当前位置:文档之家› 实验八 方波发生器的产生

实验八 方波发生器的产生

实验八 方波发生器的产生
实验八 方波发生器的产生

黄淮学院机械与能源工程学院单片机应用技术课程报告

5、软件程序设计

(2)程序清单

#include //定义8051寄存器头文件

#define WAVE P2 //定义输出端口void service_t0(void) interrupt 1 using 1 {

TH0=(65536-2000)/256;

TL0=(65536-2000)%256;

WAVE=~WAVE;}

main( ) // 主程序开始{

2)性能指标测试及结果分析测试结果:

方波发生器

方波发生器 一、实验目的 (1)用555设计一个频率为1k占空比为50%的方波发生器。 (2)设计截止频率为1.6K的一阶RC低通滤波对(1)中的方波进行滤波。 二、实验原理 1、555定时器的电路结构与功能 555定时器是一种多用途的数字——模拟混合集成电路,利用它能既方便地构成施密特触发器、单稳态触发器和多谐振荡器。由于使用灵活、方便,所以555定时器在波形的产生与变换、测量与控制、家用电器、电子玩具等许多领域中都得到了广泛的应用。 555电路由电阻分压器、电压比较器、基本RS触发器、放电管和输

出缓冲器5个部分组成。基本RS触发器的输出状态受比较器C1、C2的输出端控制。 用555定时器设计方波发生器,其基本单元为施密特触发器。施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。在输入信号从低电平上升到高电平的过程中使电路状态发生变化的输入电压称为正向阈值电压,在输入信号从高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压。正向阈值电压与负向阈值电压之差称为回差电压。利用施密特触发器状态转换过程中的正反馈作用,可以把边沿变化缓慢的周期性信号变换为边沿很陡的矩形脉冲信号。输入的信号只要幅度大于vt+,即可在施密特触发器的输出端得到同等频率的矩形脉冲信号。当输入电压由低向高增加,到达V+时,输出电压发生突变,而输入电压Vi由高变低,到达V-,输出电压发生突变,因而出现输出电压变化滞后的现象,可以看出对于要求一定延迟启动的电路,它是特别适用的.

由于比较器C1和C2的参考电压不同,因而SR锁存器的置0信号和置1信号必然发生在输入信号的不同电平。因此,输出电压V0由高电平变为低电平和由低电平变为高电平所对应的VI也不同,这样就构成了施密特触发特性。只要将555定时器的V I1和V I2两个输入端连在一起作为信号输入端,即可得到施密特触发器。 用555定时器设计方波发生器,可以先把它接成施密特触发器,再把施密特触发器的反相输出端经RC积分电路接回到它的输入端。555设计方波信号发生器如图所示 R T C

模拟电子电路课程设计正弦波三角波方波函数发生器样本

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题目: 正弦波-三角波-方波函数发生器 初始条件: 具备模拟电子电路的理论知识; 具备模拟电路基本电路的设计能力; 具备模拟电路的基本调试手段; 自选相关电子器件; 能够使用实验室仪器调试。 要求完成的主要任务: ( 包括课程设计工作量及其技术要求, 以及说明书撰写等具体要求) 1、频率范围三段: 10~100Hz, 100 Hz~1KHz, 1 KHz~10 KHz; 2、正弦波Uopp≈3V, 三角波Uopp≈5V, 方波Uopp≈14V; 3、幅度连续可调, 线性失真小; 4、安装调试并完成符合学校要求的设计说明书 时间安排: 一周, 其中3天硬件设计, 2天硬件调试 指导教师签名: 年月日 系主任( 或责任教师) 签名: 年月日

目录 1.综述...........................................................1 1.1信号发生器概论...................................................1 1.2 Multisim简介....................................................2 1.3集成运放lm324简介...............................................3 2.方案设计与论证...............................................4 2.1方案一...................................................4 2.2方案二..................................................4 2.3方案三..................................................5 3.单元电路设计..............................................6

