高炉布料技术的研究
- 格式:doc
- 大小:54.50 KB
- 文档页数:2
《三缸式高炉无钟炉顶布料器的研究》篇一一、引言高炉作为钢铁工业中的重要设备,其工作效能的优劣直接影响着生产效率和产品质量。
布料器作为高炉的关键组成部分,其性能的优劣直接关系到高炉的冶炼过程和炉内煤气的分布情况。
无钟炉顶布料器以其操作简单、布料的均匀性和高效性而得到广泛应用。
本篇论文以三缸式高炉无钟炉顶布料器为研究对象,旨在研究其工作原理、优化设计和实际应用,为提高高炉生产效率和经济效益提供理论支持。
二、三缸式高炉无钟炉顶布料器的工作原理三缸式高炉无钟炉顶布料器主要由布料缸、布料管道、控制阀等部分组成。
其工作原理是通过控制阀门的开闭,将原料按照一定的规律和顺序布入高炉内。
三缸式布料器具有三个独立的布料缸,可以分别控制不同种类的原料布入高炉,从而实现对高炉内原料的合理分配和高效利用。
三、无钟炉顶布料器的优化设计针对无钟炉顶布料器在实践应用中遇到的问题,本研究提出了一系列的优化设计。
首先,通过优化布料器的结构设计,使其更加符合高炉内原料的分布规律,从而提高布料的均匀性和效率。
其次,通过对控制阀门的优化设计,实现对原料布入的精确控制,确保原料在高炉内的均匀分布。
此外,我们还研究了不同原料的物理特性对布料器的影响,以更好地适应各种原料的布入需求。
四、实际应用及效果分析将优化后的三缸式无钟炉顶布料器应用于实际生产中,取得了显著的效果。
首先,布料的均匀性得到了显著提高,有效降低了高炉内的煤气消耗和能源浪费。
其次,通过对控制阀门的精确控制,实现了对原料的精确布入,提高了高炉的生产效率。
此外,优化设计还使得布料器更加耐用,降低了维护成本和停机时间。
在实际应用中,三缸式无钟炉顶布料器表现出了良好的稳定性和可靠性,为钢铁企业带来了显著的经济效益。
五、结论通过对三缸式高炉无钟炉顶布料器的研究,我们了解了其工作原理、优化设计和实际应用效果。
研究结果表明,优化设计后的无钟炉顶布料器具有布料的均匀性、高效性和稳定性等优点,能够有效地提高高炉的生产效率和经济效益。
高炉布料操作(提纲)刘云彩1,高炉布料的作用1.1,布料能改变高炉产量水平、改善顺行,降低燃料消耗:布料能改变产量水平,能提高高炉接受风量的能力;改善顺行,大幅降低燃料消耗:炉内料柱的空隙度大约在0.35—0.45之间。
上升的煤气对炉料的阻力约占料柱有效重量的40—50%。
煤气分布是不均匀的,对下降炉料的阻力差别很大。
利用不同的煤气分布,减少对炉料的阻力,从而保持高炉稳定、顺行。
有了顺行,就有可能提高冶炼强度,增加产量。
1.2,通过布料能延长功率寿命边缘气流过分发展,必然加剧炉墻侵蚀。
通过布料控制边缘气流,保护炉墻。
1..3,通过布料,预防、处理一些类型的高炉冶炼进程发生的事故这些类型包括:高炉憋风、难行;渣皮脱落;边缘过轻,危害很大。
边缘过轻,首先表现在炉顶温度过高。
影响炉顶温度的因素较多,边缘发展,是其中之一。
炉顶温度每降低100,大约可降低焦比3-5公斤,主要来自三个方面:A,气带走的热量;B,冷却水及炉体散热;C,煤气利用率下降。
正常冶炼水平,炉顶温度与渣量关系密切。
边缘过重,同样会带来灾难。
1982年首钢2高炉,连续发生风口压入炉内事故,给生产带来很大损失:表2 渣皮脱落日期风口号开始漏常压时间停风时间更换设备风口中缸弯头8.31 2222 22:28 22:45—23:58 17:18—18:5023:58—4:1311 19.1 2222 5:5015:556:05—8:1516:07—17—468:15—12:5217:45—21:56111119.2 18 4:08 4:05—7:33 7:33—11:49 1 1累计7小时20分18小时51分 5 3 2炉腹渣皮结到一定厚度,自行脱落,由于边缘煤气量不足,不能很好的熔化,大块渣皮沿炉缸壁下滑,将深入炉内的风口压入炉内。
类似的现象,在宝钢和日本也出现过。
日本把这一现象叫“曲损”。
炉墙结厚;减少一些铁中的有害元素。
装料制度也有局限性:严重的炉缸堆积,解决不了;严重的炉墙结厚,效果很小。
无钟高炉布料过程的控制策略研究无钟炉顶装料是现代高炉重要的炉况调节手段,研究表明高炉内的炉料分布状态对高炉生产产生重要影响,合理的高炉布料操作有益于改善炉内煤气分布,进而稳定炉况,提高煤气利用率,降低燃料比。
