初中数学全部知识点和经典练习题
- 格式:ppt
- 大小:829.00 KB
- 文档页数:103
第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离. 5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
一、选择题。
1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42. a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b<-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( ) A a>0,b>0 B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
.所示的网格纸,每个小格均为正方形,且小正方形的边长为1,请在小网格观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a、b、c的值分别为20、29、30 B.18、30、26表二表三表四.④(0.1)-2•10-1=10(A )①② (B )②④ (C )②③ (D )②③④5、若x 2+2(m -3)x +16 是一个完全平方式,则m 的值是( )6、代数式a 2-1,0,,x+,-,m ,,–3b 13a 1y xy24x +y22中单项式是 ,多项式是 ,分式是 。
三、例题剖析1、设a-b=-2,求-ab的值。
a2+b222、若的积中不含有和()()q x x px x +-++38222x 项,求p 、q 的植。
3x 3、从边长为a 的正方形内去掉一个边长为b 的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是( ) A .a 2-b 2=(a+b )(a-b ) B.(a-b )2=a 2-2ab+b 2C.(a+b )2=a 2+2ab+b 2 D .a 2+ab=a (a+b )四、综合应用1、将连续的自然数1至36按右图的方式排成一个正方形阵列,用一个小正方形任意圈出其中的9个数,设圈出的9个数的中心的数为a ,用含有a 的代数式表示这9 个数的和为__________.2、用火柴棒按下图中的方式搭图形.(1)按图示规律填空:第n 个图形123……火柴棒根数(2)按照这种方式搭下去,搭第n 个图形需要_________根火柴棒.3、右边是一个有规律排列的数表,请用含n 的代数式(n 为正整数),表示数表中第n 行第n 列的数:______________.专题三 分式一、考点扫描1.分式:整式A 除以整式B ,可以表示成的形式,AB 如果除式B 中含有字母,那么称为分式.A B 注:(1)若B≠0,则有意义;(2)若B=0,则无AB AB 意义;(2)若A=0且B≠0,则=0A B 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.3.约分:把一个分式的分子和分母的公团式约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.5.分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.6.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.7.通分注意事项:(1)通分的关键是确定最简公分母,最简公分母应为各分母系救的最小公倍数与所有相同因式的最高次幂的积;(2)易把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.8.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.9.对于化简求值的题型要注意解题格式,要先化简,再代人字母的值求值.二、考点训练....3、如果a+b+|-1|=4+2-4,那c-1a-2b+1么a+2b-3c的值第二篇 方程与不等式专题五 一次方程(组)及应用一、考点扫描1、方程的有关概念含有未知数的等式叫做方程.使方程左右两边的值相等的未知数的值叫做方程的解(只含有—个未知数的方程的解,也叫做根).2、一次方程(组)的解法和应用只含有一个未知数,并且未知数的次数是1,系数不为零的方程,叫做一元一次方程.解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化成1.3、方程组的有关概念含有两个未知数并且未知项的次数是1的方程叫做二元一次方程.两个二元—次方程合在一起就组成了一个—。
初中数学知识点总结加例题一、数与代数。
(一)有理数。
1. 概念。
- 有理数包括整数和分数。
整数又分为正整数、0、负整数;分数分为正分数和负分数。
- 数轴:规定了原点、正方向和单位长度的直线。
- 相反数:绝对值相等,符号相反的两个数。
例如,3和 - 3互为相反数。
- 绝对值:一个数在数轴上所对应的点与原点的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
2. 有理数的运算。
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
