数字信号习题作业
- 格式:ppt
- 大小:896.50 KB
- 文档页数:53
==============================绪论==============================1. A/D 8bit 5V00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
第二章1.判断是否周期序列(2)3()cos()74x n n ππ=-(3))n 81(j e)n (x π-=(5)7()cos(2)8x n n π=+(6)21()sin ()8x n n π=(7)11()cossin44x n n n ππ=⋅解:若为周期序列,则有)n (x )T n (x =+ N T ∈(2)令 )4n 73cos(]4)T n (73cos[ππππ-=-+则ππm 2T 73= N m ∈得:m 314T =当m=3时,T 可取最小正整数14,所以该序列是周期序列(3)令 )n 81(j ])T n (81[j e e )n (x ππ--+==得πm 2T 81= N m ∈πm 16T =找不到使T 为正整数的m 值∴)n 81(j e)n (x π-=不是周期序列(5)令)2n 87cos(]2)T n (87cos[+=++ππ得 πm 2T 87= N m ∈m 716T =若m=7, T 可取最小正整数16∴)2n 87cos()n (x +=π是周期为16的周期序列。
(6)21()sin ()8x n n π=11cos()42n π-=令)]T n (41cos[2121)T n (x +-=+π111c o s ()224n π=-得 124T m ππ= N m ∈T=8m令m=1,则T 可取最小正整数8∴)n 81(sin )n (x 2π=是周期为8的周期序列(7) 令11()cossin44x n n n ππ=⋅1sin22n π=于是11sin[()]sin 22()22n T n x n T ππ++== 得 ππm 2T 21=T=4m令m=1,T 取最小正整数4∴11()cossin44x n n n ππ=⋅是周期为4的周期序列3.确定系统稳定、因果、线性、非时变性。
(2)∑==nn k 0x(k)T[x(n)](4))n n (x T[x(n)]0-=b n ax n x T +=)()]([)6( )()]([)8(2n x n x T = )632sin()()]([)10(ππ+=n n x n x T)()]([)12(n nx n x T =(2)解:①线性:设∑===nn k k xn x T n y 0)()]([)(111,∑===nn k k xn x T n y 0)()]([)(222)()()(21n bx n ax n x +=)]()([)]([)(21n bx n ax T n x T n y +==∑=+=nn k n ax n ax)()(21∑∑==+=nn k nn k n x b n xa)()(21)()(21n by n ay +=∴该系统是线性系统② 时变性:∑∑--===-=-mn mn t nn k t x m k x m n x T 00)()()]([)]([)()(0m n x T k x m n y mn n k -≠=-∑-=∴该系统是时变系统③ 稳定性:若(),()()x n x n M M ∀∃<均为有界常数∑===nn k k x n x T n y 0)()]([)(∑=≤nn k k x 0)(M n n )(0-≤找不到一个常数,使得p n y <)(,故系统不稳定。
==============================绪论==============================1。
A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1。
①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n ) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(—n )的波形图。
②尺度变换:已知x(n)波形,画出x (2n )及x(n/2)波形图.卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
冀教版数字同步练习册答案【练习一:基础概念题】1. 什么是数字信号?答案:数字信号是一种用数字形式表示的信号,它由离散的数值组成,通常用二进制形式表示。