在无钟高炉布料过程中,人工决策无法得到稳定的矿焦比以及维持合理的料面形状,炉况发生波动时不能及时调整布料操作。
因此,分析无钟高炉布料过程,开发高炉生产优化控制模型,准确判断高炉内部的煤气分布状况,预测高炉炉况的发展趋势,研究无钟高炉布料操作的优化控制策略,将高炉生产调整到最佳状态具有重要的现实意义。
为准确掌握无钟高炉布料规律,采用数值模拟与实验验证相结合的方法,研究了炉料在无钟炉顶内的流动行为,分析了炉料运动状态对炉料堆积行为的影响,采用两直线段和一多项式曲线构造了料堆轮廓,并在此基础上提出了一种适用于变布料半径、变料流流量的炉料分布计算方法,分别建立了环形布料和螺旋布料的炉喉料面预测模型,为优化高炉布料操作奠定了基础。
采用非接触式炉喉料面测量技术实时测量炉喉料面的形状和径向下降速度分布,分析了料柱在高炉内非匀速下降时的料层位置和形状变化,准确获得了高炉内的矿焦比分布。
以料面形状和矿焦比分布作为无钟高炉炉况调整的主要参数,为获得合理的料面形状和矿焦比分布,提高布料精度,分别建立了基于改进遗传算法的常规多环布料操作优化数学模型、基于社会情感优化算法的步进式同心圆布料操作和螺旋布料操作优化数学模型。
采用炉料分布误差和料层厚度不均匀率两个指标对布料精度进行量化,分析了常规多环布料不同工艺参数对炉料分布误差的影响,探究了步进式同心圆布料、螺旋布料与常规多环布料之间的内在联系,研究了螺旋布料料层厚度不均匀率的变化规律,并提出了改善炉料分布周向不均的措施。
在分析煤气分布对高炉生产影响的基础上,将煤气分布分为4种类型,并建立了基于学习向量量化神经网络的煤气分布类型识别数学模型,根据高炉实测数据判断高炉煤气分布状态。
《三缸式高炉无钟炉顶布料器的研究》篇一一、引言随着钢铁工业的持续发展,高炉炼铁技术不断取得新的突破。
三缸式高炉无钟炉顶布料器作为高炉炼铁过程中的关键设备,其性能的优劣直接影响到高炉的生产效率和产品质量。
因此,对三缸式高炉无钟炉顶布料器的研究具有重要的理论和实践意义。
本文将针对三缸式高炉无钟炉顶布料器的结构、工作原理及性能进行研究,以期为相关领域的研发和应用提供理论依据和技术支持。
二、三缸式高炉无钟炉顶布料器的结构与工作原理1. 结构三缸式高炉无钟炉顶布料器主要由布料缸、传动装置、密封装置等组成。
其中,布料缸是核心部件,其内部结构对布料的均匀性和稳定性起着决定性作用。
传动装置负责驱动布料缸进行旋转和升降运动,以保证布料过程的连续性和稳定性。
密封装置则用于保证高炉的密封性能,防止气体泄漏和热量散失。
2. 工作原理三缸式高炉无钟炉顶布料器的工作原理主要是通过传动装置驱动布料缸进行旋转和升降运动,将炉料均匀地布设在炉顶上。
在布料过程中,布料缸内的炉料经过一系列的输送和分布,最终达到高炉内部。
由于三缸式布料器的特殊性,其布料的均匀性和稳定性相较于传统布料器有所提高,有利于提高高炉的生产效率和产品质量。
三、三缸式高炉无钟炉顶布料器的性能研究1. 布料均匀性布料均匀性是评价三缸式高炉无钟炉顶布料器性能的重要指标。
通过对布料器的结构进行优化,可以改善布料的均匀性,使炉料在高炉内部分布更加合理。
这有利于提高高炉的生产效率和产品质量,降低能耗和污染物排放。
2. 布料稳定性布料稳定性是保证高炉生产过程连续性和稳定性的关键因素。
三缸式高炉无钟炉顶布料器通过传动装置和密封装置的配合,实现了布料的连续性和稳定性。
在布料过程中,布料缸的旋转和升降运动保持一定的规律和速度,保证了布料的均匀性和稳定性。
同时,密封装置的有效性能保证了高炉的密封性能,防止了气体泄漏和热量散失。
3. 能耗与环保性能三缸式高炉无钟炉顶布料器的能耗和环保性能也是评价其性能的重要指标。
高炉布料操作(提纲)1,高炉布料的作用1.1,布料能改变高炉产量水平、改善顺行,降低燃料消耗:布料能改变产量水平,能提高高炉接受风量的能力;改善顺行,大幅降低燃料消耗:炉内料柱的空隙度大约在0.35—0.45之间。
上升的煤气对炉料的阻力约占料柱有效重量的40—50%。
煤气分布是不均匀的,对下降炉料的阻力差别很大。
利用不同的煤气分布,减少对炉料的阻力,从而保持高炉稳定、顺行。
有了顺行,就有可能提高冶炼强度,增加产量。
1.2,通过布料能延长功率寿命边缘气流过分发展,必然加剧炉墻侵蚀。