- 减法:减去一个数等于加上这个数的相反数。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法:除以一个不等于0的数,等于乘这个数的倒数。
例题1:计算:(-2)+3 - (-5)解析:- 根据有理数的减法法则,(-2)+3 - (-5)=(-2)+3 + 5。
- 然后,按照有理数的加法法则,先计算(-2)+3 = 1。
- 计算1 + 5=6。
(二)实数。
1. 无理数:无限不循环小数,如√(2)、π等。
2. 实数的运算:实数的运算顺序是先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。
例题2:计算:√(4)+3 - π(精确到0.1)解析:- 先计算√(4)=2。
- 然后计算2 + 3-π=5-π。
- 因为π≈3.14,所以5 - π≈5 - 3.14 = 1.86≈1.9。
(三)代数式。
1. 整式。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
- 多项式:几个单项式的和叫做多项式。
- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
2. 整式的乘除。
- 同底数幂相乘,底数不变,指数相加,即a^m· a^n=a^m + n。
初二数学知识点归纳及例题初二数学知识点归纳(人教版)一、三角形。
1. 三角形的三边关系。
- 三角形任意两边之和大于第三边,任意两边之差小于第三边。
- 例如:已知三角形的两边长分别为3和5,则第三边x的取值范围是2 < x <8。
- 解析:根据三边关系,5 - 3 < x < 5+3,即2 < x <8。
2. 三角形的内角和定理。
- 三角形内角和为180°。
- 例如:在△ABC中,∠A = 50°,∠B = 60°,则∠C=180° - 50°-60° = 70°。
- 解析:直接利用三角形内角和定理,用180°减去已知的两个角的度数。
3. 三角形的外角性质。
- 三角形的一个外角等于与它不相邻的两个内角之和。
- 例如:在△ABC中,∠ACD是∠ACB的外角,∠A = 50°,∠B = 60°,则∠ACD=50° + 60°=110°。
- 解析:根据外角性质,∠ACD等于∠A与∠B的和。
二、全等三角形。
1. 全等三角形的判定。
- SSS(边边边):三边对应相等的两个三角形全等。
- 例如:在△ABC和△DEF中,AB = DE,BC = EF,AC = DF,则△ABC≌△DEF。
- 解析:因为三边分别相等,满足SSS判定定理。
- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。
- 例如:在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF,则△ABC≌△DEF。
- 解析:两边及夹角对应相等,符合SAS判定定理。
- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。
- 例如:在△ABC和△DEF中,∠A = ∠D,AB = DE,∠B = ∠E,则△ABC≌△DEF。
- 解析:两角及其夹边相等,满足ASA判定定理。
初一数学(下)应知应会的知识点整式的乘除1、 幂运算(七个公式)① 同底数幂相乘:底数不变,指数相加。
aaa nm nm +=② 幂的乘方:底数不变,指数相乘aa m nnm=)(③ 积的乘方:等于每个因数乘方的积b a ab mmm=)(④ 同指数幂相乘:指数不变,底数相乘。
)(ab b a mm m= ⑤ 同底数幂相除:底数不变,指数相减。
a a a nm nm-=÷ ⑥ 零指数:任何非零数的0次方等于1。
)0(10≠=a a⑦负指数:任何非零数的负指数等于它的正指数的倒数。
)0(1≠=-a aa pp2.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.3.单项式与多项式的乘法: m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加.4.多项式的乘法:(a+b)·(c+d)=ac+ad+bc+bd ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加. 5.乘法公式:(1)平方差公式:(a+b)(a-b)= a 2-b 2,两个数的和与这两个数的差的积等于这两个数的平方差; (2)完全平方公式:① (a+b)2=a 2+2ab+b 2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍; ② (a-b)2=a 2-2ab+b 2, 两个数差的平方,等于它们的平方和,减去它们的积的2倍; 6.同底数幂的除法:a m÷a n=a m-n,底数不变,指数相减. 7.零指数与负指数公式: (1)a 0=1 (a ≠0); a -n=na 1,(a ≠0). 注意:00,0-2无意义;(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5 .8.单项式除以单项式:系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.9.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.10.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.线段、角、相交线与平行线1、平行的说明(证明)以“三线八角”为基础判定:同位角相等 性质: 同位角相等 内错角相等 两直线平行 两直线平行 内错角相等 同旁内角互补 同旁内角互补 2、 全等的说明(证明)判定: 三边对应相等 (SSS ) 性质:两边夹一角对应相等 (SAS ) 对应边相等 两角夹一边对应相等 (ASA ) 两个三角形全等 全等三角形两角及一角的对边对应相等 (AAS ) 对应角相等 直角边和斜边对应相等 (HL )(A ) 角度的计算。