电路实验二实验报告仪器仪表的使用

电路实验二实验报告 实验题目:仪器仪表的使用 实验内容: 1.熟悉示波器和函数信号发生器的使用; 2.测量示波器自带的校准信号; 3.用示波器测量函数信号发生器提供的正弦波、三角波和方波; 4.在面包板上搭接一个积分电路,用示波器观测其波形。 实验环境: 示波器DS1052E,函数发生器EE1641D,面包板SYB-130。 实验原理: 1.示波器是一种用途十分广泛的电子测量仪器。把肉眼看不见的电信号变换成看得见的 图象,便于研究各种电现象的变化过程。利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,产生细小的光点。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。 2.函数发生器是一种多波形的信号源。它可以产生正弦波、方波、三角波、锯齿波,甚

至任意波形。有的函数发生器还具有调制的功能,可以进行调幅、调频、调相、脉宽调制和VCO控制。 3.面包板是专为电子电路的无焊接实验设计制造的。由于各种电子元器件可根据需要随 意插入或拔出,免去了焊接,节省了电路的组装时间,而且元件可以重复使用,所以非常适合电子电路的组装、调试和训练。 实验记录及结果分析: 1.示波器自带的校准信号: 2.函数发生器提供正弦波: 3.函数发生器提供的方波: 最大值:2.40V 最小值:-2.64V 峰峰值:5.04V 频率:2.016kHz 周期:496.0μs 占空比:48.0% 4.函数发生器提供的三角波: 最大值:2.40V 最小值:-2.64V 峰峰值:5.04V 频率:2.016kHz 周期:496.0μs 实验总结: 示波器能够产生波形,把肉眼看不见的电信号转为我们很容易看见的图形,而函数发生器则会产生不同类型的电信号,这样利用示波器和函数发生器就可以对函数发生器所发

基于LM324的方波、三角波、正弦波发生器(含原理图)..

课程设计(论文)说明书 题目:方波、三角波、正弦波发生器院(系): 专业: 学生姓名: 学号: 指导教师: 职称: 2012年12 月 5 日

摘要 本文通过介绍一种电路的连接,实现函数发生器的基本功能。将其接入电源,并通过在显示器上观察波形及数据,得到结果。 电压比较器实现方波的输出,又连接积分器得到三角波,并通过差分放大器电路得到正弦波,得到想要的信号。 NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。本设计就是利用Multisim软件进行电路图的绘制并进行仿真。 关键词:电源、波形、比较器、积分器、Multisim Abstract This paper introduces a circuit connection, to achieve the basic functions of function generator. Their access to power, and through the display of waveform and data, and get the result. A voltage comparator to achieve a square wave output, in turn connected integrator triangle wave, and through the triangle wave - sine wave conversion circuit to see the sine wave, the desired signal. NI Multisim software combines intuitive capture and powerful simulation, an quickly, easily, efficiently for circuit design and verification. With NI Multisim, you can immediately create a complete component library circuitdiagram, and the use of 0 industry standard SPICE simulator to mimic circuit behavior. This design is the use of Multisim software in circuit diagram and carry out simulation Key words: power, waveform, comparator, an integrator, a converter circuit, Multisim

方波_三角波发生电路实验报告

河西学院物理与机电工程 学院 综合设计实验 方波-三角波产生电路 实验报告 学院:物理与机电工程学院 专业:电子信息科学与技术

:侯涛 日期:2016年4月26日 方波-三角波发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。 指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V 一、方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。 方案三: 1、由比较器和积分器构成方波三角波产生电路。

2、用折线法把三角波转换成正弦波。 二、方案的比较与确定 方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化围很小的情况下使用。然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 三、工作原理: 1、方波、三角波发生电路原理

方波三角波发生电路实验报告修订版

物理与机电工程学院(2015——2016 学年第二学期) 综合设计报告 方波-三角波产生电路 专业:电子信息科学与技术学号: 2014216010 姓名:侯涛 指导教师:石玉军