通过布料控制边缘气流,保护炉墻。
1..3,通过布料,预防、处理一些类型的高炉冶炼进程发生的事故这些类型包括:高炉憋风、难行;渣皮脱落;边缘过轻,危害很大。
边缘过轻,首先表现在炉顶温度过高。
影响炉顶温度的因素较多,边缘发展,是其中之一。
炉顶温度每降低10°,大约可降低焦比3-5公斤,主要来自三个方面:A,气带走的热量;B,冷却水及炉体散热;C,煤气利用率下降。
正常冶炼水平,炉顶温度与渣量关系密切。
边缘过重,同样会带来灾难。
1982年首钢2高炉,连续发生风口压入炉内事故,给生产带来很大损失:表2渣皮脱落炉腹渣皮结到一定厚度,自行脱落,由于边缘煤气量不足,不能很好的熔化,大块渣皮沿炉缸壁下滑, 将深入炉内的风口压入炉内。
类似的现象,在宝钢和日本也出现过。
日本把这一现象叫“曲损”。
炉墙结厚;减少一些铁中的有害元素。
装料制度也有局限性:严重的炉缸堆积,解决不了;严重的炉墙结厚,效果很小。
布料的作用,是通过不同的装料方法,改变煤气流分布,并影响软融带的形状。
改变炉料位置及矿、焦在炉喉径向的比例,是控制煤气流分布的有效手段。
双钟装料设备,炉料分布受到限制,调节煤气流的作用比较有限。
无钟的出现,克服了大钟的缺陷。
第一座无钟高炉,于1972年在蒂森公司汉博恩厂投产。
这是卢森堡阿贝尔公司的重大发明,它以全新的原理、紧凑的结构,克服了大钟布料器的缺点,使高炉布料,完成一次革命。
高炉布料模型的开发与应用
高炉布料是金属冶炼制造中一种非常重要的材料,最近人们开发出了很多高性能的高炉布
料模型,这种模型具有较高的热阻性、耐火性和耐腐蚀性特性,可以用来降低金属冶炼的
温度,同时具有良好的耐火及抗拉性能,从而可以保障金属冶炼安全和高效。
高炉布料模型通常由石墨烯、多余孔立方体状组成,其特征保证了热传导性能的良好性能,可以有效地降低热损耗,使金属冶炼过程更加高效稳定。
此外,石墨烯材料本身具有较强
的耐热性,可以有效地降低金属冶炼过程中因火焰热量影响而导致的因高温而受损的概率。
此外,高炉布料模型的另一个特点是耐腐蚀能力非常强,这在炉内高温的环境中是非常重
要的,其能耐受持续高温和腐蚀性气体的考验,可以有效减少其熔毁的概率,使金属冶炼
的安全性更高。
因此,高炉布料模型具有良好的耐热性、耐火性、耐腐蚀性及抗拉性能,使其在金属冶炼
制造过程中具有重要的应用价值。
它可以防止炉内遭受过高温、熔融和破坏,提高金属冶炼的安全性,而且大大提高了其生产效率,使炼钢的过程更加高效顺利。
高炉布料操作(提纲)刘云彩1,高炉布料的作用1.1,布料能改变高炉产量水平、改善顺行,降低燃料消耗:布料能改变产量水平,能提高高炉接受风量的能力;改善顺行,大幅降低燃料消耗:炉内料柱的空隙度大约在0.35—0.45之间。
上升的煤气对炉料的阻力约占料柱有效重量的40—50%。
煤气分布是不均匀的,对下降炉料的阻力差别很大。
利用不同的煤气分布,减少对炉料的阻力,从而保持高炉稳定、顺行。
有了顺行,就有可能提高冶炼强度,增加产量。
1.2,通过布料能延长功率寿命边缘气流过分发展,必然加剧炉墻侵蚀。
通过布料控制边缘气流,保护炉墻。
1..3,通过布料,预防、处理一些类型的高炉冶炼进程发生的事故这些类型包括:高炉憋风、难行;渣皮脱落;边缘过轻,危害很大。
边缘过轻,首先表现在炉顶温度过高。
影响炉顶温度的因素较多,边缘发展,是其中之一。
炉顶温度每降低100,大约可降低焦比3-5公斤,主要来自三个方面:A,气带走的热量;B,冷却水及炉体散热;C,煤气利用率下降。
正常冶炼水平,炉顶温度与渣量关系密切。
边缘过重,同样会带来灾难。
1982年首钢2高炉,连续发生风口压入炉内事故,给生产带来很大损失:表2 渣皮脱落日期风口号开始漏常压时间停风时间更换设备风口中缸弯头8.31 2222 22:28 22:45—23:58 17:18—18:5023:58—4:1311 19.1 2222 5:5015:556:05—8:1516:07—17—468:15—12:5217:45—21:56111119.2 18 4:08 4:05—7:33 7:33—11:49 1 1累计7小时20分18小时51分 5 3 2炉腹渣皮结到一定厚度,自行脱落,由于边缘煤气量不足,不能很好的熔化,大块渣皮沿炉缸壁下滑,将深入炉内的风口压入炉内。
