数控机床其它插补方法介绍
- 格式:doc
- 大小:54.50 KB
- 文档页数:3
第五节 其他插补方法前面已经介绍了几种较常用的插补方法,但数控技术经过数十年的发展,特别是微处理器的应用,在原有的脉冲增量法插补原理基础上又派生出许多改进或新型的插补算法,例如:比较积分法、时差法、矢量判别法、最小偏差法、脉冲增量式的直接函数法等。
针对复杂曲线轮廓或列表曲线轮廓,在数据采样法中又提出了一些新的插补算法,例如:样条插补、螺纹插补等。
为此,下面继续简单介绍比较积分法插补、样条插补以及螺纹插补的基本思路。
一、比较积分法前面己经介绍,逐点比较法速度平稳,调整方便,但不容易实现多坐标轴的联动;而DDA 法便于坐标轴的扩展,但速度控制不太方便。
现若将这两种算法结合在一起,就能够扬长避短,集两者优点于一身,实现各种函数和多坐标轴联动插补,且插补精度较高,运算简单,易于调整,是一种比较理想的脉冲增量式插补方法。
(一)比较积分法直线插补设将要插补的第一象限直线起点在坐标原点O (0,0),终点为E (X e ,Y e ),则直线上的所有动点N (X i ,Y i )必然满足下面等式i ee i X X Y Y =(3-97) 现对式(3-97)求微分得 ee i i X Y dX dY = (3-98) 如果在此基础上引入时间变量t ,分别对两坐标变量进行积分,就可得到前面介绍的DDA 直线插补算法。
显然,如此处理不是目的,下面必须另辟新径,寻找一种更理想的解决方案。
为此引入比较判别的思想,建立两个被积函数之间的内在联系,将式(3-98)改写为增量形式,即有Y e ∆X i =X e ∆Y i (3-99)由于式中X e 、Y e 均是以脉冲当量为单位的数字量,设∆X i 、∆Y i 均为单位位移增量,在数值上为“1”。
现对式(3-99)两边进行积分,并利用矩形法求其积分值,可得∑∑===ii Y j e X i e X Y 11 或 Y e +Y e +……+Y e =X e +X e +……+X e (3-100)(X i 项) (Y i 项)在这里要指出的是,式(3-100)等号两边求和的项数不一定相等,等式左边是X i 项,而右边是Y i 项。
机床数控技术教学课件:数控插补—第章(一)《机床数控技术教学课件:数控插补—第章》是一本系统、完整的数控技术教学课件,在数控技术领域拥有着极高的教育价值。
该课件集合了数十年的机床数控技术发展历程与最新的发展动态,对机床数控技术进行了全面而精细的系统讲解。
其中,数控插补一章,是这本课件的重要组成部分之一。
一、数控插补技术介绍数控插补是机床数控系统的核心技术,它可以将一定数学模型的输入转化为机床的动作指令,从而实现机床运动轨迹的控制。
对于机床来说,数控插补技术的正确应用,能大大提高机床的加工精度和加工效率,为生产企业创造更高的经济效益。
二、数控插补技术的分类数控插补技术按照运动方式可分为直线插补和圆弧插补两种;按照插补限制可分为直接控制和间接控制两种;按照插补路径可分为总体插补和分段插补两种。
三、数控系统中的数学模型数控系统中的数学模型主要包括直线的向量增量法、圆弧的向量增量法和程控圆弧等。
在进行数控插补路径设计时,必须根据实际加工对象的形状和加工要求,相应选择不同的数学模型。
四、数控插补技术的程序编写数控插补技术的程序编写,需要熟悉如何导入数据、如何设置程序坐标系、如何选择数学模型等。
在实际编写数控插补程序时,要根据加工对象的要求和机床的性能特点进行调整和优化。
五、数控系统中的插补错误及其解决方法数控插补中可能出现的错误有:绝对位置误差、相对位置误差和轮廓误差等。
当发现插补错误时,需要通过调整程序中的参数、选择不同的插补方式和优化数学模型来解决问题。
总之,《机床数控技术教学课件:数控插补—第章》是一本系统、完整和权威的数控技术教材,通过本课程的学习,可以帮助初学者深入了解机床数控技术的各种技术,掌握数控插补技术的基本原理,进而提升数控加工的精度和生产效率。
因此,无论是从实用角度,还是从理论角度来考虑,在数控技术教学领域中,该书都可以被视为一本不可多得的优秀参考书。
多轴联动常用插补算法
多轴联动是指在数控加工过程中,多个轴同时协同运动以完成复杂零件的加工。
为了实现精确且高效的多轴联动,需要采用合适的插补算法进行控制。
常见的多轴联动插补算法包括以下几种:
1. 直线插补:直线插补是最基本的插补算法,用于控制轴在直线轨迹上运动。
直线插补算法根据预设的轨迹,通过控制电机转速和加速度,使轴按照指定的速度和加速度曲线运动。
