试题1-1、自重为P=100kN 的T 字形钢架ABD,置于铅垂面,载荷如图所示。
其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m 。
试求固定端A 的约束力。
解:取T 型刚架为受力对象,画受力图.1-2 如图所示,飞机机翼上安装一台发动机,作用在机翼OA 上的气动力按梯形分布:1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨的反作用力偶矩M=18kN.m 。
求机翼处于平衡状态时,机翼根部固定端O 所受的力。
解:1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN.m,各尺寸如图。
求固定端A处及支座C的约束力。
1-4 已知:如图所示结构,a, M=Fa, 12F F F ==, 求:A ,D 处约束力.解:1-5、平面桁架受力如图所示。
ABC 为等边三角形,且AD=DB 。
求杆CD 的力。
1-6、如图所示的平面桁架,A 端采用铰链约束,B 端采用滚动支座约束,各杆件长度为1m 。
在节点E 和G 上分别作用载荷E F =10kN ,G F =7 kN 。
试计算杆1、2和3的力。
解:2-1 图示空间力系由6根桁架构成。
在节点A上作用力F,此力在矩形ABDC平面,且与铅直线成45º角。
ΔEAK=ΔFBM。
等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,又EC=CK=FD=DM。
若F=10kN,求各杆的力。
2-2 杆系由铰链连接,位于正方形的边和对角线上,如图所示。
在节点D沿对角线LD方向作用力F。
在节点C沿CH边铅直向下作用力F。
如铰链B,L和H是固定的,杆重不D计,求各杆的力。
2-3 重为1P =980 N ,半径为r =100mm 的滚子A 与重为2P =490 N 的板B 由通过定滑轮C 的柔绳相连。
已知板与斜面的静滑动摩擦因数s f =0.1。
2011~2012 学年度第 二 学期《 理论力学 》试卷(A 卷)一、填空题(每小题 4 分,共 28 分)1、如图1.1所示结构,已知力F ,AC =BC =AD =a ,则CD 杆所受的力F CD =( ),A 点约束反力F Ax =( )。
2、如图1.2 所示结构,,不计各构件自重,已知力偶矩M ,AC=CE=a ,AB ∥CD 。
则B 处的约束反力F B =( );CD 杆所受的力F CD =( )。
1.1 1.23、如图1.3所示,已知杆OA ,以匀角速度ω绕O 轴转动,如以滑块A 为动点,动系建立在BC 杆上,当BO 铅垂、BC 杆处于水平位置时,滑块A的相对速度v r =( );科氏加速度a C =( )。
4、平面机构在图1.4位置时, AB 杆水平而OA 杆铅直,轮B 在水平面上作纯滚动,已知速度v B ,OA 杆、AB 杆、轮B 的质量均为m 。
则杆AB 的动能T AB =( ),轮B 的动能T B =( )。
1.3 1.45、如图1.5所示均质杆AB 长为L ,质量为m,其A 端用铰链支承,B 端用细绳悬挂。
当B 端细绳突然剪断瞬时, 杆AB 的角加速度 =( ),当杆AB 转到与水平线成300角时,AB 杆的角速度的平方ω2=( )。
6、图1.6所示机构中,当曲柄OA 铅直向上时,BC 杆也铅直向上,且点B 和点O 在同一水平线上;已知OA=0.3m,BC=1m ,AB=1.2m,当曲柄OA 具有角速度ω=10rad/s 时,则AB 杆的角速度ωAB =( )rad/s,BC 杆的角速度ωBC =( )rad/s 。
AB1.57、图1.7所示结构由平板1、平板2及CD 杆、EF 杆在C 、D 、E 、F 处铰接而成,在力偶M 的作用下,在图上画出固定铰支座A 、B 的约束反力F A 、F B 的作用线方位和箭头指向为( )(要求保留作图过程)。
1.7二、单项选择题(每小题 4 分,共28 分)1、如图2.1所示,四本相同的书,每本重均为P ,设书与书间的摩擦因数为0.1,书与手间的摩擦因数为0.25,欲将四本书一起抱起,则两侧手应加的压力至少大于( )。
一.选择题(每题3分,共15分。
请将答案的序号填入划线内。
)1.空间同向平行力系1F 、2F 、3F 和4F ,如图所示。
该力系向O 点简化,主矢为'R F,主矩为OM ,则 (B )(A) 主矢主矩均不为零,且'R F 平行于O M(B) 主矢主矩均不为零,且'RF 垂直于O M(C) 主矢不为零,而主矩为零 (D) 主矢为零,而主矩不为零2.已知点M 的运动方程为ct b s +=,其中b 、c 均为常数,则( C )。