类似的现象,在宝钢和日本也出现过。
日本把这一现象叫“曲损”。
炉墙结厚;减少一些铁中的有害元素。
装料制度也有局限性:严重的炉缸堆积,解决不了;严重的炉墙结厚,效果很小。
2020- 21 - 摘 要:高炉布料是指炉料(主要是矿石和焦炭)在高炉炉喉的分布,其基本规律是高炉冶炼工艺理论的重要组成部分,控制高炉布料也是高炉操作改变高炉炉型的一个重要手段。
高炉布料习惯上称之为“上部调剂”。
探讨分析高炉操作炉型变化的特点,针对炉型变化和炉况之间的关系,提出可操作性强的高炉操作管理炉型管理方面的建议,既有助于延长高炉的寿命,还能起到增加产量的作用。
关键词:高炉;操作炉型;炉况顺行;溜槽;下料漏斗Research on the Problem of Burden Distribution and Changing OperationCondition of Blast FurnaceYang Bin(Iron and Steel Research Institute of Hongxing Iron & Steel Co. Ltd., Jiuquan Iron and Steel (Group) Corporation,Jiayuguan, Gansu, 735100) Abstract: Burden distribution of blast furnace refers to the distribution of burden (mainly ore and coke) in the throat of blast furnace, whose basic law is an important part of blast furnace smelting process theory, controlling blast furnace burden distribution is also an important means to change blast furnace shape in blast furnace operation. The burden distribution of blast furnace is customarily called upper adjustment. Discussing and analyzing the characteristics of furnace type changes in blast furnace operation and putting forward the blast furnace operation management recommendations for furnace type management in view of the relationship between the change of blast furnace shape and the furnace condition can help to prolong the life of blast furnace and increase the output. Key words: blast furnace; operating furnace type; smooth furnace condition; chute; hopper1 前 言 建造高炉时用耐火砖砌成设计的炉型,高炉投产后,高炉煤气分布对炉衬侵蚀有及大影响,所以炉型不是固定的,在实际的生产之中,炉衬有一段较快的侵蚀过程,有的部位砖衬侵蚀到冷却高炉布料与炉型变化操作炉况问题研究杨 斌(酒钢集团宏兴股份公司钢铁研究院,甘肃,嘉峪关,735100)2020- 22 -器能保护其稳定,有的以渣皮代替,炉型相对稳定,高炉操作指标达到较高水平,这时的炉型称为操作炉型。
高炉布料技术的研究
2014-01-15 08:39 来源:中国联合钢铁网
高炉布料技术实质是高炉操作的上部调剂,是改变煤气流分布的重要手段,也是降低炼铁燃料比和提高高炉炉身寿命的重要措施之一,其内容包括:批重、装料顺序、料线和设备选择。
1、批重
批重与炉容、炉喉直径、冶炼强度有关。
喷煤后,批重要调整,但要保持焦批不动。
1.1、矿批重