2. 圆弧插补:圆弧插补用于控制轴在圆弧轨迹上运动。
与直线插补类似,圆弧插补算法也需要根据预设的轨迹,控制电机转速和加速度,使轴按照指定的速度和加速度曲线运动。
3. 样条插补:样条插补是一种基于多项式的插补方法,可以实现较为复杂的曲线轨迹。
通过拟合多项式曲线,样条插补可以控制轴在不同坐标系下实现平滑过渡,提高加工精度。
4. 电子凸轮插补:电子凸轮插补是一种基于数字信号处理的插补方法,通过预设的数字信号序列来控制轴的运动。
电子凸轮插补可以实现复杂的轨迹和动作,但相对于其他插补算法,其精度较低。
5. 全闭环运动控制插补:全闭环运动控制插补是一种基于反馈控制的插补方法,通过对各轴实际位置与电机实际位置之间的偏差进行实时调整,实现高精度的多轴联动。
全闭环运动控制插补可以保证多轴联动轮廓精度、定位精度及重复定位精度,同时保证伺服电机稳定运行。
在实际应用中,根据不同的加工需求和设备条件,可以选择合适的插补算法来实现多轴联动。
同时,为了提高插补算法的性能和稳定性,还可以采用诸如优化算法、PID控制等方
法进行优化。
数控机床的插补原理及方法1概述在数控加工中,被加工零件的轮廓形状千变万化、形状各异。
数控系统的主要任务,是根据零件数控加工程序中的有关几何形状、轮廓尺寸的数控及其加工指令,计算出数控机床各运动坐标轴的进给方向及位移量,分别驱动各坐标轴产生相互协调的运动,从而使得伺服电机驱动机床工作台或刀架相对主轴(即刀具相对工件)的运动轨迹以一定的精度要求逼近所加工零件的理想外形轮廓尺寸。
2插补的基本概念数控系统的主要作用是控制刀具相对于工件的运动轨迹。
一般根据运动轨迹的起点坐标、终点坐标和轨迹的曲线方程,有数控系统实时地算出各个中间点的坐标,即“插入、补上”运动轨迹各个中间点的坐标,通常把这个过程称为“插补”。
机床伺服系统根据这些坐标值控制各坐标轴协调运动,走出规定的轨迹。
插补工作可以由软件或硬件来实现。
早期的硬件数控系统(NC系统)都采用的数字逻辑电路来完成插补工作,在NC中有一个专门完成插补运算的装置,称为插补器。
现代数控系统(CNC或MNC系统),插补工作一般用软件来完成,或软硬件结合实现插补。
而无论是软件数控还是硬件数控,其插补运算的原理基本相同。
它的作用都是根据给定的信息进行数字计算,在计算过程中不断向各个坐标轴发出相互协调的进给脉冲,使刀具相对于工件按指定的路线移动。
3对插补器的基本要求和插补方法的分类对于硬件插补器的要求如下。
1)插补所需的原始数据较少。
2)有较高的插补精度,插补结果没有累积误差,局部偏差应不超过所允许的误差(一般应小于一个脉冲当量)。
3)沿进给线路,进给速度恒定且符合加工要求。
4)电路简单可靠。
插补器的形式很多,从产生的数学模型分,有一次(直线插补器)、二次(圆、抛物线、双曲线、椭圆)插补器及高次曲线插补器等。
从基本原理分,有数字脉冲乘法器、逐点比较法插补器、数字积分器、比较积分法插补器等。
常用的插补方法有基准脉冲插补法和数据采样插补法两种。
第一象限逆圆弧为例,讨论圆弧的插补方法。
如图8-4 所示,设要加工圆弧为第一象限逆圆弧AB ,原点为圆心O ,起点为A (xo ,y 0),终点为B (x e ,y e )半径R ,瞬时加工点为P (x i ,y i ),点P 到圆心距离为Rp<0+△y>0-△x <0+△x <0+△y>0-△x<0-△y <0-△y>0+△x yx图8-2 第一象限直线插补轨迹图 图 8-3第一象限直线插补程序框图图12345X123YF>0p(xi,yi)A(Xi,Yi)F<0开始初始化Xe ,Y e ,JF≥0?+x 走一步F←F -Y e F←F -X e-y 走一步YNJ ←J-1J =0?Y结束若点P 在圆弧内则,则有x i2+y j2=R2p<R2即x i2+y j2-R2 < 0显然,若令F i,j= x i2+y j2-R2(8-4)图8-4 逆圆弧插补则有:(1)F i,j= F i,j=0, 则点P在圆弧上(2)F i,j >0则点P在圆弧外则(3)F i,j<0则点P在圆弧不则常将8-4称为圆弧插补偏差判别式。
当F i,j≥时,为逼近圆弧,应向-x方向进给一步;当F i,j<0时,应向+y 方向走一步。
这样就可以获得逼近圆弧的折线图。
与直线插补偏差计算相似,圆弧插补的偏差的计算也采用递推的方法以简化计算。
