福建省永安市第一中学下册机械能守恒定律单元测试题(Word版 含解析)
- 格式:doc
- 大小:639.00 KB
- 文档页数:17
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。
图中SD 水平,位置R 和Q 关于S 对称。
现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。
下列关于小环C 下落过程中的描述正确的是( )A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒B .小环C 下落到位置S 时,小环C 的机械能一定最大C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos 2θ【答案】BD 【解析】 【分析】 【详解】A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误;B .小环C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确;C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C 错误;D .在Q 位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有cos C T m g θ=对A 、B 整体,根据平衡条件有2A T m g =故2cos C A m m θ=在Q 点将小环v速度分解可知cos A v v θ=根据动能212k E mv =可知,物体A 与小环C 的动能之比为 221cos 2122A A Ak kQC m v E E m v θ== 选项D 正确。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。
图中SD 水平,位置R 和Q 关于S 对称。
现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。
下列关于小环C 下落过程中的描述正确的是( )A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒B .小环C 下落到位置S 时,小环C 的机械能一定最大C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos 2θ【答案】BD 【解析】 【分析】 【详解】A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误;B .小环C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确;C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C 错误;D .在Q 位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有cos C T m g θ=对A 、B 整体,根据平衡条件有2A T m g =故2cos C A m m θ=在Q 点将小环v速度分解可知cos A v v θ=根据动能212k E mv =可知,物体A 与小环C 的动能之比为 221cos 2122A A Ak kQC m v E E m v θ== 选项D 正确。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块A 和C ,物块C 穿在竖直固定的细杆上,OA 竖直,OC 间距l =3m 且水平,此时A 、C 间轻绳刚好拉直而无作用力。
已知物块A 、B 、C 质量均力2 kg 。
不计一切阻力和摩擦,g 取10m/s 2。
现将物块C 由静止释放,下滑h =4m 时物块B 刚好被提起,下列说法正确的是A .弹簧的劲度系数为20 N/mB .此过程中绳子对物块A 做的功为60JC .此时物块A 速度的大小为10m/s 41D .绳子对物块C 做功的大小等于物块A 动能的增加量 【答案】AC 【解析】 【详解】A .初始时弹簧处于压缩状态,弹力等于A 的重力。
B 刚好被提起时,弹簧处于伸长状态,弹簧的弹力等于B 的重力。
由几何关系得,弹簧共伸长了2m 。
物块B 刚好被提起时弹簧的的形变量为:25m 3m x =- kx mg =解得弹簧的劲度系数为:20N/m k =故A 正确。
