数学北师大版八年级下册《等腰三角形》
- 格式:doc
- 大小:131.50 KB
- 文档页数:8
1.1等腰三角形一、知识点梳理1.等腰三角形的性质定理:①等腰三角形的两底角相等(等边对等角)②等腰三角形的两腰相等(定义)③等腰三角形等角的平分线、底边上的中线及地边上的高线互相重合(三线合一)2.等边三角形的性质定理:①等边三角形的三条边都相等②等边三角形的三个内角都相等,并且每个角都等于60°3.等腰三角形的判定定理:①有两条边相等的三角形是等腰三角形(定义)②有两个角相等的三角形是等腰三角形(等角对等边)4.等边三角形的判定定理:①三条边都相等的三角形是等边三角形(定义)②三个角都相等的三角形是等边三角形③有一个角等于60°的等腰三角形是等边三角形5.反证法:证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法成为反证法。
6.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
7.直角三角形斜边的中线等于斜边的一半8.作图要求:掌握尺规作图用两条已知线段做等腰三角形二、经典题型总结题型一:利用等腰三角形的性质求角题型二:利用等腰三角形的性质求线段长度题型三:用反证法证明简单证明题题型四:利用等腰三角形的判定定理进行证明题型五:动点与等腰三角形题型题型六:与等腰三角形相关的综合提升题三、解题技巧点睛1.在做等腰三角形类问题时可以随时“标图”,把相等的角或者相等的边用相同的小符号标注,便于我们清晰的读图。
2.若题目中需要证明两条线段相等,通常会想到:①两条线段所在的两个三角形“全等”②两条线短可以平移为某个“等腰三角形”的两个腰3.在图形中如果涉及到求边长问题,我们通常首先想到:根据欲求边构建直角三角形运用“勾股定理”4.在求角度的题目中,若思路不清晰,则本着两个计算原则去列式:①三角形内角和等于180°②三角形的外角等于与它不相邻的两个内角的和5.特别注意几个特殊角:75°、105°、120°、135°、150°,若图形题中出现了这几个特殊角并且涉及到求线段,则很有可能需要我们做辅助线把75°角分成45°角和30°角;而把105°角分成60°角和45°角;把120°角分成90°角和30°角或两个60°角;把135°角分成90°角和45°角;把150°角分成90°角和60°角。
北师大版八年级下册数学《1.1 第3课时等腰三角形的判定与反证法》教案一. 教材分析《1.1 第3课时等腰三角形的判定与反证法》这一课时,是在学生已经掌握了三角形的基本概念、三角形的分类、三角形性质等知识的基础上进行学习的。
本课时主要让学生学习等腰三角形的判定方法,以及运用反证法证明等腰三角形的性质。
通过这一课时的学习,使学生进一步理解三角形的性质,提高解决问题的能力。
二. 学情分析八年级的学生已经具备了一定的几何知识,对三角形有了一定的认识。
但是,对于等腰三角形的判定和反证法的运用,可能还存在一定的困难。
因此,在教学过程中,要注重引导学生,激发他们的思考,帮助他们理解和掌握等腰三角形的判定方法和反证法的运用。
三. 教学目标1.知识与技能:使学生掌握等腰三角形的判定方法,能够运用反证法证明等腰三角形的性质。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们的观察能力、思考能力和创新能力。
四. 教学重难点1.教学重点:等腰三角形的判定方法,反证法的运用。
2.教学难点:反证法的运用,等腰三角形性质的证明。
五. 教学方法1.情境教学法:通过设置问题情境,引导学生观察、思考、交流,激发学生的学习兴趣。
2.探究式教学法:引导学生主动探究等腰三角形的性质,培养学生的探究能力。
3.小组合作学习法:学生进行小组讨论,培养学生的合作意识,提高他们的交流能力。
六. 教学准备1.准备等腰三角形的模型或图片,用于引导学生观察和操作。
2.准备反证法的相关案例,用于讲解和练习。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用多媒体展示等腰三角形的图片,引导学生观察等腰三角形的特征,激发学生的学习兴趣。
提问:你们知道等腰三角形有什么特点吗?2.呈现(10分钟)呈现等腰三角形的判定方法,引导学生思考和交流,总结出等腰三角形的判定方法。