若加工点P(x i,y i)在圆弧外或者圆弧上,则有:F i,j=x i2+y j2-R2≥0 为逼近该圆沿-x方向进给一步,移动到新加工点P(x i=1,y i),此时新加工点的坐标值为x i+1=x i-1,y i=y i新加工点的偏差为:F i+1,j=(x i-1)2+y i2-R2=x i2-2x i+1+ y i2-R2= x i2+ y i2-R2+1即F i+1,j= F i,j-2x i+1 (8-5)若加工P(x i,y i)在圆弧内,则有F i,j=x i2+y j2-R2<0若逼近该圆需沿+y方向进给一步,移到新加工点P(x i,y i),此时新加工点的坐标值图8-5 第一象限圆弧插补程序框图为新加工点的偏为:F i,j+1=x i2+(y i+1)2-R2=x i2+ y i2+1 -R2= x i2+ y i2-R2+1+2y iF i,j+1= F i,j-2y i+1 (8-6)从(8-5)和式(8-6)两式可知,递推偏差计算仅为加法(或者减法)运算,大大降低了计算的复杂程度。
数控机床直线插补公式数控机床直线插补是数控机床加工过程中最基本的插补方式之一。
它通过控制机床的各轴运动,使切削工具按照一定的轨迹进行直线运动,实现对工件的加工。
直线插补是数控机床实现高速、高精度加工的关键技术之一。
首先,直线插补的数学模型是线性插补方程。
设机床坐标系为Oxyz,工件坐标系为OXYz,设直线的起点为P1(x1, y1, z1),终点为P2(x2, y2, z2)。
则直线插补方程可以表示为:x=x1+(x2-x1)*t;y=y1+(y2-y1)*t;z=z1+(z2-z1)*t,其中t为时间参数,取值范围为[0,1]。
通过控制t的变化,可以实现直线插补运动。
其次,直线插补的速度规划是实现高速加工的关键。
直线插补过程中,速度的规划要考虑到工件形状、机床的动态特性和加工精度要求等因素。
一般来说,直线插补速度规划可以分为两个阶段:加速段和匀速段。
加速段的目的是使机床迅速加速到设定的速度,而匀速段则是保持恒定的速度进行加工。
速度规划的目标是使机床在考虑动态特性和加工精度要求的前提下,尽可能地提高加工效率。
同时,直线插补的误差补偿是保证加工精度的关键。
由于机床本身的误差和外部环境的影响,直线插补过程中会产生一定的误差。
为了保证加工精度,需要对误差进行补偿。
误差补偿一般分为两类:静态误差补偿和动态误差补偿。
静态误差补偿是在刀具轨迹上对误差进行修正,常用的方法有坐标误差补偿、用户自定义的曲线修正等;而动态误差补偿是通过改变刀具轨迹,使得误差在加工过程中得以消除,常用的方法有加速度预测和最优轨迹规划等。
最后,直线插补的应用范围非常广泛。
它适用于各种形状的工件加工,如直线、圆弧、椭圆等。
在汽车制造、航空航天、电子设备等行业中,直线插补广泛应用于零件的加工。
直线插补可以实现高速加工和高精度加工,大大提高了生产效率和产品质量。
总结起来,数控机床直线插补是实现高速、高精度加工的重要技术。
它通过控制机床轴的运动,使切削工具按照一定的轨迹进行直线运动,从而实现对工件的加工。
数控加工中两种插补原理及对应算法数控机床上进行加工的各种工件,大部分由直线和圆弧构成。
因此,大多数数控装置都具有直线和圆弧的插补功能。
对于非圆弧曲线轮廓轨迹,可以用微小的直线段或圆弧段来拟合。
插补的任务就是要按照进给速度的要求,在轮廓起点和终点之间计算出若干中间控制点的坐标值。
由于每个中间点计算的时间直接影响数控装置的控制速度,而插补中间点的计算精度又影响整个数控系统的精度,所以插补算法对整个数控系统的性能至关重要,也就是说数控装置控制软件的核心是插补。
插补的方法和原理很多,根据数控系统输出到伺服驱动装置的信号的不同,插补方法可归纳为脉冲增量插补和数据采样插补两种类型。
一、脉冲增量插补这类插补算法是以脉冲形式输出,每次插补运算一次,最多给每一轴一个进给脉冲。
把每次插补运算产生的指令脉冲输出到伺服系统,以驱动工作台运动。
一个脉冲产生的进给轴移动量叫脉冲当量,用δ表示。
脉冲当量是脉冲分配计算的基本单位,根据加工的精度选择,普通机床取δ=0.01mm,较为精密的机床取δ=1μm或0.1μm。
插补误差不得大于一个脉冲当量。
这种方法控制精度和进给速度低,主要运用于以步进电动机为驱动装置的开环控制系统中。
二、数据采样插补数据采样插补又称时间标量插补或数字增量插补。
这类插补算法的特点是数控装置产生的不是单个脉冲,而是数字量。
插补运算分两步完成。
第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来拟合给定曲线,每一微小直线段的长度△L都相等,且与给定进给速度有关。
粗插补时每一微小直线段的长度△L与进给速度F和插补T周期有关,即△L=FT。