第4章 圆轴的扭转(2016)
- 格式:ppt
- 大小:3.96 MB
- 文档页数:51
第四章 扭转§4—1 工程实例、概念一、工程实例1、螺丝刀杆工作时受扭。
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
4、钻井中的钻杆工作时受扭。
二、扭转的概念受力特点:杆两端作用着大小相等方向相反的力偶,且作用面垂直杆的轴线。
变形特点:杆任意两截面绕轴线发生相对转动。
轴:主要发生扭转变形的杆。
§4—2 外力偶矩、扭矩一、外力:m (外力偶矩)1、已知:功率 P 千瓦(KW ),转速 n 转/分(r /min ; rpm)。
外力偶矩:m)(N 9549⋅=nPm 2、已知:功率 P 马力(Ps),转速 n 转/分(r /min ;rpm)。
外力偶矩:m)(N 7024⋅=nPm 二、内力:T (扭矩) 1、内力的大小:(截面法)mT m T mx==-=∑002、内力的符号规定:以变形为依据,按右手螺旋法则判断。
(右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在截面则扭矩规定为正值,反之为负值。
)3、注意的问题:(1)、截开面上设正值的扭矩方向;(2)、在采用截面法之前不能将外力简化或平移。
4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。
作法:同轴力图:§4—3 薄壁圆筒的扭转 一、薄壁圆筒横截面上的应力(壁厚0101r t ≤,0r :为平均半径) 实验→变形规律→应力的分布规律→应力的计算公式。
1、实验:2、变形规律:圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个不同的角度。
纵向线——倾斜了同一个角度,小方格变成了平行四边形。
3、切应变(角应变、剪应变):直角角度的改变量。
4、定性分析横截面上的应力(1) 00=∴=σε ;(2)00≠∴≠τγ因为同一圆周上切应变相同,所以同一圆周上切应力大小相等。
⑶ 因为壁厚远小于直径,所以可以认为切应力沿壁厚均匀分布,而且方向垂直于其半径方向。
工程力学教案【理、工科】§4-1 扭转的概念和实例工程上的轴是承受扭转变形的典型构件,如图4-1所示的攻丝丝锥,图4-2所示的桥式起重机的传动轴以及齿轮轴等。
扭转有如下特点:1. 受力特点:在杆件两端垂直于杆轴线的平面作用一对大小相等,方向相反的外力偶--扭转力偶。
其相应力分量称为扭矩。
2. 变形特点横截面绕轴线发生相对转动,出现扭转变形。
若杆件横截面上只存在扭矩这一个力分量则这种受力形式称为纯扭转。
§4-2 扭矩扭矩图1.外力偶矩如图4-3所示的传动机构,通常外力偶矩不是直接给出的,而是通过轴所传递的功率和转速n计算得到的。
如轴在m作用下匀速转动角,则力偶做功为,由功率定义角速度(单位:弧度/秒,rad/s)与转速n(单位:转/分,r/min)的关系为。
因此功率N的单位用千瓦(KW)时有关系,即(4-1a)式中:-传递功率(千瓦,KW),-转速(r/min)如果功率单位是马力(PS),由于1KW =1000 N·m/s =1.36 PS,式(4-1a)成为(4-1b)式中:-传递功率(马力,PS)-转速(r/min)2. 扭矩求出外力偶矩后,可进而用截面法求扭转力--扭矩。
如图4-4所示圆轴,由,从而可得A-A截面上扭矩T,称为截面A-A上的扭矩;扭矩的正负号规定为:按右手螺旋法则,矢量离开截面为正,指向截面为负。
或矢量与横截面外法线方向一致为正,反之为负。
【例4-4】传动轴如图4-5a所示,主动轮A输入功率马力,从动轮B、C、D输出功率分别为马力,马力,轴的转速为。
试画出轴的扭矩图。
【解】按外力偶矩公式计算出各轮上的外力偶矩从受力情况看出,轴在BC,CA,AD三段的扭矩各不相等。
现在用截面法,根据平衡方程计算各段的扭矩。
在BC段,以表示截面I-I上的扭矩,并任意地把的方向假设为如图4-5b所示。
由平衡方程,有得负号说明,实际扭矩转向与所设相反。
在BC段各截面上的扭矩不变,所以在这一段扭矩图为一水平线(图4-5e)。