综合知识讲解目录第一章绪论11.1初中数学的特点11.2怎么学习初中数学21.3如何去听课51.4几点建议6第二章应知应会知识点72.1代数篇72.2几何篇11第三章例题讲解17第四章兴趣练习294.1代数部分294.2几何部分45第五章复习提纲50第一章绪论1.1初中数学的特点1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.1.2怎么学习初中数学1,培养良好的学习兴趣。
两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。
”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。
“好”和“乐”就是愿意学,喜欢学,这就是兴趣。
兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。
在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。
那么如何才能建立好的学习数学兴趣呢?(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。
听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
(3)思考问题注意归纳,挖掘你学习的潜力。
(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?(5)把概念回归自然。
所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生都是从实际生活中抽象出来的。
只有回归现实才能对概念的理解切实可*,在应用概念判断、推理时会准确。
2,建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。
高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。
新人教版初中数学七年级上册知识点汇总附典型练习题第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数, 和 统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数. 2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是 ;a+b 的相反数是 ; (3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m 4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
2016中考数学 超实用 重点知识点第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
初中代数专题复习知识点及习题一、整数的加法和减法1. 整数的加法规则整数的加法遵循以下规则:- 正数加正数:两个正数相加,结果为正数。
- 负数加负数:两个负数相加,结果为负数。
- 正数加负数:两个数的绝对值相减,差的符号由绝对值大的数决定。
例如,计算以下加法:- 3 + 4 = 7- (-6) + (-3) = -9- 5 + (-2) = 32. 整数的减法规则整数的减法遵循以下规则:- 正数减正数:两个正数相减,结果为正数。
- 负数减负数:两个负数相减,结果为负数。
- 正数减负数:先将减数的符号变为相反数,然后按照整数加法的规则进行计算。
例如,计算以下减法:- 5 - 2 = 3- (-8) - (-2) = -6- 6 - (-4) = 10二、代数式的运算1. 代数式的加法和减法代数式的加法和减法可以按照整数的运算规则进行计算。
将同类项相加或相减,并保持其它项不变。
例如,计算以下代数式的值:- 3x + 5x + 2x - 4x = 6x- 2y - 3y + 4y - y = 2y- 5a + 7b - 3a + 2b = 2a + 9b2. 代数式的乘法和除法代数式的乘法和除法遵循以下规则:- 两个同类项相乘时,将系数相乘并保持字母部分不变。
- 两个代数式相除时,将被除式的各项分别除以除数的各项。
例如,计算以下代数式的值:- 3x * 4x = 12x^2- (2y - 3z) * 5 = 10y - 15z- (4a - 2b) / 2 = 2a - b三、代数方程式1. 一元一次方程式一元一次方程式是形如ax + b = 0的方程,其中a和b是已知数,x是未知数。