(A) 点M 的轨迹必为直线 (B) 点M 必作匀速直线运动 (C) 点M 必作匀速运动 (D) 点M 的加速度必定等于零3.如图所示若尖劈两侧与槽之间的摩擦角均为m ϕ,则欲使尖劈被打入后不致自动滑出,θ角应为( C )(A) θ≤m ϕ (B) θ≥m ϕ(C) θ≤2m ϕ (D) θ≥2m ϕ4.若质点的动能保持不变,则( D )。
(A) 该质点的动量必守恒 (B)(C) 该质点必作变速运动 (D) 5.直管AB 以匀角速度ω绕过点O 且垂直于管子轴线的定轴转动,小球M 在管内相对于管子以匀速度r v 运动,在如图所示瞬时,小球M 正好经过轴O 点,则在此瞬时小球M 的绝对速度a v 和绝对加速度a a 大小是( D )。
(A)a v =,a a = (B) a rv v =,0a a =(C) 0a v =,2a r a v ω= (D) a r v v =,2a ra v ω=二.填空题(每空2分,共30分。
请将答案填入划线内。
)1.平面汇交力系平衡的几何条件是 各力构成的力多边形自行封闭 ;平面汇交力系平衡的解析条件是0x F =∑、0y F =∑。
2.空间力偶的三个要素是 力偶矩的大小 、 力偶作用面的方位 和 力偶的转向 。
3.如图所示,均质长方体的高度30h cm =,宽度20b cm =,重量600G N =,放在粗糙水平面上,它与水平面的静摩擦系数0.4s f =。
理论力学部分第一章静力学基础一、是非题(每题3分,30分)1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()9. 力偶只能使刚体发生转动,不能使刚体移动。
()10.固定铰链的约束反力是一个力和一个力偶。
()二、选择题(每题4分,24分)1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
6.关于约束的说法正确的是 。
① 柔体约束,沿柔体轴线背离物体。
② 光滑接触面约束,约束反力沿接触面公法线,指向物体。
理论力学期末测试试题1-1、自重为P=100kN的T字形钢架ABD,置于铅垂面内,载荷如下列图.其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m.试求固定端A的约束力.解:取T型刚架为受力对象,画受力图其中耳一;q •次-3(ikN工已二“产看十骂—F£m6<r = 0工弓=0 ^-?-Fcos600 = 0一.一^ A必-W-Fi/十外必60F + F疝g= 0i^ = 3164kN 为二SOQkNMi= - IlSSkNm1-2如下列图,飞机机翼上安装一台发动机,作用在机翼OA上的气动力按梯形分布:解:q i=60kN/m, q2 =40kN/m ,机翼重P i=45kN ,发动机重P2 =20kN ,发动机螺旋桨的反作用力偶矩M=18kN.m .求机翼处于平衡状态时,机翼根部固定端.所受的力.幅研究机翼.把梯形教荷分解为一三角形载荷与一轮修救荷,其合力分利为Fja = y(^)- q2) , 9 = 90 kN,F k2= 9 * = 36° kN分别作用在矩赛.点3m与4.5 m处,如下列图,由= 口,F山=01Y = 0, F% - K - P# 1 中k=0SM0(F1 = Q t Mo - 3.6P| — 4.2尸工一M + 3F RI + 4.$F R1 = 0解得For = 0T F Q,=- 3S5 k\, M0 二-1 626 kN * m1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,q=10kN/m , F=50kN , M=6kN.m ,各尺寸如图.求固定端A处及支座C的约束力.6 m 1 i m } I m !M 先研究构架EBD如图(b),由WX= 0, F小-F sin30' = 0E Y = 0.F HJ + F3 - F mfi30 = 02A什⑺=0T F2 T - M + 2F = 0 解得= 25 kN. = 87.3 kN. F/ =-44 kN 再研究AB梁如图(a).由解:XX = 04 -如* 6 sinJO* * F旭一Fn, = 0XV - 0,为-1 6 (xx3tf . F* 二UEM八F) - 0, - 2 * -j * & * fl coeJO -白产皿"0懈得F〞 = 40 kN. F A I= 113 3 kN. M A= 575,S kN - m it愿也可先研究EBD,求得F*之后.