二重积分定义的函数求导
- 格式:pdf
- 大小:124.68 KB
- 文档页数:3
国开电大工程数学(本) 形考任务1-5答案任务1答案在工程数学中,任务1通常包括对于给定的函数或方程求解、求导或求积分等基本运算。
以下是对任务1的答案:1.1 求解方程对于给定的方程,求解意味着找到使方程成立的变量的值。
解方程的一般步骤如下:1.将方程移项,整理为标准形式;2.根据运算法则,对方程进行简化;3.通过合适的代数运算,解出变量的值。
例如,对于方程2x+5=15,我们可以按照以下步骤求解:1.将方程移项得到2x=15−5;2.简化方程为2x=10;3.通过除法运算解出x的值,得到 $x = \\frac{10}{2}= 5$。
因此,方程2x+5=15的解为x=5。
1.2 求导求导是对给定函数的导数进行计算。
函数的导数反映了函数在每个点上的变化率。
求导的一般步骤如下:1.根据导数的定义,写出函数的导数表达式;2.使用导数的基本运算法则,对函数进行求导。
例如,对于函数x(x)=3x2+2x+1,我们可以按照以下步骤求导:1.写出函数x(x)的导数表达式为x′(x)=6x+2;2.使用导数的基本运算法则得到x′(x)=6x+2。
因此,函数x(x)=3x2+2x+1的导数为x′(x)=6x+2。
1.3 求积分求积分是对给定函数的积分进行计算。
函数的积分表示了函数在指定区间上的面积或曲线长度。
求积分的一般步骤如下:1.根据积分的定义,写出函数的积分表达式;2.使用积分的基本运算法则,对函数进行积分。
例如,对于函数x(x)=3x2+2x+1,我们可以按照以下步骤求积分:1.写出函数x(x)的积分表达式为 $\\int{(3x^2 + 2x +1)dx}$;2.使用积分的基本运算法则得到 $\\int{(3x^2 + 2x +1)dx} = x^3 + x^2 + x + C$,其中x为常数。
因此,函数x(x)=3x2+2x+1的积分为 $\\int{(3x^2 +2x + 1)dx} = x^3 + x^2 + x + C$。
大专高数知识点总结一、函数与极限1、函数的概念与性质函数关系的概念:若对于集合A中的每一个元素x, 通过一个确定的法则f,到达集合B中的唯一的一个元素y,则称y是关于元素x的函数,并记作y=f(x)。
其中,元素x称为自变量,元素y称为因变量,而f称为函数的解析式。
集合A称为函数的定义域,集合B称为函数的值域。
函数的性质:定义域、值域、奇偶性、单调性、周期性。
2、极限的概念与性质极限的概念:当自变量x的取值无限接近于某一确定值时,因变量f(x)的取值趋于一个确定的值L,那么称f(x)当x趋于某一确定值时的极限为L,记作lim f(x) = L。
极限的性质:唯一性、保序性、极限的四则运算、无穷小量的性质。
3、导数的概念及计算导数的概念:函数y=f(x)在x_0处的导数定义为lim(x→x_0){f(x)-f(x_0)}/(x-x_0)。
导数的物理意义是函数图像在某一点的切线斜率。
导数的计算:基本导数公式、导数运算法则、高阶导数的计算。
4、微分的概念及应用微分的概念:对于函数y=f(x),在点x_0处的微分dy=f'(x_0)dx。
微分的物理意义是函数在某一点处的局部线性近似。
微分的应用:微分中值定理、泰勒公式、误差估计。
5、函数的图像基本初等函数图像、函数的性质与图像。
二、不定积分与定积分1、不定积分的概念及计算不定积分的概念:若函数F(x)是f(x)的一个原函数,那么函数F(x)称为f(x)的不定积分,记作∫f(x)dx=F(x)+C。
不定积分的计算:基本积分公式、换元积分法、分部积分法、有理函数积分、三角函数积分、定积分的概念及计算。
2、定积分的概念及计算定积分的概念:将函数f(x)在区间[a,b]上的取值的“有向长度”累加起来,得到的数,称为函数f(x)在区间[a,b]上的定积分,记作∫(a,b)f(x)dx。