BC .物块C 沿杆下滑的速度分解在沿绳子的方向和垂直的方向,当物块B 刚好被提起时:cos37A o C v v =B 的速度为零,弹簧由压缩变为伸长,形变量不变,储存的弹性势能始末两个状态相等,由整个系统动能定理得:2211222A C mgh mg x mv mv -=+ 解得:A 108m/s 41v =所以C 正确。
对于A 物体,由动能定理得:2122A W mg x mv -=解得:640(40)41W J =+故B 错误。
D .对C 由动能定理得:212T C mgh W mv -=解得绳子对C 做的功为:2110002280(80)24141T C W mgh mv J J =-=-=物块A 动能的增加量:21640241KA A E mv J ∆== 所以绳子对物块C 做功的大小不等于物块A 动能的增加量。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块A 和C ,物块C 穿在竖直固定的细杆上,OA 竖直,OC 间距l =3m 且水平,此时A 、C 间轻绳刚好拉直而无作用力。
已知物块A 、B 、C 质量均力2 kg 。
不计一切阻力和摩擦,g 取10m/s 2。
现将物块C 由静止释放,下滑h =4m 时物块B 刚好被提起,下列说法正确的是A .弹簧的劲度系数为20 N/mB .此过程中绳子对物块A 做的功为60JC .此时物块A 速度的大小为10m/s 41D .绳子对物块C 做功的大小等于物块A 动能的增加量 【答案】AC 【解析】 【详解】A .初始时弹簧处于压缩状态,弹力等于A 的重力。
B 刚好被提起时,弹簧处于伸长状态,弹簧的弹力等于B 的重力。
由几何关系得,弹簧共伸长了2m 。
物块B 刚好被提起时弹簧的的形变量为:25m 3m x =- kx mg =解得弹簧的劲度系数为:20N/m k =故A 正确。
BC .物块C 沿杆下滑的速度分解在沿绳子的方向和垂直的方向,当物块B 刚好被提起时:cos37A o C v v =B 的速度为零,弹簧由压缩变为伸长,形变量不变,储存的弹性势能始末两个状态相等,由整个系统动能定理得:2211222A C mgh mg x mv mv -=+ 解得:A 108m/s 41v =所以C 正确。
对于A 物体,由动能定理得:2122A W mg x mv -=解得:640(40)41W J =+故B 错误。
D .对C 由动能定理得:212T C mgh W mv -=解得绳子对C 做的功为:2110002280(80)24141T C W mgh mv J J =-=-=物块A 动能的增加量:21640241KA A E mv J ∆== 所以绳子对物块C 做功的大小不等于物块A 动能的增加量。
一、第八章机械能守恒定律易错题培优(难)1.如图所示,两个质量均为m的小滑块P、Q通过铰链用长为L的刚性轻杆连接,P套在固定的竖直光滑杆上,Q放在光滑水平地面上,轻杆与竖直方向夹角α=30°.原长为2L的轻弹簧水平放置,右端与Q相连,左端固定在竖直杆O点上。
P由静止释放,下降到最低点时α变为60°.整个运动过程中,P、Q始终在同一竖直平面内,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g。
则P下降过程中()A.P、Q组成的系统机械能守恒B.P、Q的速度大小始终相等C31-mgLD.P达到最大动能时,Q受到地面的支持力大小为2mg【答案】CD【解析】【分析】【详解】A.根据能量守恒知,P、Q、弹簧组成的系统机械能守恒,而P、Q组成的系统机械能不守恒,选项A错误;B.在下滑过程中,根据速度的合成与分解可知cos sinP Qv vαα=解得tanPQvvα=由于α变化,故P、Q的速度大小不相同,选项B错误;C.根据系统机械能守恒可得(cos30cos60)PE mgL=︒-︒弹性势能的最大值为312PE mgL=选项C正确;D.P由静止释放,P开始向下做加速度逐渐减小的加速运动,当加速度为零时,P的速度达到最大,此时动能最大,对P、Q和弹簧组成的整体受力分析,在竖直方向,根据牛顿第二定律可得200N F mg m m -=⨯+⨯解得F N =2mg选项D 正确。
故选CD 。
