下承式简支钢桁梁1
- 格式:pptx
- 大小:11.26 MB
- 文档页数:84
下承式钢桁梁桥在城市桥梁中的应用及结构设计王朝华【摘要】以长春市西安桥改造工程为例,介绍了钢桁梁桥的结构设计特点与拖拉法施工方案,对城市桥梁高度受限情况下的结构设计有一定的参考意义.【期刊名称】《山西建筑》【年(卷),期】2014(040)001【总页数】2页(P185-186)【关键词】钢桁梁桥;桥梁设计;应用【作者】王朝华【作者单位】沈阳铁道勘察设计院有限公司,辽宁沈阳110013【正文语种】中文【中图分类】U4420 引言随着城市交通的飞速发展,下承式钢桁梁在城市立交高度受限的桥梁中的应用也日益增加。
钢桁桥综合了钢材和桁架结构的特点,具有建筑高度低、跨越能力强、钢桁架结构抗压能力强、整体性好等特点,同时钢桁架构件适合于工业化制造,便于运输和工地安装,易于修复和更换。
本文以长春市西安桥改造工程为例,介绍了下承式钢桁梁在市政桥梁应用中的结构设计特点以及施工方案,对钢桁梁在城市桥梁中的应用进行有益的探讨。
1 工程概况西安桥位于长春市西安大路上,需同时跨越京哈铁路和长春轻轨3号线,桥梁与铁路正交。
西安大路道路等级为城市主干道,设计桥梁荷载采用公路—Ⅰ级、设计行车速度60 km/h、桥面总宽度为41.2 m。
根据总体规划,本桥为双幅桥,人行道布置于桁架外侧,单幅桥全宽16.4 m,两幅桥净距2.1 m。
此次设计由于桥下京哈铁路净空的要求,桥梁两侧道路需相应抬高。
为减少道路抬高对两侧建筑物及路网的影响,下承式钢桁梁具有一定的竞争力:1)当桥位处梁高受限严重时,下承式钢桁梁的结构高度具有特殊的优势。
2)钢桁梁施工周期短,可以在两侧拼装完成后,然后采用拖拉架设等便捷的施工方法,对既有铁路线影响小。
3)钢桁梁造型美观,可以满足城市桥梁对美学的较高要求。
虽然钢桥具有造价较高,后期维护费用大等缺点,但在特定的桥位与限制条件下,钢桁梁仍是一个经济合理的选择。
本桥由于桥梁建筑高度和施工周期受限严重,经过多方案的技术比较后,确定采用下承式钢桁梁方案。
钢桥施工技术——钢桁梁桥钢桁梁(图6.3.1)的出现来自钢板梁的演变,人们根据梁的截面在中性轴附近应力最小的理论,研究从板梁的腹板中挖掉若干方格以节省钢料和减轻梁的自重的办法,并逐步演变为用三角形组成的桁架来代替板梁。
钢桁梁和板梁的主要区别是:桁架以腹杆(斜杆和竖杆)代替板梁,在竖向荷载作用下,桁架中的所有杆件都顺着杆件轴向承受压力或拉力,杆件截面上的材料都发挥相同的效能。
与板梁相比,桁梁的主要优点:一是跨越能力较大;二是当跨度较大时,自重也较轻,节省钢材,一般使用跨度都大于30 m。
钢桁梁主要类型有上承式简支钢桁梁、下承式简支钢桁梁、下承式连续钢桁梁等。
其主要由桥面、桥面系、主桁、连接系及支座等 5 个部分组成。
列车作用于钢桁梁的荷载,首先通过桥面的基本轨传送给桥枕,桥枕传给桥面系的纵梁,纵梁传给横梁,横梁传给主桁,主桁传给支座,支座传给墩台。
一、主桁主桁(图6.3.2)是钢桁梁桥的主要承重结构。
钢桁梁桥有两片主桁架,每片桁架一般由上弦杆、下弦杆、斜杆及竖杆等组成,斜杆和竖杆统称为腹杆。
两片主桁架的作用相当于板梁的两片主梁。
铁路钢桁梁桥一般采用下承式。
图6.3.1 钢桁梁图6.3.2 下承式钢桁梁组成示意图1. 主桁形式我国中等跨度(48~80 m)的下承式桁梁桥,其主桁结构常采用图6.3.3(a)中的几何图示,而不采用图6.3.3(b)。
二者的斜杆方向不同,基于此,在竖向荷载作用下,图式6.3.3(a)的竖杆较图式(b)受力较小,受压斜杆的数量也较少,而且图式6.3.3(a)的弦杆内力不像图式6.3.3(b)那样在每个节间都得变化一次,因而图式 6.3.3(a)的弦杆截面,易于选择得较为经济合理。
由于这些原因,使图式6.3.3(a)比图式6.3.3(b)更为节省钢料。
具有图6.3.3(a)这种形式的桁梁桥,其构造简单,部件类型较少,适应设计定型化,有利于制造与安装,宜于选作标准设计桁梁桥的主桁图式。