再研究整体,求a处反力।这样祈减少平街方程数■但计算鼠并未明髭减少,1-4:如下列图结构, a, M=Fa, F1 F2 F,求:A, D处约束力.以上修为明究时聚.受力如下列图.广%-0 加-:'=. T工… 4・%七.二工9口 : 0 A<P -I %'二昌1'二小l nF吗一:F /=F1-5、平面桁架受力如下列图. ABC为等边三角形,且AD=DB .求杆CD的内力.H 翌体受力如图Q).由工M A(F)=0,方,/\ *F\B"4B - F - 1■心・sinbU- - Q 6蹲得Fw 一§F⑸.反将桁架微升.研究右边局部,如图化)所 \ __________________示,由人汽J^*Wf)= g Fft* ■ DB * sinfiO f+ F.nc , flH - F , £)P - sinGO,= 0 %⑻解樗Ffp = -|F/再研究节点匚,如图(cl由尔工K =①(Ftr- F在加曲,=0 代〞的EV = 0, -(F CF +F C¥)m&S0,- F QJ = Q *3 57ffl解得Fm =一与F t) 866F(压)本剧晟筒单的解法是.菖先断定QE杆为零杆,再觎取&BDF来研兆,只由一个方覆LM a(f> =.,即可健出R* ,读者不妨一试.1-6、如下列图的平面桁架,A端采用钱链约束,B端采用滚动支座约束, 各杆件长度为1m.在节点E和G上分别作用载荷F E=10kN, F G=7 kN.试计算杆1、2和3的内力.解:取圣体.求支庄为束力.工…小口口小0%+品一3%A取= 9kN / = SLN用盘面法,取疗架上边局部,s城■ g一月1 y〔峪3.“ 一/.」二9▽5=.&+鸟/疝16.“ 一鸟二0 E氏=0 F{\H 十巴83600 —.^ = l04kN(aj ^=l.l?kN 但弓।牛iilkNlji】2-1图示空间力系由6根桁架构成.在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45o角.A EAK= A FBM.等腰三角形EAK , FBM和NDB在顶点A, B和D处均为直角,又EC=CK=FD=DM .假设F=10kN ,求各杆的内力.解节点受力分别如图所开:,对节点八,由工X —0, F1 sin45 - % sin45 = 0+ F sin45' = 0£Y " F3= 0, —F] C3s45 —F± COH45-F cos45 - 0解得Fi = F:= -5kN〔压〕, F3=一7.07 kN〔压〕再对节点B,由SX ~ 0, F$ stn45* - F< sin45, ; 0EV = 0. Fi sin45 - F3 = 0三2 士0, 一居a>s45 - F? crt?45" - F6 co^45' = 0 解得F4 = 5 kN〔拉〕,R=5卜^1〔拉〕,5& =- 10 kN〔压〕2-2杆系由钱链连接, 位于正方形的边和对角线上,如下列图.在节点D沿对角线LD方向作用力F D.在节点C沿CH边铅直向下作用力F.如钱链B, L和H是固定的,杆重不计, 求各杆的内力.求解TY = 0,SZ = 0,求二 0,F| 4M5* + Fj + F. sn45 = 0 厕 4,30 图解得 Fi = F D (1C),F $ =F J =二 Ji F 虱电然后研究节点c ,由SX = 0, - Fj - F*W cut45' - 0v3 £Y = ar -Fj - Fi — sin45 = 0心SZ = 0h - F, - F - F4言=0得 Fj = 7年户口,匕=-/5匹口. Fs M- (F + \2F D )2-3 重为R=980 N,半径为r =100mm 的滚子A 与重为P 2 = 490 N 的板B 由通过定滑轮 C 的柔绳相连.板与斜面的静滑动摩擦因数f s =0.1 o 滚子A 与板B 间的滚阻系数为8C 为光滑的.求各杆的内力. 先研究节点D,由- F)cts?45 + F 口 au45 - 0=0.5mm,斜面倾角a =30o,柔绳与斜面平行,柔绳与滑轮自重不计,钱链 拉动板B 且平行于斜面的力 F 的大小.〔l i 设闻拄口有向下漆动慧等.取国校DFsu 话出—凡-H-3=0EFf =❶ /一 Fcosfl = 0一% /Vine 7- co*?i 算豉圄杜.有向匕浪动越势.虢S ]社“ 三H 』二UJ£ 一%】R l J 'O U _EF F - 0 及-Fai%一.又Mn>« =的&- /J(siii 口 \ — u.凶 81J JI ,13.jp."系怩平衍叶F4五河n 日一)co* 6}工A4 尸I 五m n 8一 3 cow R'\-3/c - 0 1氏-A& =0 工尸j 二.