materialstudio计算功函数有top和bottom
- 格式:docx
- 大小:14.41 KB
- 文档页数:2
非平衡格林函数materials studio
非平衡格林函数是一个描述物质系统非平衡态的量子力学工具。
它可以用来计算电子在周期性势场中的有限时间存在态,如激发态、极化子和激子等。
非平衡格林函数在材料物理、表面科学、凝聚态物理和量子信息等领域得到广泛应用。
Materials Studio是一个功能强大的材料模拟软件,其中包含一些常用的非平衡格林函数计算工具。
例如,CASTEP可以用来计算非平衡态下的能带结构、光子谱和介电函数;DMol3可以用来计算非平衡态下的电子结构和电子传输特性;VASP和QuantumWise可以用来模拟非平衡态下的电子传输过程和光电特性。
非平衡格林函数的计算需要大量的计算资源和专业知识,对于非专业人士而言比较困难。
因此,在使用Materials Studio进行非平衡格林函数计算前,建议先掌握一定的量子力学和计算化学知识,并进行相关的培训和学习。
第3章铁基块体非晶合金-纳米晶转变的动力学模拟过程3.1 Discover模块动力学模拟3.1.1 原子力场的分配在使用Discover模块建立基于力场的计算中,涉及几个步骤。
主要有:选择力场、指定原子类型、计算或指定电荷、选择non-bond cutoffs。
在这些步骤中,指定原子类型和计算电荷一般是自动执行的。
然而,在某些情形下需要手动指定原子类型。
原子定型使用预定义的规则对结构中的每个原子指定原子类型。
在为特定的系统确定能量和力时,定型原子使工作者能使用正确的力场参数。
通常,原子定型由Discover使用定型引擎的基本规则来自动执行,所以不需要手动原子定型。
然而,在特殊情形下,人们不得不手动的定型原子,以确保它们被正确地设置。
图 3-1调出选择原子窗口图3-2 选择原子窗口计算并显示原子类型:点击Edit→Atom Selection,如图3-1所示。
弹出对话框,如图3-2所示。
从右边的…的元素周期表中选择Fe,再点Select,此时所建晶胞中所有Fe原子都将被选中,原子被红色线圈住即表示原子被选中。
再编辑集合,点击Edit→Edit Sets,如图3-3、3-4所示。
图3-3 编辑集合图3-4 设定新集合弹出对话框见图3-4,点击New...,给原子集合设定一个名字。
这里设置为Fe,则3D视图中会显示“Fe”字样,再分配力场:在工具栏上点击Discover按钮,从下拉列表中选择Setup,显示Discover Setup对话框,选择Typing选项卡,见图3-5。
图3-5 给原子添加力场在Forcefield types里选择相应原子力场,再点Assign(分配)按钮进行原子力场分配。
注意原子力场中的价态要与Properties Project里的原子价态(Formalcharge)一致。
3.1.2体系力场的选择点击Energy选项卡,见图3-6。
图3-6 Energy选项卡图3-7 力场下拉菜单力场的选择:力场是经典模拟计算的核心,因为它代表着结构中每种类型的原子与围绕着它的原子是如何相互作用的。
能带图的横坐标是在模型对称性基础上取的K点。
为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。
按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。
能带图横坐标是K点,其实就是倒格空间中的几何点。
其中最重要也最简单的就是gamma那个点,因为这个点在任何几何结构中都具有对称性,所以在castep里,有个最简单的K点选择,就是那个gamma选项。
纵坐标是能量。
那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。
我们所得到的体系总能量,应该就是整个体系各个点能量的加和。
记得氢原子的能量线吧?能带图中的能量带就像是氢原子中的每条能量线都拉宽为一个带。
通过能带图,能把价带和导带看出来。
在castep里,分析能带结构的时候给定scissors这个选项某个值,就可以加大价带和导带之间的空隙,把绝缘体的价带和导带清楚地区分出来。
DOS叫态密度,也就是体系各个状态的密度,各个能量状态的密度。
从DOS图也可以清晰地看出带隙、价带、导带的位置。
要理解DOS,需要将能带图和DOS结合起来。
分析的时候,如果选择了full,就会把体系的总态密度显示出来,如果选择了PDOS,就可以分别把体系的s、p、d、f状态的态密度分别显示出来。
还有一点要注意的是,如果在分析的时候你选择了单个原子,那么显示出来的就是这个原子的态密度。
否则显示的就是整个体系原子的态密度。
要把周期性结构能量由于微扰裂分成各个能带这个概念印在脑袋里。
最后还有一点,这里所有的能带图和DOS的讨论都是针对体系中的所有电子展开的。
研究的是体系中所有电子的能量状态。