解析重载铁路128m下承式简支钢桁梁桥施工技术李伟超发布时间:2021-10-29T06:29:26.579Z 来源:《基层建设》2021年第22期作者:李伟超[导读] 钢桁梁桥施工技术是现阶段我国工程项目中比较常见的一种施工技术,在保证工程项目施工质量和结构稳定性方面具有重要的作用中国建筑土木建设有限公司北京市 100000摘要:。
重载铁路是现阶段我国铁路运输的主要形式之一,随着经济的发展,重载铁路会在我国的经济发展和交通运输中发挥越来越重要的作用。
本文以重载铁路工程为主要研究对象,着重对重载铁路128m下承式简支钢桁梁桥施工技术进行了研究和分析。
关键词:重载铁路;施工技术;钢桁梁桥前言:现代科学技术水平的不断提高,使得我国的工程项目建设能够克服许多地势险要地区的施工条件,完成高难度的施工任务。
在这种背景下,越来越多的大跨度钢桥被应用到地势险要的铁路工程当中,对保障铁路工程的稳定性和安全起到了重要的作用。
对重载铁路128m下承式简支钢桁梁桥施工技术进行分析,能够为我国铁路工程的施工建设提供借鉴的经验。
一、重载铁路与钢桁梁桥施工技术(一)重载铁路重载铁路是主要用于运输原材料的铁路类型,能够利用大轴重货车或总重大的汽车来实现大量的原材料运输,节省货物运输时间和成本。
基于重载铁路的主要功能和价值,其在设计和施工中需要达到严格的施工技术标准,才能够保证重载铁路的运输安全。
重载铁路最初诞生于20世纪20年代的美国,我国的重载铁路起步较晚,但在现阶段的发展中已经取得了较为明显的成果,大秦铁路、山西中南部铁路通道等都是我国重载铁路的主要代表,在加强城市联系、促进城市和社会的发展中发挥着重要的作用[1]。
(二)钢桁梁桥钢桁梁桥从实质上来说,是一种结构的受力方式,能够通过空腹化的钢板桥梁结构形式,依据弯矩和剪力等,采用纵向联结系和横向联结系的方式,达到构建桥梁结构,保证桥梁结构稳定性的目的[2]。
钢桁梁桥主要由主桁、联结系和桥面系构成,按照主桁支承方式的不同,可以将其分为简支钢桁梁桥、连续钢桁梁桥和悬臂钢桁梁桥三种;按照桥面位置不同,可以将其分为上承式钢桁梁桥和下承式钢桁梁桥两种。
单线铁路下承式栓焊简支钢桁梁桥课程设计目录第一章设计资料 (1)第一节基本资料 (1)第二节设计内容设计内容 (1)第三节设计要求 (2)第二章主桁杆件内力计算 (3)第一节主力作用下主桁杆件内力计算 (3)第二节横向风力作用下的主桁杆件附加内力计算 (6)第三节制动力作用下的主桁杆件附加内力计算 (8)第四节疲劳内力计算 (9)第五节主桁杆件内力组合 (11)第三章主桁杆件截面设计 (13)第一节下弦杆截面设计 (13)第二节上弦杆截面设计 (15)第三节端斜杆截面设计 (16)第四节中间斜杆截面设计 (17)第五节吊杆截面设计 (19)第六节腹杆高强螺栓数量计算 (21)第四章弦杆拼接计算和下弦端节点设计 (22)第一节E2节点弦杆拼接计算 (22)第二节E0节点弦杆拼接计算 (23)第三节下弦端节点设计 (24)第五章挠度计算及预拱度设计 (25)第一节挠度计算 (25)第二节预拱度设计 (26)第六章桁架梁桥空间模型计算 (27)第一节建立空间详细模型 (27)第二节恒载竖向变形计算 (28)第三节恒载和活载内力和应力计算 (28)第四节自振特性计算 (29)第七章设计总结 (30)下弦端节点设计图 (32)单线铁路下承式栓焊简支钢桁梁桥课程设计 1第一章设计资料第一节基本资料1 设计规范:铁路桥涵设计基本规范(TB10002.1-2005),铁路桥梁钢结构设计规范(TB10002.2-2005)。
2 结构轮廓尺寸:计算跨度L=86.8 m,钢梁分10个节间,节间长度d=8.68m,主桁高度H=11.935m,主桁中心距B=5.75m,纵梁中心距b=2.0m,纵联计算宽度B0=5.30m,采用明桥面、双侧人行道。
3 材料:主桁杆件材料Q345q,板厚≤45mm,高强度螺栓采用40B,精制螺栓采用BL3,支座铸件采用ZG35 II、辊轴采用35号锻钢。