方波-三角波产生电路 摘要 在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进 行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。 软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。凭借,可以立即创建具有完整组件库的电路图。本设计就是利用软件进行电路图的绘制并进行仿真。 关键词 折线法,比较器,积分器,转换电路,低通滤波, 1、 引言 波形发生器就是信号源的一种,能够给被测电路提供所需要的波形,广泛地应用于各大院校和科研场所。随着科技的进步,社会的发展,单一的波形发生器已经不能满足人们的需求,而我们设计的正是多种波形发生器。本次设计用运放来组成积分电路,低通滤波电路来分别实现方波,三角波和正弦波的输出。它的制作成本不高,电路简单,使用方便,有效的节省了人力,物力资源。 本文通过介绍一种电路的连接,实现函数发生器的基本功能。将其接入电源,具有实际的应用价值。并通过在示波器上观察波形及数据,得到结果。电压比较器实现方波的输出,又连接积分器得到三角波,并通过方波-三角波转换电路看到三角波,得到想要的信号。 2、设计内容和要求 设计要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。 设计指标:输出频率分别为:2z 10H 、310Z H 和4 10Z H ;方波的输出电压峰 峰值 20P P V v -≥ 。 3、方案的论证和选择 3.1方案的提出 3.1.1方案一: 0.12Multisim 0.12Multisim 0.12Multisim 0.12Multisim RC

方波—三角波—正弦波函数发生器模电实验报告

模电实验报告 一、实验任务: 设计一个方波—三角波—正弦波函数发生器 已知条件:双运放NE5532 一只(或uA741两只) 性能要求:频率范围:1—10Hz ,10—100Hz ;输出电压:方波Upp<=24V ,三角波Upp=6V , 正弦波Upp>1V 。 二、电路设计过程及结果: 2231231124O m RP CC U R R R U ===+ 取210K R =Ω,340K R =Ω,147K RP R =Ω。平衡电阻1231//()9RP R R R R K =+≈Ω。 由输出频率的表达式得: 3142 224RP RP R R R R R C f ++= 当110Hz f Hz ≤≤时,取210C uF =,4 5.1R K =Ω,2100RP R K =Ω。当 10100Hz f Hz ≤≤时,取21C uF =以实现频率波段的转换,其余不变。取平衡电阻510R K =Ω。 电路形式如下图,参数如下图所示

四、下面为仿真图形 五、实验数据 根据实验,实验波形与仿真波形相似,测得的方波Upp=2.16V,三角波 Upp=5.6V,正弦波Upp=1.48V。 六、心得 本次实验的各种参数均可参考书中所给的例子计算得出。从中也体现出了自己对相关理论只是并不是特别地熟悉,只能看着书根据公式计算,在这一点上还需要好好地去复习一下。 在实验过程中,接线时尤其需要仔细一点,通过几个人的合作,不断地检查完善多次后猜得出最终结果。也体现出了团队合作的重要性。 在示波器调试方面,也暴露出了许多不足,对示波器的使用并不是特别地熟练。 对于所测出的数据有一定的偏差,及时这样也应该实事求是地记录下数据。 无论是理论计算还是实际操作,都需要我今后多加练习学习。

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

方波发生器讲解

课程设计报告 课程名称:基于单片机的方波信号发生器院部:电控学院 专业班级:电气0601班 学生姓名:程云鹏 指导教师:郝兆明 完成时间:2009年06月10日 报告成绩:_____ _____________________ 评阅意见: 评阅教师日期

目录 一、概述 ------------------------------------------------------------------ 3 1.1、设计内容 ------------------------------------------------------ 3 1.2、设计的基本要求 ------------------------------------------------ 3 二、方波发生器设计方案 ---------------------------------------------------- 4 2.1、方案介绍 ------------------------------------------------------ 4 2.2、方波信号发生器的原理与功能 ------------------------------------ 4 三、系统的硬件设计 -------------------------------------------------------- 6 3.1、单片机最小系统 ------------------------------------------------ 6 3.2、小键盘接口电路 ------------------------------------------------ 7 3.3、LED显示电路--------------------------------------------------- 7 四、系统的软件设计 -------------------------------------------------------- 8 4.1、主程序 -------------------------------------------------------- 8 4.2、系统初始化子程序 ---------------------------------------------- 9 4.3、显示子程序 ---------------------------------------------------- 9 4.4、键盘扫描程序 ------------------------------------------------- 10 4.5、定时器中断子程序 --------------------------------------------- 11 五、调试与性能分析 ------------------------------------------------------- 12 5.1硬件调试------------------------------------------------------- 12 5.2软件调试------------------------------------------------------- 12 六、设计体会 ------------------------------------------------------------- 13 参考文献 ----------------------------------------------------------------- 14 附录A:基于单片机方波信号发生器的原理图---------------------------------- 15 附录B:基于单片机方波信号发生器的程序清单-------------------------------- 16 附录C:仿真图——————————————————————————————21