解一元一次方程式的步骤:1. 将方程式化简为标准形式ax = c。
2. 将方程式两边同时除以a,得到x的值。
例如,解以下一元一次方程式:- 2x + 5 = 11- 首先化简方程:2x = 6- 然后将方程两边除以2,得到x = 32. 一元一次方程组一元一次方程组是多个一元一次方程组成的方程组。
七年级数学下册知识点汇总第五章 相交线与平行线一、知识网络结构 二、知识要点1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 ,垂直是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫 平行线 。
如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 ,另一条边互为反向延长线的两个角是邻补角。
邻补角的性质: 邻补角互补 。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。
5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线 4321 4321____________________________:其中一条叫做另一条的垂线。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样 的两个角叫 同位角 。
②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。
七年级数学上册知识点整理及过关练习第一章有理数无理数:无限不循环的小数。
强调除了无理数之外的所有数都是有理数,分数一定是有理数,凡是带π的一定是无理数。
题型一数轴、相反数、倒数及绝对值例1.如图,数轴上表示数-2的相反数的点是()A.点PB.点QC.点MD.点N例2.若|a-3|+|2b+5|=0,计算2a-b的值.思路点拨:若几个数的绝对值的和等于0,则这几个数就同时为0,即:若|a|+|b|=0时,a=0,b=0.解析:因为|a-3|≥0,|2b+5|≥0,要使|a-3|+|2b+5|=0,所以只有当a-3=0且2b+5=0时才成立,即a=3,b=-5/2 ;由此可得:2a-b=6-(-5/2)=17/2.总结升华:理解绝对值的概念从两方面入手,一是它的几何意义;二是它的代数意义。
知识点详解1.数轴:规定了原点,正方向和单位长度的直线叫数轴。
数轴三要素:原点、正方向、单位长度2.绝对值:几何定义:数轴上一个数所对应的点与原点(点零处)的距离叫做该数绝对值。
绝对值只能为非负数。
几何意义:在数轴上,一个数到原点的距离叫做该数的绝对值.如:指在数轴上表示的点与原点的距离,这个距离是5,所以的绝对值是5。
代数定义: |a|=a(a>0) |a|=-a(a<0) |a|=0(a=0)代数意义:正数和0的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0 互为相反数的两个数的绝对值相等 a的绝对值用“|a |”表示.读作“a 的绝对值”。
3.相反数:只有符号不同的大小相等的两个数,我们就说其中一个是另一个的相反数。
4.特别地,0的相反数是0。
一般地,任意的一个有理数a,它的相反数是-a。
a本身既可以是正数,也可以是负数,还可以是零。
5.互为相反数的两个数在数轴上表示出来后,表示这两个数的点,分别在原点的两旁,与原点的距离相等,并且互为相反数的两个数的和为0。
6.倒数:两数相乘为1的数互为倒数 .0没有倒数.性质:两个倒数的数的乘积等于1。
数学知识点初中全部一、知识概述《初中数学全部知识点》①基本定义:初中数学就是我们在初中阶段学习的关于数、形以及它们之间关系的一门学科。
数包括有理数、无理数这些,形就像三角形、四边形、圆这些图形。
②重要程度:初中数学是建立数学基础的重要时期。
就像盖房子打地基一样,学好初中数学才能更好地学习高中数学甚至大学的数学知识,对我们的日常生活如购物计算、测量房间大小等都有帮助。
③前置知识:在小学学的简单算术、基本图形认知等就是前置知识,这是我们学习初中数学的起始点。
④应用价值:在购物算账的时候能准确算出折扣价格;在装修房子时能算出房间面积用好材料。
比如说给卧室贴壁纸,要准确算墙面面积才能不浪费壁纸。
二、知识体系①知识图谱:数与代数、图形与几何、统计与概率等是初中数学的大板块。
数与代数像是树的主干,那有理数、整式、方程等就是树干上的枝丫。
②关联知识:方程和函数就有关联,方程就像一个特殊时刻函数的取值。
③重难点分析:几何部分的证明题对于一些同学来说是难点,关键在于逻辑推理性很强。
像证明三角形全等,要把定理搞清楚。
④考点分析:在考试中每个章节都可能考到。
数与代数中分式方程的求解经常考,可能以应用题的方式出。
比如说让根据路程速度时间的关系列出分式方程并求解。
三、详细讲解【理论概念类- 有理数】①概念辨析:有理数就是整数和分数的统称。
整数好理解,像1、- 2之类的,分数呢,像1/2、- 3/4这种。
②特征分析:有理数能写成有限小数或者无限循环小数。
③分类说明:可以分为正有理数、负有理数和0。
正有理数比如2、3/4,负有理数像- 1、- 1/3。
④应用范围:在计算温度变化、海拔高度这种涉及正负数量的情况很有用。
【方法技能类- 解一元一次方程】①基本步骤:先把方程中的括号去掉,再移项,把含未知数的项移到一边,常数项移到另一边,然后合并同类项,最后求解。