4 活载等级:中-荷载。
5 恒载(1) 主桁计算桥面p1=10kN/m,桥面系p2=6.29kN/m,主桁架p3=14.51kN/m,联结系p4=2.74kN/m,检查设备p5=1.02kN/m,螺栓、螺母和垫圈p6=0.02(p2+p3+p4),焊缝p7=0.015(p2+p3+p4);(2) 纵梁、横梁计算纵梁(每线)p8=4.73kN/m(未包括桥面),横梁(每片)p9=2.10kN/m。
第17卷第6期2020年12月现代交通技术Modern Transportation TechnologyVol.17No.6Dec.2020 120m下承式简支钢桁架桥设计分析曹骏驹(江苏省交通工程建设局,南京210004)摘要:以新安京杭运河大桥主桥120m下承式简支钢桁架桥施工设计为例,设计中对主桥构造尺寸拟定(包含桁架高度、节间长度、斜杆倾角、主桁间距、各杆件及节点板厚度等),通过midas Civil软件进行结构验算,发现原设计中部分杆件强度应力储备不足,通过深度分析,优化了构造尺寸。
结果表明:钢桁架各构件强度、整体稳定性、杆件稳定性、刚度和疲劳验算均满足规范要求,结构设计经济、耐久、安全可靠。
关键词:简支钢桁架;结构分析;疲劳验算;结构安全中图分类号:U442.5文献标识码:A文章编号:16729889(2020)06005704Design and Analysis of120m Through Simply Supported Steel Truss BridgeCAO Junju(Jiangsu Provincial Transportation Engineering Construction Bureau,Nanjing210004,China)Abstract:Taking the construction drawing design of120m through simply supported steel truss of the main bridge of Xin'an Beijing-Hangzhou Grand Canal Bridge as an example.In the design,the structural dimensions of the main bridge are determined(truss height,section length,inclined bar inclination,main truss spacing,the thickness of each member and gusset plate,etc.).Through midas Civil structural checking calculation,it is found that the strength stress reserve of some members in the original design is insufficient.Through depth analysis,the structural size is optimized.The results show that the strength,stability,overall stability,stiffness and fatigue of each member of the steel truss meet the requirements of the code, and the structural design is economical,durable,safe and reliable.Key words:simply supported steel truss;structural analysis;fatigue checking calculation;structural safety下承式简支钢桁架桥是常见的铁路桥梁之一,它具有自重轻、跨越能力强、建筑高度低、建设速度快等特点,可运用在工程抢险、航道整治等工程中。