2.在机场和火车站对行李进行安全检查用的水平传送带如图所示,当行李放在匀速运动的传送带上后,传送带和行李之间的滑动摩擦力使行李开始运动,随后它们保持相对静止,行李随传送带一起匀速通过检测仪检查,设某机场的传送带匀速前进的速度为0.4 m/s ,某行李箱的质量为5 kg ,行李箱与传送带之间的动摩擦因数为0.2,当旅客把这个行李箱小心地放在传送带上的A 点,已知传送带AB 两点的距离为1.2 m ,那么在通过安全检查的过程中,g 取10 m/s 2,则 ( ).A .开始时行李箱的加速度为0.2 m/s 2B .行李箱从A 点到达B 点时间为3.1 sC .传送带对行李箱做的功为0.4 JD .传送带上将留下一段摩擦痕迹,该痕迹的长度是0.04 m【答案】BCD【解析】【分析】【详解】行李开始运动时由牛顿第二定律有:μmg=ma ,所以得:a="2" m/s 2,故A 错误;物体加速到与传送带共速的时间10.40.22v t s s a ===,此时物体的位移:110.042x vt m ==,则物体在剩下的x 2=1.2m-0.04m=1.96m 内做匀速运动,用时间22 2.9x t s v ==,则行李箱从A 点到达B 点时间为t=t 1+t 2="3.1" s ,选项B 正确;行李最后和传送带最终一起匀速运动,根据动能定理知,传送带对行李做的功为:W=12mv 2="0.4" J ,故C 正确;在传送带上留下的痕迹长度为:0.04?22vt vt s vt m =-==,故D 正确.故选BCD .3.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块A 和C ,物块C 穿在竖直固定的细杆上,OA 竖直,OC 间距l =3m 且水平,此时A 、C 间轻绳刚好拉直而无作用力。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块A 和C ,物块C 穿在竖直固定的细杆上,OA 竖直,OC 间距l =3m 且水平,此时A 、C 间轻绳刚好拉直而无作用力。
已知物块A 、B 、C 质量均力2 kg 。
不计一切阻力和摩擦,g 取10m/s 2。
现将物块C 由静止释放,下滑h =4m 时物块B 刚好被提起,下列说法正确的是A .弹簧的劲度系数为20 N/mB .此过程中绳子对物块A 做的功为60JC .此时物块A 速度的大小为10m/s 41D .绳子对物块C 做功的大小等于物块A 动能的增加量 【答案】AC 【解析】 【详解】A .初始时弹簧处于压缩状态,弹力等于A 的重力。
B 刚好被提起时,弹簧处于伸长状态,弹簧的弹力等于B 的重力。
由几何关系得,弹簧共伸长了2m 。
物块B 刚好被提起时弹簧的的形变量为:25m 3m x =- kx mg =解得弹簧的劲度系数为:20N/m k =故A 正确。
BC .物块C 沿杆下滑的速度分解在沿绳子的方向和垂直的方向,当物块B 刚好被提起时:cos37A o C v v =B 的速度为零,弹簧由压缩变为伸长,形变量不变,储存的弹性势能始末两个状态相等,由整个系统动能定理得:2211222A C mgh mg x mv mv -=+ 解得:A 108m/s 41v =所以C 正确。
对于A 物体,由动能定理得:2122A W mg x mv -=解得:640(40)41W J =+故B 错误。
D .对C 由动能定理得:212T C mgh W mv -=解得绳子对C 做的功为:2110002280(80)24141T C W mgh mv J J =-=-=物块A 动能的增加量:21640241KA A E mv J ∆== 所以绳子对物块C 做功的大小不等于物块A 动能的增加量。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。
图中SD 水平,位置R 和Q 关于S 对称。
现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。
下列关于小环C 下落过程中的描述正确的是( )A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒B .小环C 下落到位置S 时,小环C 的机械能一定最大C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos 2θ【答案】BD 【解析】 【分析】 【详解】A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误;B .小环C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确;C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C 错误;D .在Q 位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有cos C T m g θ=对A 、B 整体,根据平衡条件有2A T m g =故2cos C A m m θ=在Q 点将小环v速度分解可知cos A v v θ=根据动能212k E mv =可知,物体A 与小环C 的动能之比为 221cos 2122A A Ak kQC m v E E m v θ== 选项D 正确。