每座高炉均有一个临界批重值,随着矿石批重的加大,要加大中心,这样炉料分布趋向均匀;料批小于临界批重值时,矿石布不到中心,随着矿石批重加大,对边缘加重的作用不明显;矿批重过大,出现边缘和中心均有加重的现象。
炉料质量,特别是透气性,影响料批重。
当前,我国高炉推广使用大矿批、正分装技术,可以提高煤气利用率,有降低燃料比的效果。
专家们提出的合理矿批重,见表1。
表1:不同炉容高炉的合理矿批重
高炉容积m3炉喉直径
m
平均矿层厚度
m
合理批重
t
临界矿层厚度
m
临界矿批
t
450 4.4 0.45-0.55 13.0-15.9 0.60 17.3
488-500 4.6 0.45-0.55 14.2-17.4 0.60 18.9
530-600 4.8 0.45-0.55 15.5-18.9 0.60 20.6
750 5.2 0.45-0.55 18.1-22.2 0.60 24.2
1080 5.8 0.45-0.55 22.6-27.6 0.60 30.1
1260 6.2 0.45-0.55 24.2-29.5 0.60 32.2
1350 6.5 0.45-0.55 28.4-34.7 0.60 37.8
1530 6.9 0.50-0.60 35.5-42.6 0.65 46.2
1780 7.4 0.50-0.60 40.8-49.0 0.65 53.0
2200 7.9 0.50-0.60 46.5-55.8 0.65 60.5
2580 8.3 0.50-0.60 51.4-61.7 0.65 66.8
3200 8.9 0.50-0.60 59.0-70.9 0.65 76.8
4050-4350 9,8 0,55-0.65 78.8-93.1 0.70 100.3
5150-5500 10.6 0,55-0.65 92.2-108.9 0.70 117.3
1.2、焦批重
希望焦批厚度在400mm以上,调整负荷时,不要改变焦批,可以调整矿批,保持焦炭的透气窗作用,使煤气流稳定,有利于生产。
2、装料顺序
指矿石、焦炭装入高炉的顺序。
先装矿石,后装焦炭称为正装;反之,称为倒装。
将矿石、焦炭一同装入高炉叫同装。
正装上料,会使矿石分布在边缘较多,有压制边缘煤气流的作用,有利于提高煤气利用率,减少煤气对炉墙的冲刷,可提高高炉寿命。
倒装是起疏松边缘煤气流的作用,可降低压差,但煤气利用率不好。
同装一般是小料批作业用。
不同料速、不同炉料粒度对炉料在炉喉形成的堆角有差别。
一般焦炭的堆角小于大块矿
石的堆角。
大块矿形成的料面比较均匀。
采用炉顶摄像技术,在开炉时测量料面,可指导高炉生产时的装料制度。
3、料线
料线越深,炉料堆角越靠近边缘,边缘分布的炉料越多。
无料钟是用布料档位来调整堆尖。
正常生产时一般料线在1.5-2.0m。
高炉生产不允许在低料线情况下长期作业。
出现低料线时,要严格按特殊炉况进行处理,不能存在侥幸心理,否则,损失更大。
4、无料钟设备布料特征
使用无料钟设备进行多环布料,易形成一个脚踏平台,即为一个平台和漏斗组成。
控制平台大小,可调整中心的焦炭、矿石量。
平台小、漏斗大,则料面不稳定;平台大、漏斗小,则中心气流受控制。
粒度大的炉料易滚向中心,小粒度的炉料易在布料的堆尖周围。
无料钟设备布料一般设置8-12环布料(不是按炉喉半径等分环数,而是按圆周面积分档位),每个环设一个不同的角位,由外环逐步向里环进行,其倾角由里向外逐渐加大。
无料钟设备布料的基本要求:
①焦炭平台一般控制在炉喉半径的三分之一,最大不超过一半;确定后,一般不做调整。
②矿石布在焦炭平台边缘附近为宜。
③漏斗内可用少量焦炭来稳定中心气流(即中心加焦)。
5、调整装料制度的原则
为实现高炉生产稳定顺行,调整装料制度不能频繁、大动。
工长不能随意调整装料制度,要经过集体研究决定。
不随意临时加焦炭,避免炉温剧烈波动。
高炉操作调整的原则:
①尽早发现、掌握炉况波动的原因、性质,幅度,对症下药;
②早动、少动、要调整影响小的因素;
③要掌握各因素变量对高炉生产影响的时间,如喷煤在3-4h,焦炭在一个冶炼周期,风量在1.5-2h;
高炉操作调整的顺序:湿度-喷煤量-风温-风量-装料制度-焦炭负荷-净焦。
炉况波动大而发现晚,要采取多种手段同时进行;注意不要激化煤气量与透气性的矛盾,以保持高炉稳定顺行。