北师大版数学八年级下册1.1.3《等腰三角形的判定及反证法》说课稿一. 教材分析《等腰三角形的判定及反证法》这一节内容是北师大版数学八年级下册第1章第1节的一部分。
在此之前,学生已经学习了三角形的基本概念和性质,对三角形有了初步的认识。
本节课主要引导学生探究等腰三角形的性质,并运用反证法进行证明。
教材通过引入等腰三角形的定义和性质,让学生体会数学的推理过程,培养学生的逻辑思维能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对三角形的相关知识有一定的了解。
但是,对于等腰三角形的性质和反证法的运用,还需要通过本节课的学习来进一步掌握。
学生在学习过程中,需要通过观察、操作、思考、推理等环节,逐步理解等腰三角形的性质,学会运用反证法进行证明。
三. 说教学目标1.知识与技能:学生能掌握等腰三角形的性质,学会运用反证法进行证明。
2.过程与方法:学生通过观察、操作、思考、推理等环节,培养逻辑思维能力。
3.情感态度与价值观:学生体验数学的推理过程,增强对数学的兴趣和信心。
四. 说教学重难点1.教学重点:等腰三角形的性质,反证法的运用。
2.教学难点:反证法的理解与运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法、合作学习法等。
2.教学手段:多媒体课件、黑板、几何模型等。
六. 说教学过程1.导入新课:通过复习三角形的基本概念和性质,引出等腰三角形的定义。
2.探究等腰三角形的性质:学生分组讨论,每组尝试用反证法证明等腰三角形的性质。
3.汇报展示:各组汇报探究过程和结果,教师点评并总结。
4.练习巩固:学生独立完成教材中的练习题,教师讲解答案。
5.拓展延伸:引导学生思考等腰三角形的判定问题,学生自主探究并分享成果。
6.总结反思:学生总结本节课的收获,教师进行情感态度的评价。
七. 说板书设计板书设计如下:等腰三角形的性质1.定义:两腰相等的三角形叫等腰三角形。
a.两腰相等b.底角相等c.高线、中线、角平分线重合2.假设结论不成立3.从假设出发,推出矛盾4.矛盾说明假设不成立,结论成立八. 说教学评价1.学生能准确描述等腰三角形的性质,学会运用反证法进行证明。
北师大版数学八年级下册1.1《等腰三角形》教学设计一. 教材分析北师大版数学八年级下册1.1《等腰三角形》是学生在学习了三角形的基本概念和性质的基础上,进一步研究等腰三角形的性质。
本节课的内容包括等腰三角形的定义、等腰三角形的性质以及等腰三角形的判定。
通过本节课的学习,学生能够掌握等腰三角形的性质,并能运用其解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察、操作和推理能力。
但部分学生对概念的理解不够深入,对性质的运用不够熟练,因此需要在教学过程中加强对学生的引导和启发。
三. 教学目标1.知识与技能目标:理解等腰三角形的定义,掌握等腰三角形的性质,并能运用其解决实际问题。
2.过程与方法目标:通过观察、操作、推理等方法,培养学生的几何思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.教学重点:等腰三角形的性质及其运用。
2.教学难点:等腰三角形性质的推理和证明。
五. 教学方法1.情境教学法:通过设置问题和情境,引导学生主动探索和解决问题。
2.合作学习法:引导学生进行小组讨论和合作,共同解决问题。
3.实践操作法:让学生通过实际操作,加深对等腰三角形性质的理解。
六. 教学准备1.教具准备:多媒体课件、几何模型、黑板等。
2.学具准备:学生自带三角板、直尺、铅笔等。
七. 教学过程1.导入(5分钟)利用多媒体课件展示等腰三角形的图片,引导学生观察和思考:这些三角形有什么共同的特点?从而引出等腰三角形的定义。
2.呈现(10分钟)呈现等腰三角形的性质,引导学生通过观察和操作,发现并证明等腰三角形的性质。
在此过程中,教师引导学生运用已学的三角形性质,培养学生的几何思维能力。
3.操练(10分钟)学生分组进行实践活动,运用等腰三角形的性质解决实际问题。
教师巡回指导,及时解答学生的疑问。