根据量子力学假设,由于原子核的质量远远大于电子,因此奥本海默假设原子核是静止不动的,电子围绕原子核以某一概率在某个时刻出现。
我们经常提到的总能量,就是体系电子的总能量。
这些是我看书的体会,不一定准确,大家多多批评啊!摘要:本文总结了对于第一原理计算工作的结果分析的三个重要方面,以及各自的若干要点用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论:1、电荷密度图(charge density);2、能带结构(Energy Band Structure);3、态密度(Density of States,简称DOS)。
《计算材料学》实验讲义实验一:Materials Studio软件简介及基本操作一、前言1. 计算材料学概述随着科学技术的不断发展,科学研究的体系越来越复杂,理论研究往往不能给出复杂体系解析表达,或者即使能够给出解析表达也常常不能求解,传统的解析推导方法已不敷应用,也就失去了对实验研究的指导意义。
反之,失去了理论指导的实验研究,也只能在原有的工作基础上,根据科研人员的经验理解、分析与判断,在各种工艺条件下反复摸索,反复实验,最终造成理论研究和实验研究相互脱节。
近年来,随着计算机科学的发展和计算机运算能力的不断提高,为复杂体系的研究提供了新的手段。
在材料学领域,随着对材料性能的要求不断的提高,材料学研究对象的空间尺度在不断变小,纳米结构、原子像已成为材料研究的内容,对功能材料甚至要研究到电子层次,仅仅依靠实验室的实验来进行材料研究已难以满足现代新材料研究和发展的要求。
然而计算机模拟技术可以根据有关的基本理论,在计算机虚拟环境下从纳观、微观、介观、宏观尺度对材料进行多层次研究,进而实现材料服役性能的改善和材料设计。
因此,计算材料学应运而生,并得到迅速发展,目前已成为与实验室实验具有同样重要地位的研究手段。
计算材料学是材料科学与计算机科学的交叉学科,是一门正在快速发展的新兴学科,是关于材料组成、结构、性能、服役性能的计算机模拟与设计的学科,是材料科学研究里的“计算机实验”。
计算材料学主要包括两个方面的内容:一方面是计算模拟,即从实验数据出发,通过建立数学模型及数值计算,模拟实际过程;另一方面是材料的计算机设计,即直接通过理论模型和计算,预测或设计材料结构与性能。
计算材料科学是材料研究领域理论研究与实验研究的桥梁,不仅为理论研究提供了新途径,而且使实验研究进入了一个新的阶段。
计算材料学的发展是与计算机科学与技术的迅猛发展密切相关的。
从前,即便使用大型计算机也极为困难的一些材料计算,如材料的量子力学计算等,现在使用微机就能够完成,可以预见,将来计算材料学必将有更加迅速的发展。
问题如下1、Symmetry 下的unbuild crystal, Nonperiodic, Superstructure, Make P1, Redefine options各有什么作用?答:Unbuild crystal:得到最小非对称单元的结构Nonperiodic:去掉结构的周期性,形象地说就是把盒子去掉。
Superstructure:构建超晶胞结构,也就是扩大最小重复单元(或则说晶胞)Make P1:去掉晶体结构中的所有点对称操作,只保留其平移对称性Redefine lattice:重新定义晶胞中基矢的方向2、图表的含义是什么?Atomic Populations (Mulliken)Species Ion s p d f Total Charge (e)O 1 1.91 4.99 0.00 0.00 6.90 -0.90O 2 1.91 4.99 0.00 0.00 6.90 -0.90O 3 1.91 4.99 0.00 0.00 6.90 -0.90O 4 1.91 4.99 0.00 0.00 6.90 -0.90O 5 2.01 5.08 0.00 0.00 7.08 -1.08O 6 1.84 4.87 0.00 0.00 6.71 -0.71Ca 1 2.14 6.00 0.47 0.00 8.61 1.39Ti 1 2.32 6.24 2.22 0.00 10.78 1.22Ti 2 2.32 6.24 2.22 0.00 10.78 1.22Ba 1 1.76 6.01 0.70 0.00 8.46 1.54答:以O为例子Species Ion s p d f Total Charge (e)O 1 1.87 4.79 0.00 0.00 6.65 -0.65计算以前O的电子结构是2s2 2p4,Total =6(e )计算后O的结构变为2s1.872p4.79,Total =6.65(e )-0.65 表明优化以后,O得到0.65(e )如果考虑的是纯离子,当然就是+4和-2了。
Materials Studio专门为材料科学模拟所设计,能方便的建立3D分子模型,深入分析有机、无机晶体、无定形材料以及聚合物,可以在催化剂、聚合物、固体化学、结晶学、晶粉衍射以及材料特性等材料科学研究领域进行性质预测、聚合物建模和X射线衍射模拟,操作灵活方便,并且最大限度地运用网络资源。
