初中数学全部知识点和 练习题
- 格式:ppt
- 大小:826.00 KB
- 文档页数:103
第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离. 5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
一、选择题。
1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42. a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b<-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( ) A a>0,b>0 B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
初中数学知识点大全(全部知识内容)第一章实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
第二章代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
分式的知识点及典型例题分析1、分式的定义:例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2—a 2、m 1、65xy x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 .⑴275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +。
(2)下列式子,哪些是分式?5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145b-+。
2、分式有,无意义,总有意义:(1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12+x ≠0)例1:当x 时,分式51-x 有意义; 例2:分式xx -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义. 例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( )A .122+x x B 。
12+x x C 。
133+x x D 。
25xx - 例7:使分式2+x x有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2<x例8:要是分式)3)(1(2-+-x x x 没有意义,则x 的值为( )A. 2 B 。
—1或—3 C 。
-1 D 。
3同步练习题:3、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去.例1:当x 时,分式121+-a a的值为0 例2:当x 时,分式112+-x x 的值为0例3:如果分式22+-a a 的值为为零,则a 的值为( ) A. 2± B 。
初三数学知识练习题有答案1. 定义与性质1.1 有理数有理数是可以用两个整数的比表示的数,包括正整数、负整数、零以及分数。
有理数的集合用符号Q表示。
(1)-3是负有理数还是正有理数?(2)写出2的相反数。
(3)将-3和2这两个有理数写成分数的形式。
(4)真分数和假分数有何区别?1.2 整数整数是包括正整数、零和负整数的集合,用符号Z表示。
(1)整数2和有理数2有何不同?(2)整数-3与有理数-3有何不同?(3)写出-5的绝对值。
(4)从-2到2的整数有哪些?1.3 实数实数是数轴上的所有点的集合,包括有理数和无理数。
(1)给出一个无理数的例子。
(2)-3属于实数吗?(3)开方是指什么操作?(4)实数可以表示为无限循环小数吗?2. 算术运算2.1 加法和减法(1)计算:13 + (-5) =?(2)计算:-8 + (-4) =?(3)计算:7 - 12 =?(4)计算:-5 - (-3) =?2.2 乘法和除法(1)计算:(-2) × 3 =?(2)计算:5 × (-4) =?(3)计算:10 ÷ (-5) =?(4)计算:-18 ÷ (-3) =?3. 平方与平方根3.1 定义平方是指一个数乘以自己得到的积,用符号a²表示。
平方根是指一个数的平方等于给定数的操作,用符号√a表示。
(1)计算:4² =?(2)计算:(-3)² =?(3)计算:√49 =?(4)计算:√121 =?3.2 性质(1)负数的平方是正数还是负数?(2)正数的平方根是正数还是负数?(3)负数的平方根存在吗?(4)任何正整数的平方根存在吗?4. 分数与小数4.1 分数的定义分数是指一个整数与另一个整数的比,分子表示其中的整数,分母表示其中的另一个整数。
(1)将16写成最简分数的形式。
(2)将6/12写成最简分数的形式。
(3)将5/8转化为小数。
(4)将0.4转化为分数。
初中数学知识点总结加例题一、数与代数。
(一)有理数。
1. 概念。
- 有理数包括整数和分数。
整数又分为正整数、0、负整数;分数分为正分数和负分数。
- 数轴:规定了原点、正方向和单位长度的直线。
- 相反数:绝对值相等,符号相反的两个数。
例如,3和 - 3互为相反数。
- 绝对值:一个数在数轴上所对应的点与原点的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
2. 有理数的运算。
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
- 减法:减去一个数等于加上这个数的相反数。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法:除以一个不等于0的数,等于乘这个数的倒数。
例题1:计算:(-2)+3 - (-5)解析:- 根据有理数的减法法则,(-2)+3 - (-5)=(-2)+3 + 5。
- 然后,按照有理数的加法法则,先计算(-2)+3 = 1。
- 计算1 + 5=6。
(二)实数。
1. 无理数:无限不循环小数,如√(2)、π等。
2. 实数的运算:实数的运算顺序是先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。
例题2:计算:√(4)+3 - π(精确到0.1)解析:- 先计算√(4)=2。
- 然后计算2 + 3-π=5-π。
- 因为π≈3.14,所以5 - π≈5 - 3.14 = 1.86≈1.9。
(三)代数式。
1. 整式。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