2. 模拟信号与数字信号的区别是什么?答案:模拟信号是连续变化的信号,可以是电压、电流等物理量的变化;而数字信号是离散的,通常用二进制形式表示,具有更高的抗干扰能力和易于存储和传输的特点。
3. 数字信号处理的基本步骤是什么?答案:数字信号处理的基本步骤包括采样、量化、编码和解码。
【练习二:应用题】1. 如何将模拟信号转换为数字信号?答案:将模拟信号转换为数字信号的过程称为模数转换(ADC)。
首先对模拟信号进行采样,然后进行量化,将采样值转换为有限数量的数值,最后进行编码,将量化后的数值转换为数字形式。
2. 数字信号的优点有哪些?答案:数字信号的优点包括抗干扰能力强、易于存储和传输、可以进行数字信号处理、便于实现信号的放大和滤波等。
3. 请简述数字滤波器的工作原理。
答案:数字滤波器通过数学算法对数字信号进行处理,以实现滤除噪声或特定频率成分的目的。
常见的数字滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
【练习三:计算题】1. 已知一个模拟信号的采样频率为1000Hz,信号的带宽为500Hz,请计算奈奎斯特采样频率。
答案:奈奎斯特采样频率是信号带宽的两倍,即1000Hz。
2. 如果一个数字信号的量化位数为8位,计算其可能的量化级别。
答案:量化位数为8位,意味着有 \( 2^8 = 256 \) 个可能的量化级别。
3. 假设一个数字信号的编码采用非归零编码方式,请简述其特点。
答案:非归零编码(NRZ)是一种数字信号编码方式,其特点是信号的高电平或低电平代表二进制的“1”或“0”,并且电平在两个码元之间不返回零电平。
【结束语】通过本练习册的练习,相信同学们对数字信号的基本概念、应用以及处理方法有了更深入的理解。
希望同学们能够将所学知识运用到实际中,不断提高自己的数字信号处理能力。
数字信号试题及答案一、选择题1. 数字信号的特点是:A. 连续变化B. 离散变化C. 随机变化D. 周期变化答案:B. 离散变化2. 奈奎斯特定理适用于什么类型的信号?A. 模拟信号B. 数字信号C. 脉冲信号D. 正弦信号答案:A. 模拟信号3. 数字信号的采样率是指:A. 信号的持续时间B. 信号的幅度范围C. 信号的采样点数量D. 信号的频率范围答案:C. 信号的采样点数量4. 在数字信号处理中,量化是指:A. 将模拟信号转换为数字信号B. 将数字信号转换为模拟信号C. 对信号进行编码D. 对信号进行解码答案:A. 将模拟信号转换为数字信号5. 数字信号的传输速率由以下因素决定:A. 采样率和量化位数B. 频率和幅度C. 信噪比和误码率D. 传输介质和距离答案:A. 采样率和量化位数二、填空题1. 数字信号的采样定理由_______和_______提出。
答案:奈奎斯特、香农2. 数字信号的量化位数越大,表示精度越_______。
答案:高3. 数字信号的编码方式常用的有_______和_______编码。
答案:二进制、格雷4. 数字信号的传输速率单位是_______。
答案:比特/秒5. 数字信号的解码是指将_______信号还原为模拟信号。
答案:数字三、简答题1. 请解释奈奎斯特定理的原理及应用。
答:奈奎斯特定理是指在进行信号的采样时,采样频率要大于等于信号频率的两倍,以确保信号能够完全恢复。
它的原理是由于数字信号是离散的,采样过程中可能会出现信息的损失。
奈奎斯特定理的应用主要用于计算信号的最佳采样率,以保证在数字信号处理中不会出现信息丢失。
2. 请说明数字信号的编码方式有哪些,并分别解释其原理。
答:数字信号的编码方式主要有二进制编码和格雷编码。
二进制编码是将信号的每个样本通过二进制数进行表示,利用0和1的排列来表示不同的信号状态。
格雷编码则是改进版的二进制编码,它通过仅仅改变一个位的数值,来表示相邻的两个信号状态,以减少数字信号在编码过程中的误差。
数字信号系统考试试题一、选择题(每题 5 分,共 30 分)1、下列信号中,属于数字信号的是()A 正弦波信号B 锯齿波信号C 脉冲信号D 模拟音频信号2、数字信号的特点不包括()A 抗干扰能力强B 便于加密处理C 占用带宽小D 精度高3、在数字系统中,量化误差产生的原因是()A 编码过程B 采样过程C 保持过程D 量化过程4、对于一个有限长序列 x(n),其离散傅里叶变换(DFT)的点数为 N,若要使 DFT 结果能准确反映 x(n)的频谱特性,N 应满足()A N 小于序列长度B N 等于序列长度C N 大于序列长度D N 与序列长度无关5、以下哪种数字滤波器的实现结构可以节省乘法器数量()A 直接型B 级联型C 并联型D 频率采样型6、若一个数字系统的输入为x(n),输出为y(n),系统函数为H(z),则系统稳定的充要条件是()A 单位圆内的极点个数为零B 单位圆外的极点个数为零C 单位圆内的零点个数为零 D 单位圆外的零点个数为零二、填空题(每题 5 分,共 30 分)1、数字信号处理的三个主要步骤是:________、________和________。