一、第八章机械能守恒定律易错题培优(难)1.如图所示,两个质量均为m的小滑块P、Q通过铰链用长为L的刚性轻杆连接,P套在固定的竖直光滑杆上,Q放在光滑水平地面上,轻杆与竖直方向夹角α=30°.原长为2L的轻弹簧水平放置,右端与Q相连,左端固定在竖直杆O点上。
P由静止释放,下降到最低点时α变为60°.整个运动过程中,P、Q始终在同一竖直平面内,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g。
则P下降过程中()A.P、Q组成的系统机械能守恒B.P、Q的速度大小始终相等C31-mgLD.P达到最大动能时,Q受到地面的支持力大小为2mg【答案】CD【解析】【分析】【详解】A.根据能量守恒知,P、Q、弹簧组成的系统机械能守恒,而P、Q组成的系统机械能不守恒,选项A错误;B.在下滑过程中,根据速度的合成与分解可知cos sinP Qv vαα=解得tanPQvvα=由于α变化,故P、Q的速度大小不相同,选项B错误;C.根据系统机械能守恒可得(cos30cos60)PE mgL=︒-︒弹性势能的最大值为312PE mgL=选项C正确;D.P由静止释放,P开始向下做加速度逐渐减小的加速运动,当加速度为零时,P的速度达到最大,此时动能最大,对P、Q和弹簧组成的整体受力分析,在竖直方向,根据牛顿第二定律可得200N F mg m m -=⨯+⨯解得F N =2mg选项D 正确。
故选CD 。
2.如图甲所示,质量为4kg 的物块A 以初速度v 0=6m/s 从左端滑上静止在粗糙水平地面上的木板B 。
已知物块A 与木板B 之间的动摩擦因数为μ1,木板B 与地面之间的动摩擦因数为μ2,A 、B 运动过程的v -t 图像如图乙所示,A 始终未滑离B 。
则( )A .μ1=0.4,μ2=0.2B .物块B 的质量为4kgC .木板的长度至少为3mD .A 、B 间因摩擦而产生的热量为72J【答案】BC 【解析】 【分析】 【详解】A .以物块为研究对象有11ma mg μ=由图看出214m/s a =,可得10.4μ=将物块和木板看成一个整体,在两者速度一致共同减速时,有22M m a M m g μ+=+()()由图看出221m/s a =,可得20.1μ=选项A 错误;B .木板和物块达到共同速度之前的加速度,对木板有123()mg M m g Ma μμ-+=由图看出232m/s a =,解得4kg M =选项B 正确;C .由v -t 图看出物块和木板在1s 内的位移差为3m ,物块始终未滑离木板,故木板长度至少为3m ,选项C 正确;D .A 、B 的相对位移为s =3m ,因此摩擦产热为148J Q mgs μ==选项D 错误。
一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确; 故选ACD 。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,一根轻弹簧一端固定于O 点,另一端与可视为质点的小滑块连接,把滑块放在倾角为θ=30°的固定光滑斜面上的A 点,此时弹簧恰好水平。
将滑块从A 点由静止释放,经B 点到达位于O 点正下方的C 点。
当滑块运动到B 点时弹簧与斜面垂直,且此时弹簧恰好处于原长。
已知OB 的距离为L ,弹簧始终在弹性限度内,重力加速度为g ,则滑块由A 运动到C 的过程中( )A .滑块的加速度先减小后增大B .滑块的速度一直在增大C .滑块经过B gLD .滑块经过C 2gL 【答案】BC 【解析】 【分析】 【详解】AB .弹簧原长为L ,在A 点不离开斜面,则sin 3()sin c 3300os 0Lk mg L ︒≤-︒︒ 在C 点不离开斜面,则有()cos30cos30cos30Lk L mg -︒≤︒︒从A 点滑至C 点,设弹簧与斜面夹角为α(范围为30°≤α≤90°);从B 点滑至C 点,设弹簧与斜面的夹角为β,则2sin 30cos mg kx ma β︒-=可知下滑过程中加速度一直沿斜面向下且减小,选项A 错误,B 正确; C .从A 点滑到B 点,由机械能守恒可得21cos302p B mgL E mv ︒+=解得2cos30232p p B E E v gL g mg L L m︒+=+=>选项C 正确;D .从A 点滑到C 点,由机械能守恒可得21cos302P C L mgE mv '+=︒解得432222cos303p pCgLE ELv g gLm m'=+>+︒=选项D错误。