尸M -FCQ博.二.只浪不滑3t.应点 门“用=¥斗型8那么上之£ y K 同理一圆柱.有向上填动趋势时得二二三 K 间柱匀速蛇淳时. f一 R2-4两个均质杆AB 和BC 分别重P i 和P 2 ,其端点A 和C 用球较固定在水平面, 另一端B 由 球镀链相连接,靠在光滑的铅直墙上,墙面与 AC 平行,如下列图.如 AB 与水平线的交角 为45o, / BAC=90.,求A 和C 的支座约束力以及墙上点B 所受的压力.解先研究AB 杆,受力如图(b),由। n 投阅柱.有向下滚动越舜O题4.27-SMjF)三0, 一几,QA = 0 得1 0 再取AB、CD两杆为一体来研究,受力如图(月海茉:由EM AC(F)= 0t(P[ + Pj) <WG45_F N* AB 热in45 —0XX = 0,九十 % = 0工My(F)= 0, Fc - AC - pj • AC = 0 LNZ 〞开工+如一2】一丹=0(F) —0, -(F AT+ FQ • OA - Fc y *- AC= 0工M塞2 K = 0, % + % + Fn = 0解得Fx = y(Pi + Pj)»Fer =.产值=2^P:t町=Pi +yp2>F o= 0,%=-2(P[ + 尸口3-1:如下列图平面机构中,曲柄OA=r,以匀角速度°转动.套筒A沿BC杆滑动.BC=DE ,且BD=CE=l.求图示位置时,杆BD的角速度和角加速度.解:].动点:滑块T 动系:贰广杆绝对运动:国周运动〔.点〕相对运动:直线运动〔£「二)j|iij V V V&加速度4_ 3/十&*)疝13伊_ J5诏r(/+r)耳cos30Q ST?收属/(/ + r)cz w= 1—1=----- 不 ------w BD 3 户3-2 图示钱链四边形机构中, O i A = O2B =100mm ,又QO2 = AB,杆O〔A以等角速度=2rad/s绕轴01转动.杆AB上有一套筒C,此套筒与杆CD相较接.机构的各部件都在同一铅直面内.求当①二60o时杆CD的速度和加速度.〔15分〕解取CD杆上的点C为动点,AB杆为动系,时动点作速度分析和加速度分析,如图S〕、〔b〕所示,图中式中口月=〔八一4 •田二0一2 ir〕/s5 - 0iA • J = 0*4 m/s2 解出杆CD的速度.加速度为G =-UA coep = 0. I mA&3 = since;= 0,3464 m/s2«1aAM1Al1V!4-1:如下列图凸轮机构中,凸轮以匀角速度3绕水平.轴转动,带动直杆AB沿铅直线上、下运动,且O, A, B共线.凸轮上与点A接触的点为A',图示瞬时凸轮轮缘线上' '点A的曲率半径为 A ,点A的法线与OA夹角为e , OA=l.求该瞬时AB的速度及加速度.〔15 分〕绝对运动: 相对运动: 奉连道处:2.速度大小 方向 1, 二、Ja 】iH=「WkmH I丫3,加速度 比=凡."'+ %r 门 大小9炉『『、;"2 方向 / /4-2:如下列图,在外啮合行星齿轮机构中,系杆以匀角速度 定,行星轮半径为r,在大轮上只滚不滑.设 A 和B 是行星轮缘 上的两点,点 A 在O 1O 的延长线上,而点 B 在垂直于o 1o 的半径上.求:点 A 和B 的加速度.解:2.选基点为〔〕亓*二后.*疗;口 +疗;. 大小0 *忒0 1时 方向“ J JJi7A ~ a ? +^C?I .轮I 作平面运动,瞬心为「沿"轴投勉乙8々4 * ■献i 1+ .1绕O i 转动.大齿轮固S 二「" 直线运动 曲线运动 定购林动 功系:凸轮. C 凸轮外边瘴〕〔.轴〕大小,方向?% ="g =仃口+ "什=fuclaii——=闺.㈢11 -4-3: 动.摇杆OC铅直,〔科氏加速度〕如下列图平面机构, AB长为1,滑块A可沿摇杆OC的长槽滑OC以匀角速度3绕轴O转动,滑块B以匀速v 1沿水平导轨滑动.图示瞬时AB与水平线OB夹角为300.求:此瞬时AB杆的角速度及角加速度.〔20分〕* *沿】:方向投彩大小方句V4B COS30J LD F福:速度分析1-杆.〞作平面运动,族点为瓦V A = V S - y AP2.动点:滑块.心动系:〞抨沿£方向强彩以一=1■沿吃方向表恁% ; gin 30" -4?os 对15-1如下列图均质圆盘,质量为m 、半径为R,沿地面纯滚动,角加速为3.求圆盘对图中A,C 和P 三点的动量矩. 平行轴定理:4二=一十/嫉 一或点P 为睡心 3hL ? = ^^R-\ L e =mP 2it 〕\ 1相?