②关键要点:移项的时候要注意变号。
③常见误区:去括号的时候如果括号前面是负号,里面各项符号容易忘记变。
第五章相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:______。
第一章 有理数【课标要求】【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a 的相反数是-a ;若a 与b 互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离. 5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
【能力训练】一、选择题。
1.? 下列说法正确的个数是???????????????? (???? )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的????? A 1?? B 2?? C 3? ? D 4?2.? a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列???????????????(???? )A? -b<-a<a<b??? B? -a<-b<a<b??? C? -b<a<-a<b??? D? -b<b<-a<a3.? 下列说法正确的是??????????????????????? (???? )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A? ①②?? B? ①③??? C? ①②③??? D??? ①②③④4.下列运算正确的是????? ????????????????????(???? )A?? B?? -7-2×5=-9×5=-45C?? 3÷D?? -(-3)2=-95.若a+b<0,ab<0,则????????????????????????? (???? )A? a>0,b>0?? B? a<0,b<0C? a,b两数一正一负,且正数的绝对值大于负数的绝对值D? a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差?? (???? )A? 0.8kg?? B?? 0.6kg?? C? 0.5kg?? D? 0.4kg??7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是?????????????????????????? (?? ??)A ()5m??? B? [1-()5]m?? C ()5m?? D? [1-()5]m8.若ab≠0,则的取值不可能是?????????????? (???? )A?? 0?? B??? 1??? C? 2???? D?? -2二、填空题。
初中知识点详解与习题训练数学:初中代数知识点详解与习题训练数学是一门重要且基础的学科,初中阶段是学生建立数学基础知识的关键时期。
代数作为数学的一个重要分支,是初中数学的重点内容之一。
下面将详解初中代数的知识点,并提供一些习题训练。
一、代数基础知识1. 代数是研究数与数以字母等符号代替运算的一种方法和规律的数学分支。
它包括代数式、等式、不等式、函数等内容。
2. 代数式是由数、字母和运算符号组成的式子。
如:3x + 2y。
3. 等式是左右两边用等号连接的代数式。
如:2x + 3 = 7。
4. 不等式是左右两边用不等号连接的代数式。
如:3x - 2 > 5。
二、代数运算1. 代数式的四则运算:加法、减法、乘法、除法。
遵循相同法则,例如:可交换律、结合律、分配律等。
2. 代数式化简:合并同类项、因式分解等方法。
3. 代数方程的解:通过一系列的代数运算,求出使得方程等号成立的未知数的值。
三、一次方程与一元一次方程组1. 一次方程:只含有一个未知数的方程。
如:3x + 5 = 14。
2. 一元一次方程组:由两个或更多个一元一次方程组成的方程组。
如:3x + 2y = 10,4x - 3y = 8。
四、二次根式与一元二次方程1. 二次根式是包含一个未知数的平方根的代数式。
如:√(x + 3)。
2. 一元二次方程:包含未知数的平方的方程。
如:x^2 + 3x - 4 = 0。
五、实数与有理数1. 实数是包括有理数与无理数的全体数。
有理数是可以表示为两个整数之比的数。
2. 实数运算:实数的加法、减法、乘法、除法。
3. 有理数运算:有理数的加法、减法、乘法、除法。
六、函数与图像1. 函数是一种特殊的关系,它把每一个自变量与唯一的因变量相对应。
2. 函数的图像可以通过绘制函数的坐标点得到。
3. 常见函数类型:一次函数、二次函数、绝对值函数等。
七、几何相关1. 平面几何的基本概念:点、线、面的定义与性质。
2. 三角形和四边形的性质:如等边三角形、等腰三角形、矩形、平行四边形等。