DISCOVER:分子力学和动力学程序。
基于力场计算出最低能量构型、分子体系的结构和动力学轨迹等。
COMPASS:对凝聚态材料进行原子水平模拟的力场。
可以在很大的温度、压力范围内精确地预测孤立体系或凝聚态体系中各种分子的结构、构象、振动以及热物理性质。
Reflex:模拟晶体材料的X光、中子以及电子等多种粉末衍射图谱。
DMol3:密度泛函程序,可用于研究均相催化、多相催化、分子反应性、分子结构等,也可预测溶解度、蒸气压、配分函数、溶解热、混合热等性质。
CASTEP:量子力学程序,应用于陶瓷、半导体、金属等多种材料,可研究晶体材料的性质、表面和表面重构的性质、表面化学、电子结构(能带及态密度)、晶体的光学性质、点缺陷性质(如空位、间隙或取代掺杂)、延展缺陷(晶粒间界、位错)、体系的三维电荷密度及波函数等。
Materials Studio 3.1版加入的NMR CASTEP模块能够可靠地模拟任何材料的NMR化学屏蔽张量和四极耦合常数。
VAMP:半经验的分子轨道程序,适用于有机和无机的分子体系。
1. CASTEP可以使用超软赝势(USP)计算导电体系2. DMol3可进行周期性模型的COSMO溶剂化计算3. Nanotechnology Consortium使用户可以对大尺度体系进行量子力学模拟研究4. 加入线性标度DFT程序ONETEP,和QM/MM程序QMERAMaterials Studio 4.2新增功能:1. GULP增强:用立场工具创建自己的力场;计算光学特性(反射率,折射率,介电常数)2. 到Gaussian 03的接口:设定和提交任务;监视计算;显示分子,分子轨道和电荷密度;与Materials Studio的其它模块交换结构,电荷和Hessian。
目 录Q1:为什么使用Discover进行Dynamics计算时,如果设定了Pressure=1GPa,在计算结果中会出现Pressure等于0,而Stress的XX、YY、ZZ方向为1GPa的情况? (4)Q2:如何在Discover计算中分别对相同环境原子分配不同力场类型? (4)Q3:如何在CASTEP计算中限制某个原子的移动方向? (4)Q4:在安装新的MS时,事先没有停掉License Server,在卸载、安装MS后,发现MS的License Server 无法正常启动。
(5)Q5:如何修改Windows或者Linux下的端口号: (5)Q6:如何使用DMol3进行动力学计算? (6)Q7:如何让Discover程序输出.arc文件? (7)Q8:如何使用rattle关键词来限制水分子的几何结构? (7)Q9,如何使用Standalone方式运行DMol程序? (7)Q10:如何在DMol中加入外界电场? (7)Q12,如何以Standalone方式运行Discover作业? (8)Q13:为什么我在QSAR模块中无法找到新加入的Jurs和DMol3描述符? (8)Q14:如何在DMol模块中,对某一分子只允许其沿着Z方向进行优化,而XY方向则不变? (8)Q15:如果CASTEP计算过程中断电,怎么能够重新开始计算呢?在Keywords中有两个关键词Reuse 和Continuation,它们有什么差异呢? (8)Q16:如果我在Cleave一个平面的时候,选择的是(111)面,或者该晶体原来就是一个三斜晶胞,我怎么才能切出一个长方形的表面来呢? (9)Q17:在使用DMol进行结构优化的时候失败,通过对轨迹的回放发现,整个分子在平面上下进行翻转,并由此导致能量振荡,这种情况应当如何处理? (9)Q18:如何使用XRD数据快速建立相关的晶体结构。
(9)Q19:如何在DMol中考虑溶剂化效应? (10)Q20:如何使用MS软件计算高分子的玻璃化温度? (11)Q21:在使用MS进行计算的时候,中间的xcd文件无法及时更新,而其他文件则能正常显示,为什么? (12)Q22:怎么样在MesoDyn中加入各种不同的限制? (12)Q23:MS给出的DOS和能带图不是很清楚,我能不能自己来做图? (12)Q24:怎么样能让CASTEP在并行计算时更有效? (12)Q25:在使用DMol计算过渡态结构时,经常会发现出现不止一个虚频,怎么回事? (13)Q26:怎么在Altix350上安装MS的Castep和DMol的补丁加速运算速度? (13)Q27:为什么我在Linux下安装license的时候,总是报错呢? (13)Q28:在使用SGI Altix350,打补丁后运行RunCASTEP.sh –np n seedname的时候,出现错误:MPI:asgetnetinfo_array('(null)') failed : array services not available,怎么解决? (14)Q29:MS的GFA是怎么对参数进行杂交的?