\"= -15-2 〔动量矩定理〕:如下列图均质圆环半径为 r,质量为m,其上焊接刚杆 OA,杆加生度介册 0f Ai = = 3VJtv 2AB点「为眉心上匚二J屯+ 1师;-G长为r,质量也为m.用手扶住圆环使其在OA水平位置静止.设圆环与地面间为纯滚动.独汰庵一方「.斗管力加玛所示建丸平为走动微分方程2f -月—+Y2由朱加R先K熹法瑞拽彩到水平强错乱两个才向20 r3"悟105-3 11-23 〔动量矩定理〕均质圆柱体的质量为m,半径为r,放在倾角为60o的斜面上, 一细绳绕在圆柱体上,其一端固定在A点,此绳和A点相连局部与斜面平行,如下列图.如圆柱体与斜面间的东摩擦因数为f=1/3,求圆柱体的加速度.〔15〕(15)解:解IW柱受力与运动分析如图.平而运动徽分方程为nta〔;= mg sin60* 一尸一Fj,.=F\ —fiig CQt^ff』社- 〔F=—广〕『式中F = /Fv» ac - fQ解得口c=O.355q5-4 11-28 〔动量矩定理〕均质圆柱体A和B的质量均为m,半径均为r, 一细绳缠在绕固定轴.转动的圆柱A上,绳的另一端绕在圆柱B上,直线绳段铅垂,如下列图.不计摩擦.求:〔1〕圆柱体B下落时质心的加速度;〔2〕假设在圆柱体A上作用一逆时针转向力偶矩M,试问在什么条彳^下圆柱体B的质心加速度将向上.〔15分〕解:解“〕两轮的受力与运动分析分别如用w.1 2 ET™r=近]对E轮,有以轮与直樊和切点为基点,明轮心B的加速度〃工,M t s4解得5g〔2〕再分别对两卷作受力与运动分析如图〔b〕对内轮,有fflaa =ntg -Ppj~2 tfrr~afj —rFj2依然存运动学关系dj}二皿用+的日J但Q.i中也B〕令< 0,可解得31柱体B的质心加速度向上的条件:M〉217UJT6-1:轮O的半径为R1 ,质量为ml,质量分布在轮缘上;均质轮C的半径为R2 , 质量为m2 ,与斜面纯滚动,初始静止.斜面倾角为.,轮.受到常力偶M驱动. 求: 轮心C走过路程s时的速度和加速度.〔15分〕韩:轮C1月轮0扶同作为一个质点系九一a『w 一阁7j = o石—,血人"吊斗!岫甘&岫对网」言必二% =9 1V :3/聚TH得J弘口日=-^―〔+3JJL〕旭〕中二二¥ =:羡居迎日一式G〕是函数关系式.两端计『求导,得-〔Jffij + 访看网收=M -Kin H - 鸟2 例U 尸―- :〔加1+.%啊〕局6-2均质杆 OB=AB=l,质量均为 m,在铅垂面内运动,AB 杆上作用一不变的力偶矩M,系统初始静止,不计摩擦.求当端点 A 运动到与端点 .重合时的速度. 〔15分〕解:由于A 京不离并地面,那么,EAO= /BOA.牝=可=H嫌同:是否可以利用求寻求此蜓时的商和速段? 〔H 与行没 有必然联系,角度不是时间的函数.〕6-3:重物m,以v 匀速下降,钢索刚度系数为 k .求轮D 突然卡住时,钢索的最大张 力.〔15分〕1J 上口『9-"将『〔1-E 穹 2/ V itt由「二心〞;有6-4均质杆 AB 的质量m=4kg,长l=600mm,均匀圆盘B 的质量为6kg,半径为r=600mm, 作纯滚动.弹簧刚度为 k=2N/mm,不计套筒A 及弹簧的质量.连杆在与水平面成 30o 角时无 初速释放.求〔1〕当AB 杆达水平位置而接触弹簧时,圆盘与连杆的角速度;〔2〕弹簧的最大压缩量 max o 〔 15分〕彝:卡住前E 二些 s* kF - kS SJ - mg - 2.45kN卡隹后取点物平街位苜1为更力加弹性力的 搴势T ; 一"解U〕该系统初始静tL.动能为杆达水平位置时.B 点是33杆的速度瞬心,网盅的角速度3H = 0,设杆的角速度为那么业,山幼能近理,得\ * ;配%品-0 = mg * ~ 5in341,解得连杆的角速度号〞:4;殳巴丝⑵AB杆达水平位置接触赢亚,统的动能为“,弹簧达到最大压缩量bz.的瞬时,系魂再次鄢止.动能丁;:= 0.由72 - 7】二五得0 _ [■闻]品=-J 6ra«二+ mJ片0 W *■解得1AM= 87.1 mm。
期末理论力学试题及答案期末理论力学试题及答案解析试题一:1. 一个物体以初速度v0自由下落,垂直下拉力下滑同一个垂直塔壁的高度为h,又该物体以速度v1向右飞出塔壁。
已知物体的质量为m,请问下列哪个式子成立?A) mv0^2 = mv1^2 - 2mg | B) mv0^2 = mv1^2 | C) m(v0^2 - v1^2) =2mg | D) mv0^2 = 2mg - mv1^2答案:A解析:根据题意,物体在塔壁处获得了向右的动量,所以向右的动量等于离开之前的动能减去重力做的功。
由动能定理可得A 选项成立。
2. 一个质量为m的物体以速度v做圆周运动,其半径为r。