2、对模拟信号进行采样时,采样频率必须大于信号最高频率的________倍,才能保证采样后的信号能够无失真地恢复原信号。
3、快速傅里叶变换(FFT)算法的基本思想是________。
4、数字滤波器根据其冲激响应的长度可分为________滤波器和________滤波器。
5、在数字通信系统中,常用的差错控制编码方式有________、________和________。
6、数字信号系统中,A/D 转换器的主要性能指标包括________、________和________。
三、简答题(每题 10 分,共 20 分)1、简述数字信号处理与模拟信号处理相比的优点。
答:数字信号处理相比模拟信号处理具有诸多优点。
首先,数字信号具有更高的精度和稳定性。
第一章习题一. 判断题1. 周期分别为N1,N2的两离散序列,在进行周期卷积后,其结果也是周期序列。
对2. FFT可用来计算IIR滤波器,以减少运算量。
错3. 相同的Z变换表达式一定对应相同的时间序列。
正确答案是: 错4. 频率采样法设计FIR滤波器,增加过渡带采样点可增加过渡带衰减。
正确答案是: 对二、选择题1. 采样率过低时,______。
A 量化误差增加 b. 必须增加信号频率c. 产生混叠2. 滤波器的单位脉冲响应的DTFT给出了滤波器的_____。
a. 频率响应b. 幅度c. 相位3. 滤波器的单位脉冲响应的DTFT给出了滤波器的_____。
a. 频率响应b. 幅度c. 相位4. ____序列的收敛域在Z平面上是一环状的。
a. 右边序列b. 双边序列c. 有限长序列5. 稳定系统的收敛域应当_______。
a. 包含单位圆b. 不包含单位圆c. 可以包含单位圆6. A/D 是_____的缩写a. asynchronous digitalb. analog to digitac. analog to discrete7. 连续信号的理想采样值是_____。
a. 连续的b. 离散的c. 时间上连续的8. 一个离散系统,a. 若因果必稳定b. 若稳定必因果c. 稳定与因果无关9. 下列哪一个不是信号的实例a. 语音b. 音乐c. 调制解调器10. 若输出不超前于输入,该系统称为______。
a. 线性b. 非线性c. 因果11. 抗混叠滤波器的目的是a. 去掉模拟信号混叠b. 等效一个高通滤波器c. 将高于采样率一半的频率分量去掉12. 抽样可以表述为______。
a. 将数字信号转化为模拟信号b. 将模拟信号转化为数字信号c. 获得模拟信号的幅度值13. 下面哪个表达式是将x(n)左移三位得到_______a. 3x(n)b. x(3n)c. x(n+3)14. 下面哪个表达式是将x(n)右移三位得到_______a. 3x(n)b. x(3+n)c. x(n-3)15. 关于线性系统的描述正确的是_____a. 遵从叠加原理b. 非时变c. 因果16. D/A变换的第一步是a. 零阶保持 b . 低通抗混叠滤波 c. 将数字代码转换为相应的模拟电平级三、计算题1. 和表示一个序列及其傅氏变换,并且为实因果序列,利用求下列各序列的傅氏变换:解:注意:当t为偶数时[ .] =2x(2n),当t为奇数时[ .] =0分析:以频率为400Hz的正弦信号为例,分别以2000Hz和1000Hz进行采样,序列长分别为2048点和1024点,对应的频谱如图1、图2所示。
数字信号处理习题集数字信号处理习题集第⼀章习题1、已知⼀个5点有限长序列,如图所⽰,h (n )=R 5(n )。
(1)⽤写出的()n δ()x n 函数表达式;(2)求线性卷积*。
()y n =()x n ()hn 2、已知x (n )=(2n +1)[u (n +2)-u (n -4)],画出x (n )的波形,并画出x (-n )和x (2n )的波形。
3、判断信号是否为周期信号,若是求它的周期。
3()sin 73x n n ππ??=+4、判断下列系统是否为线性的,时不变的,因果的,稳定的?(1),(2)2()(3)y n x n =-0()()cos()y n x n n ω=5、已知连续信号。
()2sin(2),3002a x t ft f Hz ππ=+=(1)求信号的周期。
