双因素方差分析数据
- 格式:xls
- 大小:10.50 KB
- 文档页数:1
1、无交互影响的双因素方差分析如果某一试验结果受到A和B两个因素的影响,这两个因素分别可取K和M个水平,则双因素分析实际上就是要比较因素A的K个水平的均值之间是否存在显著差异,因素B 的M个水平的均值之间是否存在显著差异。
假定试验的结果如下表所示(在假定两个因素无交互影响的情形下,通常采用不重复试验)。
表9-8 无交互影响的双因素分析试验观察值无交互影响的双因素方差分析结果如下表:表9-9 无交互影响的双因素分析表在显著性水平α下,如果F > 临界值Fα,则拒绝原假设,认为差异显著。
小案例9-1:有4个品牌的彩电在5个地区销售,为分析彩电的品牌(品牌因素)和销售地区(地区因素)对销售量的影响,对每个品牌在各地区的销售量取得表9-10的数据。
试分析品牌和销售地区对彩电的销售量是否有显著影响?(α=0.05)表9-10 不同品牌的彩电在5个地区的销售量数据提出假设:对品牌因素提出的假设为:H0:m1=m2=m3=m4 (品牌对销售量无显著影响)H1:mi (i =1,2, …, 4) 不全相等(有显著影响)对地区因素提出的假设为:H0:m1=m2=m3=m4=m5 (地区对销售量无显著影响)H1:mj (j =1,2,…,5) 不全相等(有显著影响)表9-11 方差分析表结论:F品牌=18.10777>Fα=3.4903,拒绝原假设H0,说明彩电的品牌对销售量有显著影响。
F地区=2.100846<Fα=3.2592,不拒绝原假设H0,无证据表明销售地区对彩电的销售量有显著影响。
资料来源:贾俊平、何晓群、金勇进,《统计学》[M].北京: 中国人民大学出版社,2004.10第2版。
实验三 双因素试验的方差分析实验目的:1掌握单因素实验方差分析的方法与步骤;2正确分析输出结果中的各参数,并得出正确结论。
试验内容:某种火箭使用4种燃料,3种推进器进行射程试验。
在每种燃料与每种推进器的组合下火箭各发射两次,射程数据见表3.1。
表3.1 火箭的射程数据试在水平05.0=α下,检验不同燃料(因素)A 、不同推进器(因素)B 下射程是否有显著差异?交互作用是否显著?操作步骤:1.在excel 的工作表中输入如表3.1所示的的样本数据。
2.点击“工具—数据分析—方差分析:可重复双因素方差分析”,在弹出对话框的输入区域,拖动鼠标选择样本值A1:D9;每一样本的行数,输入2;显著性水平α设置为0.05,如图3.1所示。
图3.1 应用excel“数据分析”功能求双因素等重复方差分析的有关参数3.点击确定,输出参数的窗口如图3.2所示。
图3.2 应用excel“数据分析”功能求双因素等重复方差分析的有关参数结果分析:图3.2 中仅列示了输出结果中的方差分析表。
“样本”即燃料因子,“列”即推进器因子,“交互”为燃料和推进器因子的交互作用,SS 为平方和;df 是自由度;P-value 为P 值,即所达到的临界显著水平;F crit 是Fα(t-1,N-t)的值。
由方差分析表可知,因子A (燃料)的作用是一般显著的(P-value的值为0.025969<0.05);因子B(推进器)的作用是高度显著的(P-value的值为0.003506<0.01);而交互作用是极其显著的(P-value的值为6.15E-05<<0.01),这说明燃料的作用于与推进器之间有着密切的关系,也即每种推进器都有各自最合自得最佳燃料。
双因素重复测量方差分析spss
一、双因素重复测量方差分析(two-way repeated measures ANOVA)
双因素重复测量方差分析(Two-Way repeated measures ANOVA)可以用来检测一个
变量的变化在两个或多个独立变量的作用下是否发生变化。
在双因素重复测量方差分析中,变量1是因素1,因素1有若干水平,变量2是因素2,因素2也有若干水平。
双因素重
复测量方差分析可以检验两个因素是否共同影响变量1的变化,或者检测某个因素是否单
独地影响变量1的变化。
1、打开spss统计软件,点击文件、数据,从窗口中打开需要分析数据文件;
2、点击“分析”菜单,然后从子菜单中点击“多维分析”,再单击“双因素重复测
量方差分析”;
3、在弹出的窗口中,在“变量”框中选择需要分析的变量;
4、在“因素”框中,选择双因素,比如实验组和对照组;
5、点击“定义”按钮,设定因素的水平,比如实验组的水平为A,对照组的水平为B;
6、在“多重比较”框中,勾选“重复测量”框,并且可以设定多重比较的参数;
7、选择“显著性水平”框,设定检验的显著性,通常设定为0.05;
8、单击“OK”按钮,查看分析结果,该分析结果将显示两个因素及其交互作用对变
量1的影响情况。
双因素方差分析结果解读双因素方差分析(Two-wayANOVA)是一种分析数据的统计方法,它可以检验同一总体的两个或多个变量之间的差异。
双因素方差分析的一个重要特点是它可以检验基于不同组别、不同资源或者不同情况下同一个总体上的差异。
它可以检验在多个组别之间存在差异、或者在不同组别之间存在偏差的情况。
本文将通过介绍双因素方差分析的原理、分析方法、结果解读方法,帮助读者更好地解读双因素方差分析的结果。
首先,双因素方差分析的原理是涉及两个不同的自变量,即因变量和一个或多个自变量。
因变量是一个连续的响应变量,而自变量则分为定类的自变量和定序的自变量,根据不同的实验需求采用不同的变量。
例如,定类的自变量可以用于比较基于性别或不同药物治疗后被试者的反应,定序的自变量则可用于比较基于疗程的不同反应。
其次,双因素方差分析需要构建一个双因素的实验单元,即一个自变量和一个因变量的实验设计,它可以确定每个组别之间的比较,比如在不同性别和不同处方药物治疗下被试者的反应。
双因素方差分析可以检验两个或多个因变量是否相对独立,以及独立或不独立的因变量是否存在差异。
最后,双因素方差分析的结果解读是比较重要的一步,它可以有效地解释出双因素实验单元下的差异或偏差,帮助研究者更好地做出他们的决策。
通常,根据双因素方差分析的结果可以检测出两个或多个自变量的差异,以及基于性别、时间、处方药物治疗等不同情况下的被试者的反应等。
只有当双因素方差分析的F值超过某一显著性水平的时候(通常为0.05或0.01),双因素方差分析的结果才被认为是显著的,可以通过结果解释和决策。
综上所述,双因素方差分析是一种非常有用的统计方法,可以检验同一总体的两个或多个变量之间的差异。
其中双因素方差分析原理,分析方法,以及结果解读方法都非常重要,有助于我们在解决实际问题时更好地解读双因素方差分析的结果,识别出不同组别,或者在不同组别之间存在的差异,从而发现新的实验结果,增加研究的学术价值。