已知圆周运动的角频率为ω,那么任意时间t物体的加速度大小是多少?A) ω^2r | B) ωv | C) ω^2r^2 | D) ωr答案:A解析:加速度是速度对时间的导数,而速度的大小是v = ωr,所以加速度的大小为a = ωv = ω(ωr) = ω^2r。
因此 A 选项成立。
3. 力学中,牛顿第一定律描述了物体的运动状态。
请问以下哪个选项是牛顿第一定律的陈述?A) 作用力等于物体的质量乘以加速度 | B) 物体的加速度等于作用力除以质量 | C) 物体的运动状态保持不变除非受到外力作用 | D) 物体间作用的力总是相互作用答案:C解析:牛顿第一定律又称为惯性定律,它表明物体的运动状态在没有外力作用时保持不变,也就是物体静止或匀速直线运动。
因此 C 选项是牛顿第一定律的陈述。
4. 一物体质量为m1,速度为v1,另一物体质量为m2,速度为v2。
两物体之间发生弹性碰撞后,物体1速度变为v1',物体2速度变为v2'。
已知碰撞前后两物体的动量相等且碰撞前两物体相向而行,请问以下哪个选项是正确的?A) m1v1 + m2v2 = m1v1' + m2v2' | B) m1v1 = m2v2' | C) v1 + v2 = v1' + v2' | D) m1v1' + m2v2' = 0答案:A解析:根据动量守恒定律,碰撞前后系统动量的总和保持不变。
理论力学 期末考试试题1-1、自重为P=100kN 的T 字形钢架ABD,置于铅垂面内,载荷如图所示。
其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m 。
试求固定端A 的约束力。
解:取T 型刚架为受力对象,画受力图.1-2 如图所示,飞机机翼上安装一台发动机,作用在机翼OA 上的气动力按梯形分布:1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨的反作用力偶矩M=18kN.m 。
求机翼处于平衡状态时,机翼根部固定端O 所受的力。
解:1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN.m,各尺寸如图。
求固定端A处及支座C的约束力。
1-4 已知:如图所示结构,a, M=Fa, 12F F F ==, 求:A ,D 处约束力.解:1-5、平面桁架受力如图所示。
ABC 为等边三角形,且AD=DB 。
求杆CD 的内力。
1-6、如图所示的平面桁架,A 端采用铰链约束,B 端采用滚动支座约束,各杆件长度为1m 。
在节点E 和G 上分别作用载荷E F =10kN ,G F =7 kN 。
试计算杆1、2和3的内力。
解:2-1 图示空间力系由6根桁架构成。
在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45º角。
ΔEAK=ΔFBM。
等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,又EC=CK=FD=DM。
若F=10kN,求各杆的内力。
2-2 杆系由铰链连接,位于正方形的边和对角线上,如图所示。
在节点D沿对角线LD方向F。
在节点C沿CH边铅直向下作用力F。
如铰链B,L和H是固定的,杆重不计,作用力D求各杆的内力。
2-3 重为1P =980 N ,半径为r =100mm 的滚子A 与重为2P =490 N 的板B 由通过定滑轮C 的柔绳相连。
2011~2012 学年度第 二 学期《 理论力学 》试卷(A 卷)一、填空题(每小题 4 分,共 28 分)1、如图1.1所示结构,已知力F ,AC =BC =AD =a ,则CD 杆所受的力F CD =( ),A 点约束反力F Ax =( )。
2、如图1.2 所示结构,,不计各构件自重,已知力偶矩M ,AC=CE=a ,A B ∥CD 。
则B 处的约束反力F B =( );CD 杆所受的力F CD =( )。
E 1.1 1.23、如图1.3所示,已知杆OA ,以匀角速度ω绕O 轴转动,如以滑块A 为动点,动系建立在BC 杆上,当BO 铅垂、BC 杆处于水平位置时,滑块A 的相对速度v r =( );科氏加速度a C =( )。
4、平面机构在图1.4位置时, AB 杆水平而OA 杆铅直,轮B 在水平面上作纯滚动,已知速度v B ,OA 杆、AB 杆、轮B 的质量均为m 。
则杆AB 的动能T AB =( ),轮B 的动能T B =( )。
C1.3 1.45、如图1.5所示均质杆AB 长为L ,质量为m,其A 端用铰链支承,B 端用细绳悬挂。