初中知识点总结及题目数学一、整数1. 整数的概念及性质2. 整数的四则运算3. 整数的倍数、因数与能不能4. 整数的混合运算二、分数1. 分数的概念及性质2. 分数的加减乘除运算3. 分数的化简与比较大小4. 分数的混合运算三、小数1. 小数的概念及性质2. 小数的加减乘除运算3. 小数的混合运算4. 小数与分数的互相转换四、代数1. 代数的基本概念2. 一元一次方程的解法3. 一元一次方程的应用4. 一元一次方程与整数的关系五、平面几何1. 点、线、面的基本概念2. 角的性质及分类3. 直线、射线、线段、平行线、垂直线4. 三角形、四边形的性质六、运算定理1. 同底数幂的乘法和除法2. 零指数与负指数3. 平方根与立方根的性质4. 分解因式5. 因式分解、公式运用七、统计与概率1. 统计图的画法与解读2. 概率的计算与应用3. 实际问题的概率计算八、函数1. 函数的概念及性质2. 函数的图像与解析式3. 一次函数与二次函数的应用以上是初中数学常见的知识点总结,下面列出一些相关的练习题供同学们练习:整数1. 计算:(-3) + 10 -(-5) + 8 - 6 = ?2. 求出-3的-4次方3. 用直线表示数轴上的-3,-4,-5和-6。
4. 判断:-4是否是-3的倍数?5. 计算:-3 ×(-5)=?6. 若-3,-6,-9,-12中最小的数是负整数a,则a=__。
7. (-4)+5-7-(-5)+(-2)=?分数1. 计算:2/3 + 3/5 =2. 化简:12/30 =3. 比较大小:2/5 与 3/74. 计算:3/4 - 1/2 =5. 求 7/8 与 5/6 的最小公倍数6. 小明要到村里去,他有汽车的1/4时间,步行的3/4 时间,求他做汽车的时间完步行的时间的比值。
7. 计算:(1/2)×3/4=小数1. 计算:2.3 × 4.5 =2. 小数点左移、右移有什么规律?3. 将小数4.56化为分数形式4. 小数和分数互化:0.6和3/5的关系5. 画出小数0.75对应的分数代数1. 求解方程:3x - 5 = 72. 一个数的2倍加5等于17,求这个数3. 如果 a + b = 10, b - a = 4,求a和b的值4. 一天中的某个时间的时、分、秒和有多少秒相等,这个时间是说是多少分钟后的时间?5. 已知x = 5时,y = x2 - 3x + 5,求y。
1.(1)只有非负数才有平方根和立方根;(2)如果a ,那么a ;(3)如果a ,那么;(4)立方根等于它本身的数有0,1,-1 ;(5)一个正数的平方根一定大于它的立方根。
A.1个 B 2个 C3个 D4个2.a.一个正数a的立方根,用符号“________”表示,其中a叫做________,根指数是________.b.平方根等于它本身的数是________,算术平方根等于它本身的数是________.c.________的平方根有两个,________的平方根只有一个,并且________没有平方根3.数轴:a.利用数轴可以比较有理数的大小,数轴上从左往右的点表示的数就是按从小到大的顺序。
b.利用数轴求不等式组的解p1-11 p3-194. 相反数:只有符号不同的两个数互为相反数,其中的一个数叫做另一个数的相反数。
a的相反数是-a,0的相反数是0。
P1-1 p1-9 p3-205.绝对值:在数轴上表示一个数的点离开原点的距离就叫做这个数的绝对值。
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数。
0的绝对值是0。
公式|a|=? P1-2 p3-11 p3-226.科学计数法:a×10的n次幂的形式。
将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,这种记数方法叫科学记数法。
1348=7.近似值与有效数字:a.四舍五入法:把3.15482分别保留一位、两位、三位小数b.对于一个近似数,从左边第一个不是0的数字起,到精确到的位数止,所有的数字都叫做这个数的有效数字.如:8.35=8.350=8.3500 p1-138.实数及分类: b.无理数是无限不循环小数。
不能写作两整数之比。
若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
如圆周率、√2. P1-89.实数的运算:实数混合运算的顺序:先算乘方和开方,再算乘除,最后算加减。
知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0. 知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。
2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限. 知识点3:已知自变量的值求函数值 1.当x=2时,函数y=32-x 的值为1.2.当x=3时,函数y=21-x 的值为1.3.当x=-1时,函数y=321-x 的值为1.知识点4:基本函数的概念及性质 1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 21-=是反比例函数.4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(212+-=x y 的顶点坐标是(1,2).7.反比例函数xy 2=的图象在第一、三象限. 知识点5:数据的平均数中位数与众数 1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3. 知识点6:特殊三角函数值 1.cos30°=23. 2.sin 260°+ cos 260°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1.5.cos60°+ sin30°= 1. 知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。