模拟电子电路课程设计正弦波三角波方波函数发生器

模拟电子电路课程设计正弦波三角波方波函数 发生器 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

课程设计任务书学生姓名:专业班级: 指导教师:工作单位: 题目:正弦波-三角波-方波函数发生器 初始条件: 具备模拟电子电路的理论知识;具备模拟电路基本电路的设计能力;具备模拟电路的基本调试手段;自选相关电子器件;可以使用实验室仪器调试。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、频率范围三段:10~100Hz,100 Hz~1KHz,1 KHz~10 KHz; 2、正弦波Uopp≈3V,三角波Uopp≈5V,方波Uopp≈14V; 3、幅度连续可调,线性失真小; 4、安装调试并完成符合学校要求的设计说明书 时间安排: 一周,其中3天硬件设计,2天硬件调试 指导教师签名:年月日 系主任(或责任教师)签名:年月日 目录 1.综述...........................................................1

信号发生器概论...................................................1 Multisim简介....................................................2 集成运放lm324简介...............................................3 2.方案设计与论证...............................................4方案一...................................................4方案二..................................................4方案三..................................................5

信号发生器实验报告(波形发生器实验报告)

信号发生器 一、实验目的 1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。 2、掌握用运算放大器构成波形发生器的设计方法。 3、掌握波形发生器电路调试和制作方法 。 二、设计任务 设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。 三、具体要求 (1)可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。 (2)利用一个按钮,可以切换输出波形信号。。 (3)频率为1-2KHz 连续可调,波形幅度不作要求。 (4)可以自行设计并采用除集成运放外的其他设计方案 (5)正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。 四、设计思路 基本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比较器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。 五、具体电路设计方案 Ⅰ、RC 桥式正弦波振荡器 图1 图2 电路的振荡频率为:RC f π21 0= 将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。 如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。下图2为起振波形。

占空比可调方波发生器

燕山大学 课程设计说明书 题目:低通FIR滤波器设计与应用学院(系):电气工程学院 年级专业: 10级精仪二班 学号: 学生姓名:王舟济 指导教师:孟宗 教师职称:副教授

电气工程学院《课程设计》任务书 院(系):电气工程学院基层教学单位:仪器科学与工程系

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 年月日

目录 摘要.................................................................第1章绪论.......................................................... 1.1设计内容..................................................... 1.2设计基本要求.................................................第2章总体方案论证与设计.......................................... 2.1方案论述..................................................... 2.2方波发生器的硬件组成框图..................................... 第3章方波发生器原理................................................................... .............................. 3.1方波发生器的原理与功能................................................................... ............. 3.2键盘控制原理................................................................... ................................. 3.3程序框图................................................................... ......................................... 3.4方波波形显示................................................................... ......................... 第4章系统硬件设计 ................................................................

模电课程设计--函数发生器(三角波-方波-正弦波)

模拟电子课程设计 报告 题目:________函数发生器设计_____ 学生姓名:_________王鹏______________ 学号:_________20120230720_______ 自然班:________T1223-7___________ 专业:______自动化(电动车辆工程)__指导老师:_______蒋伟荣______________ 2014 年6 月