4.巩固(5分钟)教师选取几道练习题,让学生在课堂上完成,检验学生对等腰三角形性质的掌握程度。
北师大版数学八年级下册《三角形全等和等腰三角形的性质》教案一. 教材分析北师大版数学八年级下册《三角形全等和等腰三角形的性质》这一节主要让学生掌握三角形全等的判定方法,以及等腰三角形的性质。
在教材中,已经给出了三角形全等的判定方法——SSS、SAS、ASA、AAS,学生需要通过练习来熟练掌握这些方法。
等腰三角形的性质包括:等腰三角形的底角相等,等腰三角形的底边上的高、中线、角平分线重合。
学生需要通过操作活动来探索和证明这些性质。
二. 学情分析学生在学习这一节内容之前,已经学习了三角形、四边形的相关知识,对图形的变换、性质有一定的了解。
但是,对于三角形全等的判定方法,学生可能还不是很熟悉,需要通过练习来加深理解。
对于等腰三角形的性质,学生可能刚开始接触,需要通过操作活动来探索和证明。
三. 教学目标1.知识与技能:理解三角形全等的判定方法,掌握等腰三角形的性质。
2.过程与方法:通过操作活动,培养学生的观察能力、操作能力、证明能力。
3.情感态度与价值观:培养学生对数学的兴趣,培养学生合作、探究的精神。
四. 教学重难点1.教学重点:三角形全等的判定方法,等腰三角形的性质。
2.教学难点:三角形全等的判定方法的运用,等腰三角形性质的证明。
五. 教学方法采用问题驱动法、操作活动法、讲解法、讨论法等教学方法,引导学生探索、发现、证明等腰三角形的性质,通过练习让学生熟练掌握三角形全等的判定方法。
六. 教学准备1.教具:黑板、粉笔、三角板、直尺、圆规。
2.学具:每个学生准备一套三角板、直尺、圆规。
七. 教学过程1. 导入(5分钟)教师通过复习三角形、四边形的相关知识,引导学生进入三角形全等和等腰三角形的性质的学习。
2. 呈现(10分钟)教师通过PPT或者黑板,呈现三角形全等的判定方法和等腰三角形的性质,让学生初步了解这些知识。
3. 操练(10分钟)学生分组,每组用三角板、直尺、圆规拼出两个全等的三角形,然后用这些工具证明两个三角形全等。
课题:1.1.4等腰三角形课型:新授课年级:八年级教学目标:1.探究并掌握等边三角形的判定方法.2.探究并掌握含有30°角的直角三角形的性质.3.在探究过程中,使学生进一步体会分类讨论、转化、逆向思维等数学思想方法,提高学生的能力.教学重点与难点:重点:1.等边三角形判定定理的发现与证明.2.含30°角的直角三角形的性质定理的发现与证明.难点:含30°角的直角三角形的性质定理的发现与证明.教法与学法指导:教法:启发探究式教学.通过创设丰富的问题情境,激发学生的学习兴趣,并注意通过有层次的问题串的精心设计,引导学生进行探究活动.在师生互动、生生互动的探究活动中,提高学生解决问题的能力.学法:引导学生“自主探究——合作交流——自我提高”.通过动手操作三角板,拼接等腰及等边三角形改变学生被动接受的学习方式,倡导学生自主参与,小组合作,积极互动,主动获取新知识,培养学生良好的学习习惯.课前准备:多媒体课件.教学过程:一、激趣导入,提出问题活动内容:欣赏几组图片(多媒体展示):同学们这几幅图是我们生活中常见的交通安全警示标志.(1)图中的三角形有什么特点?(2)等边三角形与等腰三角形有什么关系?(3)等边三角形有哪些特点?(4)一个三角形满足什么条件时是等边三角形呢?(教师板书课题)处理方式:先让学生观察,给学生1分钟思考的时间,然后找学生回答. 教师可让同学代表充分发表自己的看法.设计意图: 通过生活中的图片引入等边三角形,使学生在愉快的氛围中激发学生学习数学的兴趣,体现了学生走进生活感受数学的高涨热情.并提出等边三角形的判定问题.明确重点的同时,激发学生的求知欲,精美的图片非常吸引学生,使学生很自然的进入本节的学习,进而顺利引入新课. 二、自主合作,解决问题探究活动1:探究等边三角形的判定方法问题1:除了三边相等的三角形是等边三角形.还有其他的判定方法吗?你能证明吗? 问题2:一个等腰三角形满足什么条件时便成为等边三角形?问题3:你认为有一个角等于60°的等腰三角形是等边三角形吗?你能证明你的结论吗?把你的证明思路与同伴交流.问题4:完成表格问题5:总结等边三角形的判定方法.