参数多少与内存有无关系? (14)Q30:DFT方法对计算量和内存的要求是什么样的? (15)Q31:为什么当DMol3在我机器上运行过的时候,总是出现以下错误:floating-point assist fault? (16)Q32:在使用DMol3算频率的时候,突然断电了,怎么才能继续算频率呢? (16)Q33:在Castep模块中,Electronic中的Pseudopotential representation,有Real Space和Reciprocal space,如何取舍? (17)Q34:如何从Discover的输出文件中查看每桢中原子的坐标以及速率等信息? (17)Q35:我使用的是Standalone方式进行Castep和DMol3计算,完成后怎么才能看到最终结构和轨迹呢? (17)Q36:DMol中有TS Conformation也有TS Optimization,应该选取哪一个来搜索过渡态? (17)Q37:在使用CASTEP进行过渡态(TS)搜索时,当用reaction preview产生一个轨迹文件之后,对该轨迹文件进行TS search 运算时,在本机直接计算可以进行,但是进行save files时,却无法完成提示Unable to set UserID. Trajectory file will be invalid. (18)Q38:在Castep中,怎样输出电荷密度?相关数据的单位是什么? (18)Q39:如何在Discover中使用BTCL语言进行多步MD计算? (18)Q40:如何用Dmol3计算Overlay Matrix,并进一步分析? (21)Q41:如何使用Castep程序计算IR振动,为什么计算老是说不收敛? (22)Q42:为什么我在手工使用Castep计算能带结构、态密度或者声子谱的时候,程序始终提示没有Check文件? (22)Q43:Discover的Non-bond中Summation的三种方法有什么区别? (22)Q44:Castep中的Empty Band有何用处?怎么设置? (25)Q45:CASTEP中如何控制能带结构的精细程度? (25)Q46:如何在MS中加入非限制性约束条件,例如约束两个原子间距离? (26)Q47:如何在DMol3中显示大于999号轨道的Homo和Lumo轨道? (27)Q1:为什么使用Discover进行Dynamics计算时,如果设定了Pressure=1GPa,在计算结果中会出现Pressure等于0,而Stress的XX、YY、ZZ方向为1GPa的情况?A1:这是由于在进行Dynamics计算时,选用的Ensemble不相同,如果选用了Parrinello方法,将使用Stress来进行判断,此方法允许晶胞形状与大小都发生变化,已形成剪切,从而使内部的Stress 与外部Pressure相等。
materialstudio计算功函数有top和bottom
摘要:
1.Introduction
2.Materials Studio 简介
3.Materials Studio 的计算功能
4.TOP 和Bottom 计算功函数
5.结论
正文:
1.Introduction
Materials Studio 是一款专为材料科学领域开发的软件,它可以在PC 机上运行,帮助研究人员解决当今化学及材料工业中的许多重要问题。
该软件采用client/server 结构,客户端可以是Windows 98、2000 或NT 系统,计算服务器可以是本机的Windows 2000 或NT,也可以是网络上的Windows 2000、Windows NT、Linux 或Unix 系统。
2.Materials Studio 简介
Materials Studio 是一款功能强大的材料计算软件,它可以用于研究材料的各种性质,包括结构、电子、磁性、光学等。
该软件提供了丰富的计算方法和工具,可以帮助研究人员快速、准确地分析和解决材料科学中的问题。
3.Materials Studio 的计算功能
Materials Studio 具有多种计算功能,包括第一性原理计算、分子动力学模拟、蒙特卡洛模拟、密度泛函理论计算等。
这些计算功能可以帮助研究人员
深入了解材料的微观结构和宏观性质,为材料设计和优化提供理论支持。
4.TOP 和Bottom 计算功函数
Materials Studio 中的TOP 和Bottom 计算功函数是用于计算材料能带结构的重要工具。
TOP 计算功函数可以计算材料的能带结构、态密度、电子自旋极化等性质;Bottom 计算功函数则可以计算材料的费米能级、功函数、电荷密度等性质。
通过这些计算,研究人员可以更好地了解材料的电子性质,为材料设计和应用提供理论依据。
5.结论
总之,Materials Studio 是一款非常实用的材料计算软件,它具有丰富的计算功能和工具,可以帮助研究人员解决材料科学中的各种问题。