一、课题意义 (1)通过模拟电子技术的课程设计,让我们对模拟电子电路有更加深入的认识和了解。 (2)以做课程设计来激发学生对模拟电子技术的兴趣,从而为后期的学习提供更大的动力。 (3)以课设的形式让学生对一学期所学习的模拟电子知识进行归纳总结,学以致用。 (4)通过设计函数发生器,我们对模拟电子技术中的积分电路、微分电路以及差分电路原理有更加详细的理解。 (5)通过课程设计培养学生的动手能力。 (6)强化学生的创新能力,以及在学习生活中学会独立的解决问题的能力。 二、函数发生器设计课题要求 (1)输出波行:正弦波、方波和三角波.. (2)输出频率:300HZ--10KHZ可调 (3)输出幅值:30mv-3v可调 三、课题方案设计和比较 在本次模拟电子课程设计方案设计选择中,我所选择的是方案是通过直流稳压电源(+5V,—5V或者+12V,—12V),通过一个LM324的运放元件的管脚1、2、3形成一个产生正弦波的发生器,而LM324元件的管脚5、6、7形成一个产生方波的发生器,LM324元件的管脚8、9、10形成一个产生三角波的发生器,最后三个函数发生器共用同一个直流稳压电源的接入管脚4、11,其共同连接起来形成一个能够产生正弦波——方波——三角波的函数发生器,函数发生器设计课设要求的电压输出可调幅值30mv-3v,可调频率范围为300HZ--10KHZ则是通过调节所设计的电路中的电位器来实现这一要求的,其实际原理也就是改变接入电路中电阻值的大小来改变输出电压的幅值和频率的。以下为此次模拟电子课程设计课题函数发生器的设计思路方案框图:

信号发生器实验报告

电子线路课程设计报告设计题目:简易数字合成信号发生器 专业: 指导教师: 小组成员:

数字合成信号发生器设计、调试报告 一:设计目标陈述 设计一个简易数字信号发生器,使其能够产生正弦信号、方波信号、三角波信号、锯齿波信号,要求有滤波有放大,可以按键选择波形的模式及周期及频率,波形可以在示波器上 显示,此外可以加入数码管显示。 二、完成情况简述 成功完成了电路的基本焊接,程序完整,能够实现要求功能。能够通过程序控制实现正弦波的输出,但是有一定噪声;由于时间问题,我们没有设计数码管,也不能通过按键调节频率。 三、系统总体描述及系统框图 总体描述:以51单片机开发板为基础,将输出的数字信号接入D\A转换器进行D\A转换,然后接入到滤波器进行滤波,最后通过运算放大器得到最后的波形输出。 四:各模块说明 1、单片机电路80C51 程序下载于开发板上的单片机内进行程序的执行,为D\A转换提供了八位数字信号,同时为滤波器提供高频方波。通过开发板上的232串口,可以进行软件控制信号波形及频率切换。通过开发板连接液晶显示屏,显示波形和频率。 2、D/A电路TLC7528 将波形样值的编码转换成模拟值,完成单极性的波形输出。TLC7528是双路8位数字模拟转换器,本设计采用的是电压输出模式,示波器上显示波形。直接将单片机的P0口输出传给TLC7528并用A路直接输出结果,没有寄存。 3、滤波电路MAX7400 通过接收到的单片机发送来的高频方波信号(其频率为所要实现波频率的一百倍)D转换器输出的波形,对转换器输出波形进行滤波并得到平滑的输出信号。 4、放大电路TL072

TL072用以对滤波器输出的波进行十倍放大,采用双电源,并将放大结果送到示波器进行波形显示。 五:调试流程 1、利用proteus做各个模块和程序的单独仿真,修改电路和程序。 2、用完整的程序对完整电路进行仿真,调整程序结构等。 3、焊接电路,利用硬件仿真器进行仿真,并用示波器进行波形显示,调整电路的一些细节错误。 六:遇到的问题及解决方法 遇到的软件方面的问题: 最开始,无法形成波形,然后用示波器查看滤波器的滤波,发现频率过低,于是检查程序发现,滤波器的频率设置方面的参数过大,延时程序的参数设置过大,频率输出过低,几次调整好参数后,在进行试验,波形终于产生了。 七:原理图和实物照片 波形照片:

波形发生电路实验报告

波形发生电路实验报告 班级 姓名 学号

一、实验目的 1. 掌握由集成运放构成的正弦波振荡电路的原理与设计方法。 2. 学习电压比较器的组成及电压传输特性的测试方法。 3. 掌握由集成运放构成的矩形波和三角波振荡电路的原理与设计方法。 二、实验内容 1. 正弦波发生电路 (1)实验参考电路见图1。 (2)缓慢调节电位器R W,观察电路输出波形的变化,完成以下测试: ①R W为0Ω 时的u O的波形; ②调整R W使电路刚好起振,记录u O的幅值、频率及R W的阻值; ③调整R W使输出为不失真的正弦波且幅值最大,记录u O幅值、频率及R W的阻值; ④将两个二极管断开,观察R W从小到大变化时输出波形的变化情况。 2. 方波- 三角波发生电路 (1)实验参考电路见图2。 (2)测试滞回比较电路的电压传输特性 将图2 电路的第一级改造为滞回比较电路,在输入端输入合适的测试信号,用示波器X-Y模式观测电压传输特性曲线并记录阈值电压和u O1的幅值。

(3)测量图2电路u O1、u O2波形的幅值、周期及u O1波形的上升和下降时间。 3.矩形波- 锯齿波发生电路 修改电路图2,使之成为矩形波- 锯齿波发生电路。要求锯齿波的逆程(电压下降)时间大约是正程时间的20%,记录u O1、u O2的幅值、周期。 三、实验要求 1. 实验课上搭建硬件电路,记录各项测试数据。 2. 完成正弦波电路的实验后在面包板上保留其电路,并使其输出电压U o在1-3V范围内连续可调。 四、预习计算 1.正弦波振荡电路 起振条件为|A|略大于3,刚起振时幅值较小,认为二极管还未导通,即R4+R W R2 +1略大于3,即R W略大于10kΩ时刚好起振,随着R W的增大,振幅会增大,当R W过大时波形会出现失真。 振荡频率由RC串并联选频网络决定,f0=1 2πR1C1 ≈106.1Hz 2.方波- 三角波发生电路 滞回比较器的阈值电压±U T=±R2 R1 U Z=±2.9V,测试滞回比较电路时将R2与运放A2的输出端断开,改接输入信号(三角波为宜)。 方波(u O1)的幅值为U Z=5.8V,三角波(u O2)的幅值为U T=2.9V。 U T=?1 4 (?U Z) T ?U T U T=R2 1 U Z 解得:T=4R2R4C R1 =0.4ms,即u O1和u O2的周期为0.4ms。 3.矩形波- 锯齿波发生电路 只需让电容充放电回路的时间常数不一样即可。电路原理图如下:

方波和三角波发生器电路

创作编号:BG7531400019813488897SX 创作者:别如克* 方波和三角波发生器电路 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图6. 5所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。 方波和三角波发生器的工作原理 A1构成迟滞比较器,同相端电位Vp由VO1和VO2决定。利用叠加定理可得: 当Vp>0时A1输出为正,即VO1 = +Vz;当Vp<0时,A1输出为负即VO1 = -Vz A2构成反相积分器 VO1为负时,VO2 向正向变化,VO1 为正时,VO2 向负向变化。假设电源接通时VO 1 = -Vz,线性增加。 当VO2上升到使Vp略高于0v时,A1的输出翻转到VO1 = +Vz 。

四、报告要求 1、课题的任务和要求。 2、课题的不同方案设计和比较,说明所选方案的理由。 3、电路各部分原理分析和参数计算。 4、测试结果及分析: (1)实测输出频率范围,分析设计值和实测值误差的来源。 (2)对应输出频率的高、中、低三点,分别实测输出电压的峰-峰值范围,分析输出电压幅值随频率变化的原因。 (3)频率特性测试,在低频端选定一个输出幅值,而后逐步调高输出频率,选12~15个测试点,用示波器观测输出对应频率下的输出幅值,填入自己预做的表格,画出电路的幅频特性。 注意:输出幅值一旦选定,在调节输出测试频率点过程中,不能再动! (4)画出示波器观测到的各级输出波形,并进行分析;若波行有失真,讨论失真产生的原因和消除的方法。 5、课题总结 6、参考文献 2、方波、三角波发生器 (1)按图11-2所示电路及参数接成方波、三角波发生器。