故选BC。
2.一辆小汽车在水平路面上由静止启动,在前5s内做匀加速直线运动,5s末达到额定功率,之后保持以额定功率运动,其v t-图象如图所示.已知汽车的质量为3110kgm=⨯,汽车受到地面的阻力为车重的0.1倍,则以下说法正确的是()A.汽车在前5s内的牵引力为3510N⨯B.汽车速度为25m/s时的加速度为25m/s C.汽车的额定功率为100kW D.汽车的最大速度为80m/s【答案】AC【解析】【分析】【详解】A.由速度时间图线知,匀加速运动的加速度大小2220m/s4m/s5a==根据牛顿第二定律得F f ma-=解得牵引力1000N4000N5000NF f ma=+=+=选项A正确;BC.汽车的额定功率500020W100000W100kWP Fv==⨯==汽车在25m/s时的牵引力100000'N4000N25PFv===根据牛顿第二定律得加速度22'40001000'm/s3m/s1000F fam--===选项B错误,C正确;D.当牵引力等于阻力时,速度最大,则最大速度100000m/s 100m/s 1000m P v f === 选项D 错误。
一、第八章机械能守恒定律易错题培优(难)1.如图所示,两个质量均为m的小滑块P、Q通过铰链用长为L的刚性轻杆连接,P套在固定的竖直光滑杆上,Q放在光滑水平地面上,轻杆与竖直方向夹角α=30°.原长为2L的轻弹簧水平放置,右端与Q相连,左端固定在竖直杆O点上。
P由静止释放,下降到最低点时α变为60°.整个运动过程中,P、Q始终在同一竖直平面内,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g。
则P下降过程中()A.P、Q组成的系统机械能守恒B.P、Q的速度大小始终相等C31-mgLD.P达到最大动能时,Q受到地面的支持力大小为2mg【答案】CD【解析】【分析】【详解】A.根据能量守恒知,P、Q、弹簧组成的系统机械能守恒,而P、Q组成的系统机械能不守恒,选项A错误;B.在下滑过程中,根据速度的合成与分解可知cos sinP Qv vαα=解得tanPQvvα=由于α变化,故P、Q的速度大小不相同,选项B错误;C.根据系统机械能守恒可得(cos30cos60)PE mgL=︒-︒弹性势能的最大值为312PE mgL=选项C正确;D.P由静止释放,P开始向下做加速度逐渐减小的加速运动,当加速度为零时,P的速度达到最大,此时动能最大,对P、Q和弹簧组成的整体受力分析,在竖直方向,根据牛顿第二定律可得200N F mg m m -=⨯+⨯解得F N =2mg选项D 正确。
故选CD 。
2.如图所示,两质量都为m 的滑块a ,b (为质点)通过铰链用长度为L 的刚性轻杆相连接,a 套在竖直杆A 上,b 套在水平杆B 上两根足够长的细杆A 、B 两杆分离不接触,且两杆间的距离忽略不计。
将滑块a 从图示位置由静止释放(轻杆与B 杆夹角为30°),不计一切摩擦,已知重力加速度为g 。
在此后的运动过程中,下列说法中正确的是( )A .滑块a 和滑块b 所组成的系统机械能守恒B .滑块b 的速度为零时,滑块a 的加速度大小一定等于gC .滑块b 3gLD .滑块a 2gL【答案】AC 【解析】 【分析】 【详解】A .由于整个运动过程中没有摩擦阻力,因此机械能守恒,A 正确;B .初始位置时,滑块b 的速度为零时,而轻杆对滑块a 有斜向上的推力,因此滑块a 的加速度小于g ,B 错误;C .当滑块a 下降到最低点时,滑块a 的速度为零,滑块b 的速度最大,根据机械能守恒定律o 21(1sin 30)2b mgL mv +=解得3b v gL =C 正确;D .滑块a 最大速度的位置一定在两杆交叉点之下,设该位置杆与水平方向夹角为θ 根据机械能守恒定律o 2211(sin 30sin )22a b mgL mv mv θ+=+ 而两个物体沿杆方向速度相等cos sin b a v v θθ=两式联立,利用三角函数整理得212(sin )cos 2a v gL θθ=+利用特殊值,将o =30θ 代入上式可得.521a v gL gL =>因此最大值不是2gL ,D 错误。
故选AC 。
3.如图甲所示,质量为4kg 的物块A 以初速度v 0=6m/s 从左端滑上静止在粗糙水平地面上的木板B 。