定积分的计算:定积分的性质、变量代换法、分部积分法、定积分中值定理、定积分的应用。
二重积分的计算小结在数学中,二重积分是一种用来计算平面上曲线下的面积的方法。
它是定积分的扩展,可以用于计算更加复杂的形状的面积,例如圆形、椭圆形和弧形等。
在本文中,我们将详细介绍二重积分的计算方法,并提供一些重要的应用案例和技巧。
同时,我们还将讨论二重积分的性质以及它与其他数学概念的关系。
设 $f(x,y)$ 是定义在闭区域 $D$ 上的实函数,将闭区域 $D$ 分成许多小的矩形区域,其中第 $i$ 个小矩形的面积为 $\Delta A_i$,选择任意一点 $(x_i^*, y_i^*)$ 作为该矩形的代表点,则二重积分的近似值可以表示为:$$\sum_{i=1}^n f(x_i^*, y_i^*) \Delta A_i$$其中,$n$ 是划分区域时小矩形的个数,$\Delta A_i$ 是第 $i$ 个小矩形的面积。
当划分的小矩形越来越小,并且代表点 $(x_i^*, y_i^*)$ 在每个小矩形内部时,这个近似值将趋近于一个常数,即二重积分的值。
我们用符号 $\iint_D f(x,y) dA$ 表示二重积分的值,其中 $dA$ 表示对面积的微元。
接下来,我们将介绍几种计算二重积分的方法。
一、二重积分的计算方法1. 矩形法(Riemann和):将区域 $D$ 划分为若干个小的矩形区域,计算每个矩形的面积和函数值,并将它们相加得到近似值。
2. 二次积分法(Fubini定理):根据 Fubini 定理,我们可以将二重积分转化为两个一重积分的乘积:$$\iint_D f(x,y) dA = \int_a^b \left( \int_c^d f(x,y) dy\right) dx$$3. 极坐标法:当区域 $D$ 的形状具有旋转对称性时,使用极坐标计算二重积分可以更加简便。
通过转化为极坐标系,并利用极坐标下的Jacobian 行列式,可以将原二重积分转化为对一重积分的积分。
4. 线性代换法:对于不规则区域,我们可以通过线性代换将其转换为规则区域,然后再进行计算。
第一章 极限连续五种基本初等函数:(缺少定义域) 1.幂函数为实数)μμ(x y = 2.指数函数)1,0(≠>=a a a y x 3.对数函数 )1,0(log ≠>=a a x y a4.三角函数x y x y x y x y x y x y csc ,sec ,cot ,tan ,cos ,sin ====== 5.反三角函数x arc y x y x y x y cot ,arctan ,arccos ,arcsin ====一、函数的极限:f(x)在x 0处极限存在的充分必要条件是f(x)在点x 0处的左极限与右极限都存在且相等,此时三者值相同。
是否有极限与在x 0处有无定义无关。
两个重要极限公式:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=+=+=→∞→→e x e x x x x x x x x )11(lim ,)1(lim 1sin lim 100 ⎪⎪⎩⎪⎪⎨⎧<∞>==++++++--→∞→∞nm n m n m ba b x b x b a x a x a x Q x P m m m n n n x x ,,0,......lim ,)()(lim 00110110可利用公式对于二、无穷小量:零可以作为无穷小量的唯一的数。
无穷小之商不一定无穷小。
无穷小量比较:设0lim ,0lim 0==→→βαx x x x。
不能在加减运算中使用除中使用注意:只能在乘存在,则且时性质:当时,当。
记为为等价无穷小量与时为同阶无穷小量。
与时则称在若为低阶无穷小量。