模电课程设计报告-- 正弦波方波三角波发生器

模电课程设计报告-- 正弦波方波三角波发生器

宁波大红鹰学院 《模拟电子技术》 课程设计报告 课题名称:正弦波方波三角波发生器 分院:机械与电气工程学院 教研室:电气工程及其自动化 班级: 姓名: 学号:1121090249 指导教师: 二○一三年十二月

1.设计任务 “方波三角波正弦波发生器”项目任务 一、设计目的 1、熟悉电路的基本功能原理,学会用集成运算放大器组成方波、三角波及正弦波发生器; 2、学习方波、三角波、正弦波发生器的设计方法和设计流程; 3、掌握方波、三角波、正弦波发生器的调试与测量方法。 4、能正确焊装、检测、调试电路。 二、设计任务 1、课题名称:方波三角波正弦波发生器 2、元器件选择范围: (1)集成电路:LM358、NE555等; (2)稳压二极管:5.1V或6.2V; (3)电阻:E24系列,碳膜电阻,1/4W,精度5%,阻值范围10Ω-1MΩ。 (4)电容:E6(100pF—1000uF),电解电容耐压25V、35V、50V。 (5)电位器:10K、50K、100K、500K。 三、设计要求 1、电源电压:±12V; 2、输出信号波形为对称方波、三角波和正弦波; 3、输出信号频率(根据指标分配安排); 4、输出信号幅度(根据指标分配安排); 5、拓展要求:产生锯齿波。 2.硬件设计

这是设计仿真时所用的电路,能够基本符合设计的要求。基本构思思路是,一个由正弦波电路、方波电路、三角波电路和放大电路组成的电路。 由于实际焊接测试时方波严重失真,对电路有所整改,如图所示。 1.元器件列表 模拟所用元器件符号实际所用元器件符号LM358D U1A LM358D U1A LM358D U2A LM358D U2A LM358D U3A LM358D U3A LM358D U4A LM358D U4A

信号发生器实验报告(终)

南昌大学实验报告 学生姓名:王晟尧学号:6102215054专业班级:通信152班 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p=6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶 m 体管的截止电压值。 图4 三角波→正弦波变换电路

方波发生器实验报告

方波发生器及其调制 一、实验内容 设计一方波信号发生器,采用ROM进行一个周期数据存储,并通过地址发生器产生方波信号。并通过控制端输入a对方波信号进行调幅和调频。ROM(4位地址16位数据) 二、实验原理 方波信号发生器是由地址发生器和方波数据存储器ROM两块构成,输入为时钟脉冲,输出为8位二进制。

1地址发生器的原理 地址发生器实质上就是计数器,ROM的地址是4位数据,相当于16位循环计数器。 2.只读存储器ROM的设计 (1)、VHDL编程的实现 ①基本原理:为每一个存储单元编写一个地址,只有地址指定的存储单元才能与公共的I/O 相连,然后进行存储数据的读写操作。 ②逻辑功能:地址信号的选择下,从指定存储单元中读取相应数据。 3.调幅与调频 通过输入信号a(3位数据),选择不同调制,如 a=000,2分频 a=001,4分频 a=010,8分频 a=011,16分频 a=100,2倍调幅 a=101,4倍调幅 a=110,8倍调幅 a=111,16倍调幅 分频原理:偶数分频,即分频系数N=2n(n=1,2,…),若输入的信号频率为f,那么分频器的输出信号的频率为f/2n(n=1,2,…)。 调幅原理:通过移位寄存器改变方波幅值(左移)。 三、设计方案 1. 基于VHDL编程的设计 在地址信号的选择下,从指定存储单元中读取相应数据,系统框图如下: FPGA 四、原理图 1、VHDL编程的实现

(1)、顶层原理图 (2)、地址发生器的VHDL语言的实现library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity addr_count is port ( clk1khz: in std_logic; qout: out integer range 0 to 15 ); end addr_count; architecture behave of addr_count is signal temp: integer range 0 to 15;

相关主题
文本预览
相关文档 最新文档