已知物块A 与木板B 之间的动摩擦因数为μ1,木板B 与地面之间的动摩擦因数为μ2,A 、B 运动过程的v -t 图像如图乙所示,A 始终未滑离B 。
则( )A .μ1=0.4,μ2=0.2B .物块B 的质量为4kgC .木板的长度至少为3mD .A 、B 间因摩擦而产生的热量为72J【答案】BC 【解析】 【分析】 【详解】A .以物块为研究对象有11ma mg μ=由图看出214m/s a =,可得10.4μ=将物块和木板看成一个整体,在两者速度一致共同减速时,有22M m a M m g μ+=+()()由图看出221m/s a =,可得20.1μ=选项A错误;B.木板和物块达到共同速度之前的加速度,对木板有123()mg M m g Maμμ-+=由图看出232m/sa=,解得4kgM=选项B正确;C.由v-t图看出物块和木板在1s内的位移差为3m,物块始终未滑离木板,故木板长度至少为3m,选项C正确;D.A、B的相对位移为s=3m,因此摩擦产热为148JQ mgsμ==选项D错误。
故选BC。
4.如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动,不计摩擦,a、b可视为质点,重力加速度大小为,则A.a减少的重力势能等于b增加的动能B.轻杆对b一直做正功,b的速度一直增大C.当a运动到与竖直墙面夹角为θ时,a、b的瞬时速度之比为tanθD.a落地前,当a的机械能最小时,b对地面的压力大小为mg【答案】CD【解析】【分析】【详解】ab构成的系统机械能守恒,a减少的重力势能大于b增加的动能.当a落到地面时,b的速度为零,故b先加速后减速.轻杆对b先做正功,后做负功.由于沿杆方向的速度大小相等,则cos sina bv vθθ=故tanabvvθ=当a的机械能最小时,b动能最大,此时杆对b作用力为零,故b对地面的压力大小为mg .综上分析,CD 正确,AB 错误; 故选CD .5.在一水平向右匀速传输的传送带的左端A 点,每隔T 的时间,轻放上一个相同的工件,已知工件与传送带间动摩擦因素为,工件质量均为m ,经测量,发现后面那些已经和传送带达到相同速度的工件之间的距离为x ,下列判断正确的有A .传送带的速度为x TB .传送带的速度为22gx μC .每个工件与传送带间因摩擦而产生的热量为12mgx μ D .在一段较长的时间内,传送带因为传送工件而将多消耗的能量为23mtx T【答案】AD 【解析】 【分析】 【详解】A .工件在传送带上先做匀加速直线运动,然后做匀速直线运动,每个工件滑上传送带后运动的规律相同,可知x =vT ,解得传送带的速度v =xT.故A 正确; B .设每个工件匀加速运动的位移为x ,根据牛顿第二定律得,工件的加速度为μg ,则传送带的速度2v gx μ=s 与x 的关系.故B 错误; C .工件与传送带相对滑动的路程为22222v v x x v g g gT μμμ∆=-=则摩擦产生的热量为Q =μmg △x =222mx T故C 错误;D .根据能量守恒得,传送带因传送一个工件多消耗的能量22212mx E mv mg x Tμ=+∆=在时间t 内,传送工件的个数fW E η=则多消耗的能量23mtx E nE T'==故D 正确。
故选AD 。
6.如图所示,轻质弹簧一端固定在水平面上O 点的转轴上,另一端与一质量为m 、套在粗糙固定直杆A 处的小球(可视为质点)相连,直杆的倾角为30°,OA =OC ,B 为AC 的中点,OB 等于弹簧原长.小球从A 处由静止开始下滑,初始加速度大小为a A ,第一次经过B 处的速度为v ,运动到C 处速度为0,后又以大小为a C 的初始加速度由静止开始向上滑行.设最大静摩擦力等于滑动摩擦力.下列说法正确的是A .小球可以返回到出发点A 处B .弹簧具有的最大弹性势能为22mvC .撤去弹簧,小球可以静止在直杆上任意位置D .a A -a C =g 【答案】BD 【解析】 【分析】 【详解】AB.设小球从A 运动到B 的过程克服摩擦力做功为f W ,AB 间的竖直高度为h ,小球的质量为m ,弹簧具有的最大弹性势能为p E .根据能量守恒定律,对于小球A 到B 的过程有: 212p f mgh E mv W +=+A 到C 的过程有:22p f p mgh E W E +=+解得:212f p W mgh E mv ==, 小球从C 点向上运动时,假设能返回到A 点,由能量守恒定律得:22p f p E W mgh E =++该式违反了能量守恒定律,可知小球不能返回到出发点A 处.