当B 端细绳突然剪断瞬时, 杆AB 的角加速度 =( ),当杆AB 转到与水平线成300角时,AB 杆的角速度的平方ω2=( )。
6、图1.6所示机构中,当曲柄OA 铅直向上时,BC 杆也铅直向上,且点B 和点O 在同一水平线上;已知OA=0.3m,BC=1m ,AB=1.2m,当曲柄OA 具有角速度ω=10rad/s 时,则AB 杆的角速度ωAB =( )rad/s,BC 杆的角速度ωBC =( )rad/s 。
AB1.57、图1.7所示结构由平板1、平板2及CD 杆、EF 杆在C 、D 、E 、F 处铰接而成,在力偶M 的作用下,在图上画出固定铰支座A 、B 的约束反力F A 、F B 的作用线方位和箭头指向为( )(要求保留作图过程)。
1.7二、单项选择题(每小题 4 分,共28 分)1、如图2.1所示,四本相同的书,每本重均为P ,设书与书间的摩擦因数为0.1,书与手间的摩擦因数为0.25,欲将四本书一起抱起,则两侧手应加的压力至少大于( )。
A 、 10PB 、 8PC 、 6PD 、 4P2、如图2.2所示,重Q=200N 的三角形板,用等长杆O 1A ,O 2B 支持着。
设O 1O 2=AB ,杆重及摩擦不计。
若能使三角形板在角α=300时保持平衡,则水平力P 的大小应为( )。
A 、P=115.47B 、P=200C 、P=364ND 、P=173N2.1 2.23、平面杆机构如图2.3示,各杆重量不计,AB =CD =a 。
已知AB 杆上作用一力偶M 1,如在CD 杆上作用一力偶M 2。
则机构平衡时,M 1与M 2之间的大小为( )。
A 、 M 1=M 2B 、 M 1=3M 2C 、 M 1=33M 2 D 、 M 1=23M 2 4、如图2.4所示直角刚杆AO = 2m ,BO = 3m ,已知某瞬时A 点的速度 A v =6m/s ;而B 点的加速度与BO 成α= 60°角。
则该瞬时刚杆的角速度ω= rad/s ,角加速度α= rad/s 2。
A 、3B 、 3C 、53D 、9312.3 2.45、如图2.5所示,两齿条分别以速度v 1、v 2,沿相反向运动,两齿条之间夹有一齿轮,其半径为R ,设v 1>v 2,则齿轮中心O 点的速度大小应为( )。
A 、221v v - B 、21v v - C 、221v v + D 、21v v + 6、如图2.6所示,已知F 1、F 2、F 3、F 4为作用于刚体上A 、B 、C 、D 四点的平面一般力系,其力矢关系如图2.1所示为平行四边形,由此可知( )。
A 、力系可合成为一个力偶B 、力系可合成一个力、力系的合力为零,力系平衡22.5 2.67、刚体作平面运动,在任一瞬时,若选A点为基点,则B点绕A点运动的速度为v BA, 若选B点为基点,则A点绕B点运动的速度为v AB,对于v BA与v AB,以下正确的说法是()。
A、大小相等,方向也相同B、大小相等,方向不同C、大小不相等,方向相同D、大小不相等,方向也不同三、计算题(15 分)如图三所示,左半拱AC D、横梁DE、右半拱EGB的自重均不计,三者铰接成桥梁结构,A、B为固定铰支座,D、E为中间铰,C为可动铰支座。
铅直向下的集中荷载P=300 kN,Q=350 kN,图中尺寸单位为米。
求结构平衡时A、C、D、E处的约束反力。
四、计算题(15 分)如图四所示结构由杆A B 、BC 和CD 铰接而成中,不计各杆自重,B 、C 处为光滑铰链,已知力偶矩M=20kN.m, P=10kN ,q=10 kN/m 。
求固定端A 与固定铰支座D 的约束反力。
q图四五、计算题(14分)在图五所示,均质圆盘A 质量为m ,半径为R ,置于倾角为300的斜面上,今在圆盘中心A 系一与斜面平行的细绳,绳绕过一质量为m ,半径为R 的滑轮O (视为均质圆盘)与质量也为m 的物块C 相连,物块C 与固定水平面间的滑动摩擦因数为0.1,在重力作用下,系统由静止开始运动,圆盘A 向下做纯滚动。
求:(1)物块C 的加速度; (2)圆盘A 所受的摩擦力;(3)轮O两边绳AB段和BC段的拉力。
