数控机床装置的插补原理
- 格式:ppt
- 大小:305.50 KB
- 文档页数:52
数控系统插补的方法和原理数控机床上进行加工的各种工件,大部分由直线和圆弧构成。
因此,大多数数控装置都具有直线和圆弧的插补功能。
对于非圆弧曲线轮廓轨迹,可以用微小的直线段或圆弧段来拟合。
插补的任务就是要根据进给速度的要求,在轮廓起点和终点之间计算出若干中间掌握点的坐标值。
由于每个中间点计算的时间直接影响数控装置的掌握速度,而插补中间点的计算精度又影响整个数控系统的精度,所以插补算法对整个数控系统的性能至关重要,也就是说数控装置掌握软件的核心是插补。
插补的方法和原理许多,依据数控系统输出到伺服驱动装置的信号的不同,插补方法可归纳为脉冲增量插补和数据采样插补两种类型。
一、脉冲增量插补这类插补算法是以脉冲形式输出,每次插补运算一次,最多给每一轴一个进给脉冲。
把每次插补运算产生的指令脉冲输出到伺服系统,以驱动工作台运动。
一个脉冲产生的进给轴移动量叫脉冲当量,用δ表示。
脉冲当量是脉冲安排计算的基本单位,依据加工的精度选择,一般机床取δ=0.01mm,较为精密的机床取δ=1μm或0.1μm 。
插补误差不得大于一个脉冲当量。
这种方法掌握精度和进给速度低,主要运用于以步进电动机为驱动装置的开环掌握系统中。
二、数据采样插补数据采样插补又称时间标量插补或数字增量插补。
这类插补算法的特点是数控装置产生的不是单个脉冲,而是数字量。
插补运算分两步完成。
第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来拟合给定曲线,每一微小直线段的长度△L 都相等,且与给定进给速度有关。
粗插补时每一微小直线段的长度△L 与进给速度F和插补T周期有关,即△L=FT。
图1 数据采样插补其次步为精插补,它是在粗插补算出的每一微小直线上再作“数据点的密化”工作。
这一步相当于对直线的脉冲增量插补。
数据采样插补方法适用于闭环、半闭环的直流或沟通伺服电动机为驱动装置的位置采样掌握系统中。
插补的原理插补是数控加工中的重要概念,它是指在机床进行加工过程中,根据加工轨迹的要求,通过控制机床的运动轴进行插补运动,从而实现复杂曲线的加工。
插补的原理是数控加工中的核心内容之一,下面将从插补的基本原理、插补的分类以及插补的应用等方面进行详细介绍。
首先,插补的基本原理是数控加工中的基础知识,它包括直线插补和圆弧插补两种基本插补方式。
直线插补是指机床在直线轨迹上进行插补运动,而圆弧插补则是指机床在圆弧轨迹上进行插补运动。
在数控加工中,插补运动是通过控制机床各个坐标轴的运动来实现的,通过对各个坐标轴的速度、加速度和位置进行合理的控制,可以实现复杂曲线的加工。
其次,插补可以根据其运动方式的不同进行分类,主要包括直线插补、圆弧插补、螺旋线插补等。
直线插补是最简单的插补方式,它是通过控制机床的各个坐标轴,使其在直线轨迹上进行插补运动。
圆弧插补则是在圆弧轨迹上进行插补运动,它需要通过对圆弧的半径、起点和终点等参数进行合理的控制。
螺旋线插补则是在三维空间中进行插补运动,它需要对螺旋线的半径、螺距、起点和终点等参数进行合理的控制。
不同的插补方式可以实现不同形状的曲线加工,从而满足不同加工要求。
最后,插补在数控加工中有着广泛的应用,它可以实现复杂曲线的加工,提高加工精度和效率。
在实际加工中,通过合理的插补运动,可以实现各种复杂曲线的加工,如汽车零部件、航空航天零部件、模具等领域的加工。
同时,插补运动还可以实现多轴联动,从而实现更加复杂的加工要求,如五轴联动加工、六轴联动加工等。
因此,插补在数控加工中具有非常重要的意义,它是实现复杂曲线加工的关键技术之一。
综上所述,插补是数控加工中的重要概念,它通过合理的运动控制,实现复杂曲线的加工。
插补的基本原理包括直线插补和圆弧插补,可以根据其运动方式的不同进行分类。
插补在数控加工中有着广泛的应用,可以实现各种复杂曲线的加工,提高加工精度和效率。
因此,深入理解插补的原理对于提高数控加工的质量和效率具有重要意义。
插补原理及控制方法插补原理是指在数控机床运动控制系统中,通过对多个轴同时进行定长或定角度的运动控制,实现复杂曲线的加工。
插补控制方法包括线性插补和圆弧插补两种。
一、线性插补线性插补是指在工件加工中,沿直线轨迹进行直线段的插补控制方法。
线性插补的原理是通过控制系统对多个轴的运动速度和方向进行精确控制,使得工件能够沿着设定的直线路径进行加工。
线性插补的控制方法包括点位控制和连续控制两种。
1.点位控制点位控制是将每个插补段分解成多个线性插补点,通过对每个点的坐标进行控制,实现工件的加工。
点位控制方式适用于工件形状简单、精度要求不高的情况下。
2.连续控制连续控制是通过对每个时间段内的轴位置进行插补计算,实现工件的连续运动。
此命令适用于工件形状复杂、精度要求较高的场景。
在连续控制中,通常使用插补算法进行计算,将每个时间段内需要插补的线性段分割成多个小段,并根据小段的长度和速度来确定每个小段的运动规律。
二、圆弧插补圆弧插补是指在数控机床加工中,通过对多个轴的运动进行控制,实现工件上圆弧曲线的加工。
圆弧插补的原理是通过对多个轴进行同步运动,控制圆弧路径的切线和加工速度,使得工件能够按照设定的半径和圆弧角度进行加工。
圆弧插补的控制方法包括圆心插补法和半径插补法。
1.圆心插补法圆心插补法是通过控制系统中的插补算法,计算每个时间段内轴的位置和速度,实现工件画圆弧的加工。
在圆心插补中,需要手动指定圆心的坐标位置和圆弧的半径、角度来实现加工。
2.半径插补法半径插补法是指通过在控制系统中指定圆弧的起点、终点和半径来实现工件圆弧的加工。
在半径插补中,插补算法会根据起始点和终点的位置,计算出圆心的位置和圆弧的角度,从而实现工件的加工。
总结:插补原理及控制方法是数控机床系统中非常重要的部分,通过对多个轴的运动进行精确控制,实现工件曲线轨迹的加工。
线性插补适用于直线段的加工,圆弧插补适用于曲线段的加工。
掌握插补原理及控制方法,对于数控机床加工精度的提高和加工效率的提高具有重要意义。