()a x t (2)⽤采样间隔T=0.001s 对进⾏采样,写出采样信号的表达式。
()a x t ?()a xt (3)写出对应于的时域离散信号的表达式,并求周期。
?()a xt ()x n 6、画出模拟信号数字处理的框图,并说明其中滤波器的作⽤。
第⼆章习题1、求下列序列的傅⽴叶变换。
(1),(2)11()333nx n n ??=-≤ ?[]2()()()n x n a u n u n N =--2、已知理想低通滤波器的频率响应函数为:为整数,000(),0j n j e H e n ωωωωωωπ-?≤≤?=? <≤??cc 求所对应的单位脉冲响应h (n )。
3、已知理想⾼通滤波器的频率响应函数为:,求所对应0()1j H e ωωωωωπ≤≤=<≤??cc 的单位脉冲响应h (n )。
4、已知周期信号的周期为5,主值区间的函数值=,求该周期信号的()(1)n n δδ+-离散傅⾥叶级数和傅⾥叶变换.5、已知信号的傅⽴叶变换为,求下列信号的傅⽴叶变换。
()x n ()j X e ω(1)(2)(3)x n -*()x n -6、已知实因果信号如图所⽰,求和。
数字信号处理练习题一、填空题1)离散时间系统是指系统输入、输出都是___________的系统。
2)在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样周期T与信号最高截止频率fm应满足关系3)因果系统的H(z)z,则H(z)的收敛域为2zz64)因果稳定离散系统的系统函数H(z)的全部极点都落在Z平面的__________________。
5)如果序列某[k]的长度为M,则只有当时,才可由频域采样某[m]恢复原序列,否则产生现象。
6)设序列某[k]长度N=16,按DIT-FFT做基2FFT运算,则其运算流图有级碟形,每一级由个碟形运算构成。
7)实现数字滤波器的基本运算单元是:_______、________、________。
8)线性相位FIR数字滤波器的第一类线性相位表达式为,满足第一类线性相位的充分必要条件是:h[k]是且9)判断y[k]=k某[k]+b 所代表的系统的线性和时不变性。
.10)有限长序列某[k]的离散傅立叶变换某[m]与其离散时间傅立叶变换某(ej)的关系是二、判断题(正确的在题后括号内打“√”,错的打“某”。
)1)常系数线性差分方程描述的系统一定是线性时不变系统。
()2)两序列的z变换形式相同则这两序列也必相同。
()3)离散傅里叶变换的特点是离散时间、离散频率。
()4)双线性变换法是非线性变换,所以用它设计IIR滤波器不能克服频率响应混叠效应。
()5)当且仅当单位冲击响应满足:h(n)0,n0时,那么线性时不变系统将是一个因果性的系统。
()6)任意序列某[k]都存在傅立叶变换。
()7)有限长序列某[k],n1nn2;如果n10,那么z=0不在收敛域内。
()8)长度为N点的序列某[k],它的DFT也是一个长度为N的序列。
()9)FIR滤波器过渡带的宽度与窗函数旁瓣的宽度密切相关。
()10)III型线性相位滤波器能用于高通滤波的设计。
()三、选择题(注:Z指Z变换)n1.Z[(1)u(n)]______________________。
第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。
此滤波器亦称为“抗混叠”滤波器。
在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。
判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。
()答:错。
需要增加采样和量化两道工序。
3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。
()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。
因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。
故离散时间信号和系统理论是数字信号处理的理论基础。
第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。
(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。
(b ) 对于kHz T 201=,重复(a )的计算。
解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。