故A 错误,B 正确. C.设从A 运动到C 摩擦力的平均值为f ,AB =s ,由:f W mgh =得:sin 30f s mgs =解得:sin 30f mg =在B 点,摩擦力cos30f mg μ=,由于弹簧对小球有拉力(除B 点外),小球对杆的压力大于cos30mg μ,所以:cos30f mg μ>可得:sin 30cos30mg mg μ>因此撤去弹簧,小球不能在直杆上处于静止.故C 错误. D.根据牛顿第二定律得,在A 点有:cos30sin 30A F mg f ma +-=在C 点有:cos30sin 30C F f mg ma --=两式相减得:A C a a g -=故D 正确.7.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块A 和C ,物块C 穿在竖直固定细杆上,OA 竖直,OC 间距3m l =且水平,此时A 、C 间轻绳恰好拉直而无张力作用。
已知物块A 、B 、C 质量均为2kg 。
不计一切摩擦,g 取10m/s 2.现将物块C 由静止释放,下滑h =4m 时物块B 刚好被提起,下列说法正确的是( )A .弹簧劲度系数为20N/mB .此过程中A 、C 组成的系统机械能总和一直不变 C .此时物块C 的速度大小为108m/s 41 D .此时物块A 的速度大小为108m/s 41【答案】AD 【解析】【分析】 【详解】A .初态时,弹簧的压缩量1mgx k=根据勾股定理可知,C 下降h =4m 时,A 物体上升了2m ,根据题意可知2kx mg =122x x +=整理可得121m x x ==,20N/m k =A 正确;B .物体C 开始下降时,弹簧处于压缩状态,弹力对物体A 做正功,系统机械能增加,后来弹簧处于伸长状态,弹力对物体A 做负功,系统的机械能减小,B 错误;CD .由于弹簧的伸长量与压缩量相等,整个过程弹簧对A 物体做功等于零,因此A 、C 组成的系统,初态的机械能与末态的机械能相等22A C 1211()22mgh mv mv mg x x =+++ 设绳子与竖直方向夹角为θ ,由于A 、C 沿着绳的速度相等C A cos v v θ=且4cos 5h l θ==整理得C 1010m/s 41v =,A 108m/s 41v =C 错误,D 正确。
故选AD 。
8.如图甲所示,质量为0.1 kg 的小球沿光滑的水平轨道从A 冲入竖直放置在水平地面上、半径为0.9 m 的圆轨道,小球从A 运动到C 的过程中其速度的平方与其高度的关系图象如图乙所示.已知小球恰能到达最高点C ,运动一周后从A 点离开圆轨道,圆轨道粗糙程度处处相同,空气阻力不计.g 取10 m/s 2,B 为AC 轨道中点.下列说法正确的是( )A .图乙中x 的数值为9B .小球从从A 点离开圆轨道时的动能为1.30JC .小球从A 到C 合外力对其做的功为-2.75JD .小球从B 到C 损失了0.475 J 的机械能 【答案】AC 【解析】 【分析】 【详解】A.图乙中的点(1.8,)x 表示小球到达C 点速度的平方为x ;小球恰能到达最高点C ,则有:xmg m r=,代入数据得:x =9,故A 正确B.物体从A 到C 的过程根据动能定理可知2211222f C A W mg R mv mv --=-,解得0.95J f W =若从C 再次运动到A 克服摩擦力做功和从A 到C 一样,则再次回到A 时的动能为212 1.30J 2k A f E mv W =-= ,但由于下降过程中的平均阻力小于上升过程中的平均阻力,所以再次回到A 点时的动能大于1.30J ,故B 错误C. 根据动能定理可知小球从A 到C 合外力对其做的功为2211 2.75J 22C A W mv mv =-=-故C 正确D.根据功能关系可知小球从A 到C 损失的机械能为0.95J f W =,若摩擦力做功恒定,则从小球从B 到C 损失了0.475 J 的机械能,但由于从A 到B 的平均摩擦力大于从B 到C 的平均摩擦力,所以从B 到C 损失的机械能小于0.475 J ,故D 错误;9.如图所示,一轻绳系着可视为质点的小球在竖直平面内做圆周运动,已知绳长为l ,重力加速度为g ,小球在最低点Q 的速度为v 0,忽略空气阻力,则( )A .若小球恰好通过最高点,速度大小刚好为0B .小球的速度v 0越大,则在P 、Q 两点绳对小球的拉力差越大C .当06v gl >PD .当0v gl <【答案】CD 【解析】 【分析】本题小球做变速圆周运动,在最高点和最低点重力和拉力的合力提供向心力,同时结合动能定理列式研究。