矩阵在数学中的应用本科毕业论文
- 格式:doc
- 大小:1.75 MB
- 文档页数:32
本科生毕业设计(论文)正交矩阵及其应用学院:专业:数学与应用数学学号:学生姓名:指导教师:二〇一一年六月摘要如果n阶实矩阵A满足,那么称A为正交矩阵.正交矩阵是由内积引出的.本文例举了正交矩阵在线性代数、化学和物理中的三个应用.在线性代数中,求标准正交基一般用Schimidt正交化方法.本文论证了一种特殊的正交矩阵——初等旋转矩阵——也可以求任一向量空间的标准正交基,并通过实例说明此方法的应用.在化学上,原子轨道的杂化,实际是由一组相互正交的单位基向量,通过线性变换转化为另一组相互正交的单位基向量.而线性代数中由一组标准正交基到另一组标准正交基的过渡矩阵是正交矩阵,因此可以利用正交矩阵的性质求原子轨道的杂化轨道式.在物理上,任一刚体运动都对应一个正交矩阵,本文证明了曲线作刚体运动时曲率和挠率是两个不变量.关键词:正交矩阵;初等旋转矩阵;标准正交基;原子轨道的杂化;曲率;挠率AbstractOrthogonal matrices and its applicationsIf a-dimensional real matrixsatisfies,we call it orthogonal matrix. Orthogonal matrix is extracted by inner product.This paper enumerats the applications of orthogonal matrix inlinear algebra, chemistry, and physics. Schimidt method is always used to find the standard orthogonal basis in linear algebra. A special kind of orthogonal matrix, namely elementary rotational matrix, is established to find the standard orthogonal basis in this paper. The orbital atom heterozygous is actually made by a team of mutually orthogonal unit basis vector, through linear transformation into another group of mutually orthogonal unit basis in linear algebra. Thetransition matrix of a group of standard orgthogonal basis to another group of standard orthogonal basis is an orthogonal matrix. Therefore, properties of orthogonal basis can be used to find the orbital atom heterozygous. In physics, any rigid motion corresponds with anorthogonal matrix. The curvature and torsion rate are proved to be two invariants when a curve is in rigid motion.Keywords:Orthogonal matrix; Elementary rotation matrix; Standard orthogonal basis; The orbital atom heterozygous; Curvature;Torsion rate目录1.引言 12.正交矩阵的基本知识 32.1正交矩阵的定义与判定 32.2 正交矩阵的性质 33.正交矩阵的应用 53.1 正交矩阵在线性代数中的应用 53.2正交矩阵在化学中的应用 113.3正交矩阵在物理学中的应用 14参考文献 18致谢 19正交矩阵及其应用姓名:学号:班级:1.引言因为行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论.矩阵也是由数排成行和列的数表,可以行数和烈数相等也可以不等.矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法.利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,就都可以得到彻底的解决.矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具.“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个述语.而实际上,矩阵这个课题在诞生之前就已经发展的很好了.从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的.在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反.凯莱先把矩阵作为一个独立的数学概念提出来,同研究线性变换下的不变量相结合,首先引进矩阵以简化记号并发表了关于这个题目的一系列文章.1858年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了关于矩阵的理论.文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念,指出了矩阵加法的可交换性与可结合性.另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩阵的一些基本结果.凯莱出生于一个古老而有才能的英国家庭,剑桥大学三一学院大学毕业后留校讲授数学,三年后他转从律师职业,工作卓有成效,并利用业余时间研究数学,发表了大量的数学论文.1855年,埃米特(C.Hermite,1822~1901)证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等.后来,克莱伯施(A.Clebsch,1831.1872)、布克海姆(A.Buchheim)等证明了对称矩阵的特征根性质.泰伯(H.Taber)引入矩阵的迹的概念并给出了一些有关的结论.在矩阵论的发展史上,弗罗伯纽斯(G.Frobenius,1849~1917)的贡献是不可磨灭的.