处理方式: 生积极思考,通过老师的点拨,认识到有一个角是60°的等腰三角形是等边三角形,并且需要分类讨论:当这个角分别是底角和顶角的情况, 等腰三角形中,如果顶角是60°,那这个等腰三角形是等边三形;等腰三角形中,如果有一个底角是60°,那这个等腰三角形也是等边三角形.学生合作完成证明.师以顶角为例写出已知和求证.另一个证明要求学生到黑板上完成.在问题3中,同学们总结等边三角形的判定方法:方法一:三边相等的三角形是等边三角形;方法二:三个角相等的三角形是等边三角形;方法三:有一个角为60°的等腰三角形是等边三角形.(附证明过程)(顶角是60°时)已知:如图,△ABC 中,AB=AC ,∠A =60°. 求证:ABC 是等边三角形. 证明:如图 ∵AB=AC ∴∠B=∠C ∵∠A =60°BC∴∠B=∠C =26018000-=60°∴∠A=∠B=∠C ∴△ABC 是等边三角形. (底角是60°时)已知: 如图,△ABC 中AB=AC ,∠B =60°. 求证:ABC ∆是等边三角形. 证明:如图 ∵AB=AC ,∠B=60° ∴∠B=∠C =60° ∴∠A =180°-60°×2=60° ∴∠A=∠B=∠C ∴△ABC 是等边三角形. (附表格答案)(教师板书)设计意图: 等边三角形的判定方法是本节课的重点.通过对不同的三角形加“边”或“角”两方面不同的条件,使学生体会、融合等边三角形的性质和判定的有关知识.条件加在不同的位置也要分情况讨论,这样在探究过程中充分体现了分类的作用,这对学生提高对数学思想方法的认识起到了渗透作用.探究活动2:含30°角的直角三角形的性质问题1:请同学们用两个含30°角的全等三角尺,拼成一个三角形.你能拼成怎样的三角形?能拼出一个等边三角形吗?(学生分组合作完成,并展示所拼图形)问题2:在你所拼得的等边三角形中,有哪些线段存在相等关系,有哪些线段存在倍数关系,你能得到什么结论?说说你的理由.BC问题3:在一个含30°角的三角尺中,你能发现什么结论?能用语言形式叙述吗?能证明这个结论吗?处理方式:问题1要给学生足够的时间动手操作,然后分组展示自己的成果,第(1)个三角形是等边三角形,第(2)图形是等腰三角形.并说明第(1)个三角形为什么是等边三角形的,因为△ABD ≌△ACD ,所以AB=AC .又因为Rt △ABD 中,∠BAD =60°,所以∠ABD =60°,有一个角是60°的等腰三角形是等边三角形.问题2中根据等边三角形的性质,发现线段间的等量关系有:(1)AB=AC=BC ,(2)BD=CD ;倍数关系有:(1)BC=2BD=2CD ,(2)AB =2BD =2CD ,(3) AC =2BD =2CD .由此就得出在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.然后学生尝试证明,小组内交流,教师巡视对证明有困难的小组给予指导. (附证明过程)已知:如图,在Rt △ABC 中,∠C =90°,∠BAC =30°. 求证:BC =12AB .证明:延长BC 至D ,使CD=BC ,连接AD . 在△ABC 中,∠ACB =90°,∠BAC =30°∠B =60°. 延长BC 至D ,使CD=BC ,连接AD (如图所示). ∵∠ACB =90° ∴∠ACD =90° 又∵AC=AC ,∴△ABC ≌△ADC (SAS).∴AB=AD (全等三角形的对应边相等).∴△ABD 是等边三角形(有一个角是60°的等腰三角形是等边三角形). ∴BC =12 BD =12 AB .(教师板书)D(2)(1)BCACBA几何语言:∵∠C=900 ∠A=300BC=AB21在证明性质之后,教师追问:该定理的作用是什么?该定理可以用来证明线段之间的倍数关系,也可以求线段的长度.老师可以举例,给BC的长,让学生求AC、AB的长;给AB的长,让学生求BC、AC的长;给AC的长,让学生求BC、AB的长.让学生通过计算感知,在直角三角形中,当一个角为300时,再给一条边便可求其余两边.设计意图:“直角三角形中,30°所对的直角边等于斜边的一半”是本课的难点,在难点的突破上主要采取两种方法:(1)通过三角尺操作的实践活动,(2)对问题的分步引导的方法.这样在难点的突破更具有直观性和可操性.三、展示汇报,反馈点拨已知:在△ABC中,已知AB=AC,∠B=15°,CD是腰AB上的高.求证:CD=12 AB.处理方式:学生思考,并解决问题.