- 多项式:几个单项式的和叫做多项式。
- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
2. 整式的乘除。
- 同底数幂相乘,底数不变,指数相加,即a^m· a^n=a^m + n。
初二数学知识点归纳及例题初二数学知识点归纳(人教版)一、三角形。
1. 三角形的三边关系。
- 三角形任意两边之和大于第三边,任意两边之差小于第三边。
- 例如:已知三角形的两边长分别为3和5,则第三边x的取值范围是2 < x <8。
- 解析:根据三边关系,5 - 3 < x < 5+3,即2 < x <8。
2. 三角形的内角和定理。
- 三角形内角和为180°。
- 例如:在△ABC中,∠A = 50°,∠B = 60°,则∠C=180° - 50°-60° = 70°。
- 解析:直接利用三角形内角和定理,用180°减去已知的两个角的度数。
3. 三角形的外角性质。
- 三角形的一个外角等于与它不相邻的两个内角之和。
- 例如:在△ABC中,∠ACD是∠ACB的外角,∠A = 50°,∠B = 60°,则∠ACD=50° + 60°=110°。
- 解析:根据外角性质,∠ACD等于∠A与∠B的和。
二、全等三角形。
1. 全等三角形的判定。
- SSS(边边边):三边对应相等的两个三角形全等。
- 例如:在△ABC和△DEF中,AB = DE,BC = EF,AC = DF,则△ABC≌△DEF。
- 解析:因为三边分别相等,满足SSS判定定理。
- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。
- 例如:在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF,则△ABC≌△DEF。
- 解析:两边及夹角对应相等,符合SAS判定定理。
- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。
- 例如:在△ABC和△DEF中,∠A = ∠D,AB = DE,∠B = ∠E,则△ABC≌△DEF。
- 解析:两角及其夹边相等,满足ASA判定定理。
第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o . 第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项.第三章 一元一次方程考点一、一元一次方程的概念 (6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。
第四章 图形的初步认识考点一、直线、射线和线段 (3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
初二数学知识点大全和练习题数学是一门重要的学科,对于初中生来说尤为重要。
在初二阶段,学生将进一步巩固和拓宽他们的数学知识,为更高级的数学学习做好准备。
本文将介绍初二数学的知识点大全,并提供一些练习题,以帮助学生巩固所学知识。
下面将根据数学的不同学习领域来展开阐述。
一、代数1. 整式与多项式- 定义:整式是若干个单项式通过加减运算得到的式子,多项式是若干个整式通过加减运算得到的式子。
- 多项式的运算法则:加法法则和乘法法则。
- 因式分解:将一个多项式表示为几个因子相乘的形式。
练习题:将下列多项式进行因式分解:1) 6x² + 5x2) x² - 43) 4x³ - 8x² + 2x2. 方程与不等式- 方程的定义:等号连接的含有未知数的式子。
- 解方程的方法:加减消元法、配方法、等式两边取对数等。
- 不等式的定义:包含大于(>)、小于(<)、大于等于(≥)、小于等于(≤)关系的式子。
- 解不等式的方法:由不等式性质得出解,进行图像法等。
练习题:求解下列方程或不等式的解集:1) 2x + 5 = 132) 3(x - 2) = 153) |2x - 8| > 10二、几何1. 平面几何- 图形的定义与性质:点、线段、角、圆等。
- 三角形的分类与性质:等边三角形、等腰三角形、直角三角形等。
- 五类基本几何关系:相等、相似、全等、平行、垂直。
练习题:判断下列命题是否正确,并说明理由:1) 两条相互垂直的直线一定不平行。
2) 等腰三角形的底边一定平行于其他两边之一。
3) 两个全等的圆一定具有相同的半径。
2. 空间几何- 空间几何的基本概念:点、直线、平面、轴、棱、面等。
- 空间几何中的基本定理:如垂直平分线定理、平行四边形的性质等。
- 点、直线、平面之间的位置关系:如点在线上、两条直线相交于一点、点在平面上等。
练习题:判断下列正误,并说明理由:1) 两条异面直线一定相交。
综合知识讲解目录第一章绪论11.1初中数学的特点11.2怎么学习初中数学21.3如何去听课51.4几点建议6第二章应知应会知识点72.1代数篇72.2几何篇11第三章例题讲解17第四章兴趣练习294.1代数部分294.2几何部分45第五章复习提纲50第一章绪论1.1初中数学的特点1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.1.2怎么学习初中数学1,培养良好的学习兴趣。
两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。
”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。
“好”和“乐”就是愿意学,喜欢学,这就是兴趣。
兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。
在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。
那么如何才能建立好的学习数学兴趣呢?(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。
听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
(3)思考问题注意归纳,挖掘你学习的潜力。
(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?(5)把概念回归自然。
所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生都是从实际生活中抽象出来的。
只有回归现实才能对概念的理解切实可*,在应用概念判断、推理时会准确。
2,建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。
高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。