图五2010 ~2011 学年度第二学期《理论力学》试卷( A 卷)一、填空题(每小题 4 分,共28 分)1、[三基类],F2、[三基类]2Ma,3a3、[三基类]Lω,2L ω24、12m v B2,34m v B25、3g/2L,3g/2L6、[三基类]0,37、二、单项选择题(每题 4 分,共28分)1、[三基类] A2、[三基类]C3、[三基类] B4、[三基类] A,D5、[三基类] A 6、[三基类] A 7、[三基类] B三、计算题(15 分)[三基类]Q解:(1)以DE 为研究对象,受力如图:(8分)∑M E =0,-F D y ×7+Q ×2=0 F D y =100 kN ∑xF =0, F D x - F E ×cos450=0 F D x =250kN∑yF =0, F D y +F E ×sin450-Q =0 F E =250 kN(2)以ACD 为研究对象,受力如图:(7分)∑M A =0, F D x ×5-F D y ×5-P ×1-F C ×5=0 F C =90kN∑xF =0, F A x - F D x - F C =0 F A x =160 kN∑yF =0, F A y -F D y -P =0 F A y =400 kN四、计算题(15 分)[一般综合型]][教师答题时间: 8 分钟]……xBxDxFqDxq解:(1)以BC 、CD 杆为研究对象,受力如图:(4分)结构对称:F By = F Dy = q ×2=20kN F Bx = F Dx (2)以CD 杆为研究对象,受力如图:(4分)∑M C =0, F Dy ×2- F Dx ×2-q ×2 ×1=0,F Dx =10 kN(3)以AB 为研究对象,受力如图:(7分)∑M A =0, M A -F By ×2-M -P ×1=0 ∑xF =0, F Ax -F Bx =0∑yF =0, F Ay - F By -P =0F Ax =10 kN F Ay =30 kN M A = 70kN.m五、计算题(14分)F答:1、用动能定理计算轮A 下降路程s 时的物块C 的速度和加速度v 、a (6分)以系统为研究对象, 轮A 作纯滚动。
重力作功:i W ∑=m g.s. sin300-m gf.s = 0.4 m g.s计算系统的动能:T 1=0T 2=12 mv 2+12J o ω2+34.mv 2=23mv 2其中:J o =12mR 2 ω=R v(3)按动能定理:T 2- T 1= i W ∑23mv 2= 0.4 m g.s 两边对时间求导:a = 152g2、用刚体平面运动方程计算轮A 所受的摩擦力F f :(4分)J A αA =F f .R ,J A =21m R 2, αC =Ra F f =151m g 3、计算绳子两边的拉力F AB 、F BC (4分)物体C :F BC -m gf =m a , F BC =307m g 轮O :F AB .R -F BC .R =J o αo , αo =R a F AB = 103m g2010 ~2011 学年度第 二 学期《 理论力学 》试卷(B 卷)一、填空题(每小题 4 分,共 28分)1、如图1.1所示刚架,已知水平力F ,则支座A 的约束反力F A =( );支座B 的约束反力F B =( )。
2、图1.2中F 1和F 2分别作用于A 、B 两点,且F 1、F 2与C 点共面,则在A 、B 、C 三点中( )点加一适当大小的力使系统平衡;加一适当大小的力偶能使系统平衡吗( )。
1.1 1.23、圆盘做定轴转动,轮缘上一点M 的加速度a 分别有图示三种情况.则在该三种情况下,( )圆盘的角速度ω=0,( )圆盘的角加速度α=0。
MMA B C1.34、质量为m,半径为R的均质圆盘可绕通过边缘O点且垂直于盘面的水平轴转动,设圆盘从最高位置无初速度的开始绕O轴转动,如图1.4所示。
求当圆盘运动至图示位置,即圆盘中心C和轴O的连线通过水平位置时圆盘的角速度ω=()和角加速度 =()。
5、如图1.5物体A重10N,与斜面间摩擦因数为0.4,物体B重5N,则物体A 与斜面间摩擦力的大小为(),方向为()。
A1.51.46、已知物块B以匀速度v水平向左运动,图1.6示瞬时物块B与杆OA的中点相接触,OA长L。
如以物块B上的角点C为动点,动系建立在OA杆上,则该瞬时杆OA的角速度ω=(),杆端A点的速度大小v A=(),科氏加速度aC=()。
7、直角曲杆ABC在如图1.7所示平面内可绕O轴转动,已知某瞬时A点加速度aA=5 m/s2,方向如图,则该瞬时曲杆的角速度ω=()rad/s,角加速度α=( )rad/s 2。
AA1.6 1.7二、单项选择题(每小题 4 分,共28 分)1、已知F 1、F2、F3、F 4为作用于刚体上的平面汇交力系,其力矢关系如图2.1所示为平行四边形,由此可知( )。
A 、力系可合成为一个力偶B 、力系可合成一个力C 、 力系可简化为一个力和一个力偶D 、力系的合力为零,力系平衡 2、如图2.2所示均质细杆重为P ,A 端为固定铰支座,B 端用绳子跨过不计摩擦和质量的滑轮C 后与一重为Q 的物体相连,AB=AC 。