因为此三角形为等腰三角形,底角为15°,顶角为150°,所以为等腰钝角三角形,此时强调高应在三角形外部,由此可构造出特殊的直角三角形,进而解决问题,可让一名同学黑板板演,教师纠正学生出现的问题,强调步骤的规范性.(附证明过程)证明:在△ABC中,∵AB=AC,∠B=15°∴∠ACB=∠B=15°(等边对等角).∴∠DAC=∠ABC+∠ACB=15°+15°=30°∵CD是腰AB上的高,∴∠ADC=90°.∴CD=12AC(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半).∴CD=12AB.BAD设计意图:在有一个角是30°的直角三角形的性质的证明上,则采取延续探究的练习题的再深入探究,很直观地展示了两边的关系和证明思路,学生口述证明,节约了时间.在点拨了例题之后,规范板书,了解解题步骤,给学生以书写指导,同时给学生消化吸收的时间,为接下来巩固练习的解决搭好台阶.四、巩固训练,拓展提高A 类:1.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形; ③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ) A .①②③ B .①②④ C .①③ D .①②③④2.如图,△ABC 中AB=AC ,AO 平分∠BAC ,若∠BOC=60°,则△BOC 的形状是( ) A .等边三角形 B .腰和底边不相等的等腰三角形C .直角三角形D .不等边三角形3.已知,如图,在△ABC 中,∠ACB =90°,∠A =30°,CD ⊥AB 于D . 求证: AB BD 41. B 类:4.已知:一块形如△ABC 的空地,AB =2a 米,AC =3a 米,∠A =150°,若在其中种上单价20元/平方米的草皮,需要多少钱?处理方式:学生先独立思考在练习本上写出答案,然后相互交流各自的想法,最后小组展示结果.待学生全部完成后学生进行分析讲解,有问题的让学生之间相互进行纠错,评判,反思. 可以由几名学生到黑板板演,其他学生在练习本上完成.然后借助多媒体配合教师巡视并适时点拨,及时点评,展示矫正、规范理解,关注并评价同伴表现,检查自己的完成情况,拓展学生的思路.设计意图:通过展示结果,及时巩固所学知识,同时教师巡视,有利于查缺补漏,个别辅导,保证学生把基础 知识掌握透彻.对于班额大的班级,充分发挥小组的作用,保证小组学习的顺利进行. 通过设置不同层次的题目,检测纠错并提高认识知识的效率,同时也强化了学生的学习重点,进一步巩固、提升学生所学知识.五、当堂测试,课堂小结(一)课堂小结师:学习如逆水行舟,不进则退.只有不断反思自我,充实自我,才能取得更大的进步!所以每一节课大家都要用心反思,查缺补漏,保证自己的小船稳稳前进!现在谁愿意先来反思一下自己本节课学习的体会?学生反思自己课堂的表现及所学习的知识和方法等内容,大家相互补充.设计意图:学生在学习的过程中会有遗忘,因此必要的反复至关重要,每节课的小结更是必不可少.因为良好的课堂小结,可以再次激起学生思维的高潮,起到余味无穷、启迪智慧的效果。
能使一堂课所讲的知识体现出的数学思想、数学方法系统化.(二)当堂检测基础题:1.课本12页习题1.4第1、2、3题.提升题:2.助学10页自主评价.处理方式:学生先独立完成,教师巡视.做的快的可以边巡视边批改,绝大多数完成后,根据批改情况找学生错的比较多的问题讲解,由做错的学生进行纠错.留半分钟的时间纠错反思.设计意图:让学生独立完成,有利于把握学生对本节课的掌握情况.同时老师面批,有利于查缺补漏,因材施教.最后留给学生反思,将错题真正改正,落实到实处.让学生最大程度地获得新知,同时针对本节课的重点,有目的的设计习题,以检测教学目标达成情况、纠正错误、熟练知识,发现与弥补遗漏;同时可以让学生全面了解自己的学习过程,感受自己的成长和进步,促进学生对学习及时进行反思,为教师全面了解学生的学习状况,改进教学,实施因材施教提供重要依据.结束语:师:同学们,本节课的学习你们给我留下了深刻的印象,同时也给了我太多的感动与惊喜,谢谢你们!同时送给你们一句话共勉:在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么.---达哥拉斯六、板书设计。