较时则称在若记为为高阶无穷小量较时则称在若,! ''limlim ''lim ,'~,'~~1,2~cos 1,~)1ln(,~tan ,~sin 0~,1A ,,0A lim ,,lim )(,,,0lim00000002000βαβαβαββααβαβαβαβαβαβαβοαβαβαx x x x x x xx x x x x x x x xe x x x x x x x x x x x x x x x →→→→→→=→--+→=→≠=→∞==→=三、函数连续的三要素1〉f(x)在x 0处有定义;2〉0x x →时f(x)有极限;3〉极限值等于该点的函数值。
重积分运算的常⽤解法积分运算的常⽤⽅法Warren K引⾔:本学期课程的⼀⼤重点在于重积分的运算、利⽤重积分解决实际问题的微元法以及线⾯积分及其应⽤。
这⾥根据⾃⼰学习的⼀些⼼得以及课本和参考书籍上的知识,归纳总结⼀些积分运算的常⽤⽅法。
⼀、⼆重积分(1)、化为累次积分公式==bax y x y dcy x y x s dxdy y x f dxdy y x f ds y x f )(2)(1)(2)(1)(),(),(),(例1:计算??)(s xyds ,其中S 为抛物线x y =2与直线2-=x y 所围成的区域.解将S 视为y 型区域,先对x 后对y 积分,得855])2[(5.02142212)(2=-+==--+dy y y y xydx dyxyds y s y 如果⽤直线把此区域(S )分成两部分,那么(S )可以看作是两个x 型区域的并。
先对y 后对x 积分得--+=412)(xx x xs xydy dx xydy dx xyds由上式可以得出同样的结果,但这种⽅法显然要⿇烦⼀些。
从这也可以看到,计算⼆重积分时,选取适当的积分顺序是⼀个值得注意的问题。
如果积分顺序选择不当,不仅可能引起计算上的⿇烦,⽽且可能导致积分⽆法算出。
(2)、化为极坐标若积分域(S )与被积函数f(x,y)⽤极坐标表⽰更为简便,则应考虑将其化为极坐标的⼆重积分来计算。
为此,建⽴极坐标系,令极点与xOy 直⾓坐标系的原点重合,x 轴取为极轴。
利⽤直⾓坐标与极坐标的转换公式),20,0(sin ,cos π?ρ?ρ?ρ≤≤+∞≤≤==y x将(S )的边界曲线化为极坐标,并把被积函数变换为).sin ,cos (),(?ρ?ρf y x f =接下来就是把⾯积微元由极坐标表⽰出来,.?ρρ??≈?s从⽽==βα?ρ?ρρρ?ρ?ρ??ρρ?ρ?ρ)()(21)sin ,cos (.)sin ,cos (),(d f d d d f ds y x f ss=??ba d f d )()(21)sin ,cos (ρ?ρ??ρ?ρ?ρρ例2:)0()(41022222>+-=??-+--a dy y x a dx I ax a a x解:将原积分化为极坐标下的累次积分计算.a d a d I a 224sin 2022-=-=??--πρρρθπθ(3)、曲线坐标下⼆重积分的计算法 1.正则变换⼆重积分??)(),(s ds y x f作变换.)(),()(),(),,(),,(22R s v u R s y x y x v v y x u u ?'∈?∈==若以下三个条件满⾜,则称上变换为⼀正则变换. a 、函数));((,)1(σC v u ∈b 、Jacobi ⾏列式);(),(,0),(),(σ∈?≠=??y x v u v u y x v u yyx x c 、此变换将域)(σ⼀⼀对应地映射为).(σ'2.x0y 坐标系下的⼆重积分与uOv 坐标系下⼆重积分之间的关系为σσσσ'??='d v u y x v u y v u x f d y x f ),(),()],(),,([),()( 例3:求-=σσd x y I )(,其中)(σ是由直线53,973,3,1+-=+-y x y x y x y 所围成的区域。