他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质.1854年,约当研究了矩阵化为标准型的问题.1892年,梅茨勒(H.Metzler)引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式.傅立叶、西尔和庞加莱的著作中还讨论了无限阶矩阵问题,这主要是适用方程发展的需要而开始的.矩阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论.而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论.矩阵的应用是多方面的,不仅在数学领域里,而且在化学、力学、物理、科技等方面都十分广泛的应用.本文主要介绍正交矩阵与其应用.我们把阶实数矩阵满足,称为正交矩阵.尽管我们在这里只考虑实数矩阵,但这个定义可用于其元素来自任何域的矩阵.正交矩阵是由内积自然引出的,要看出其与内积的联系,考虑在维实数内积空间中的关于正交基写出的向量.的长度的平方是.如果矩阵形式为的线性变换保持了向量长度,所以有限维线性等距同构,比如旋转、反射和它们的组合,都产生正交矩阵.本文例举了正交矩阵在线性代数、化学和物理中的三大应用.其中,在线性代数中,求标准正交基除了用Schimidt正交化方法外,本文论证了正交矩阵的其中一种矩阵...初等旋转矩阵也可以求任一矩阵的标准正交基,此法用实例与Schimidt 正交化方法对比;在化学上,根据原子轨道的杂化理论,杂化的原子都有其轨道杂化式,对于形成对阵的原子轨道杂化,利用正交矩阵的性质可以求解该原子杂化轨道的杂化轨道式;在物理上,任一刚体运动都对应一个正交矩阵, 三维空间一条曲线经过刚体运动,其曲率和挠率是不变的,本文考察了曲线做刚体运动时的不变量——曲率和挠率.2.正交矩阵的基本知识本节中在没有特别说明的情况下,都表示为正交矩阵,记矩阵的秩为,与为矩阵的第列与第列,表示矩阵的第行.表示行列式的值即=.2.1正交矩阵的定义与判定定义2.1.1[3]阶实数矩阵满足(或,或),则称为正交矩阵.判定2.1.2 矩阵是正交矩阵;判定2.1.3 矩阵是正交矩阵;判定2.1.4 矩阵是正交矩阵;备注:判定一个是方阵是否为正交矩阵往往用定义,即(或,或),也可以验证的行向量或列向量是否是两两正交的单位向量.当已知的正交矩阵求证其他的结论时,要用正交矩阵的定义及有关性质2.2 正交矩阵的性质若是正交矩阵,则有以下性质([3]):性质2.2.5,则可逆,且其逆也为正交矩阵.证明显然.所以也是正交矩阵.性质2.2.6,,也是正交矩阵, 即有:(1)当时,, 即;(2)当时,, 即证明若是正交矩阵,, 由性质2.2.5,为正交矩阵.因为,所以,当时,, 即;当时., 即.从而为正交矩阵.性质2.2.7是正交矩阵.证明因为,所以.因此,也是正交矩阵性质2.2.8是正交矩阵的充分必要条件是.证明必要性若是正交矩阵,则另一方面,一方面,于是,,;充分性因为是正交矩阵,若,显然也是正交矩阵.性质2.2.9 若也是正交矩阵, 则,,,都为正交矩阵.证明由可知,故为正交矩阵.同理推知,,,均为正交矩阵.正交矩阵的性质主要有以上几点, 还有例如它的特征值的模为1, 且属于不同特征值的特征向量相互正交; 如果是它的特征值, 那么也是它的特征值, 另外正交矩阵可以对角化, 即存在复可逆矩阵, 使,其中为的全部特征值, 即. 这些性质证明略.3.正交矩阵的应用3.1 正交矩阵在线性代数中的应用在线性代数中我们通常用施密特方法求标准正交基,现在可以用正交矩阵中的一种殊矩阵求标准正交基---初等旋转矩阵即Givens矩阵.定义3.1[1] 设向量则称阶矩阵为向量下的Givens矩阵或初等旋转矩阵,也可记作.下面给出Givens矩阵的三个性质[2],[10]性质3.1.1 Givens矩阵是正交矩阵.证明由,则,故是正交矩阵.性质3.1.2 设,则有.证明由的定义知,,且,即右乘向量,只改变向量第和第个元素,其他元素不变.性质3.1.3 任意矩阵右乘,只改变的第列和列元素; 任意矩阵左乘,只改变的第行和行元素.证明由性质3.1.2和矩阵乘法易得结论.引理3.1.4[2] 任何阶实非奇异矩阵 ,可通过左连乘初等旋转矩阵化为上三角矩阵, 且其对角线元素除最后一个外都是正的.定理3.1.5[10] 设是阶正交矩阵若, 则可表示成若干个初等旋转矩阵的乘积, 即;若, 则可以表示成若干个初等旋转矩阵的乘积再右乘以矩阵, 即, 其中是初等旋转矩阵.().证明由于是阶正交矩阵,根据引理3.1.4知存在初等旋转矩阵,使(这里是阶上三角阵),而且的主对角线上的元素除最后一个外都是正的,于是(3-11)注意到是正交矩阵,由(3-11)式得,,即(3-12)设=,其中,,则=.由上式得所以, (3-13)即,当时,;当时,.记,注意到是初等旋转矩阵,故定理1结论成立.引理3.1.6[1] 设其中是阶正交矩阵,是阶上三角阵,是零矩阵.定理3.1.7[10] 设,则可以通过左连乘初等旋转矩阵,把变为的形式,其中是阶上三角阵,是矩阵.证明由引理3.1.6知,其中是阶正交矩阵,是阶上三角阵.又根据定理1知:,则是初等旋转矩阵.(I)当时,;(II)当时,,则.显然,是阶上三角阵,当时,与除最后一行对应元素绝对相等、符号相反外,其余元素对应相等.当时时,.综上,知本定理的结论成立.设,,,是欧氏空间的子空间的一组基,记是秩为的的矩阵.若满足定理2的条件,则存在初等旋转矩阵,使(3-14)且所以(3-15)由(3-14)(3-15)两式知,对、做同样的旋转变换,在把化为的同时,就将化成了,而的前个列向量属于子空间.综上所述可得化欧氏空间的子空间的一组基为一组标准正交基的方法:(1)由已知基为列向量构成矩阵;(2)对矩阵施行初等旋转变换,化为,同时就被化为正交矩阵,这里是阶上三角阵;(3)取的前个列向量便可得的一组标准正交基.显然,上述方法是求子空间的一组标准正交基的另一种方法.下面,我们通过实例对比Schimidt正交化求标准正交基.例求以向量,,为基的向量空间的一组标准正交基.解方法一用Schimidt正交化把它们正交化:,,再把每个向量单位化,得,,.即,,,就是由,得到的的一组标准正交基.方法二(利用连乘初等旋转矩阵)设矩阵,对分块矩阵依次左乘,,,=,=,=,得=,则,,取,,.那么就是由,得到的的一组标准正交基.对比两者的解法,用Schimidt正交化把它们正交化需要的是记公式,若向量的维数比较多的,计算比较麻烦,而用初等旋转矩阵则可根据向量组成的矩阵的特点来求其标准正交基.3.2正交矩阵在化学中的应用原子轨道的杂化是在一个原子中不同原子轨道的线性组合.在结构化学原子轨道杂化理论中,原子中能级相近的几个原子轨道可以相互混合,从而产生新的原子轨道.杂化过程的数学表达式为,为新的杂化轨道,为参加杂化的旧轨道,为第个杂化轨道中的第个参加杂化轨道的组合系数[4].在杂化过程中,轨道数是守恒的,并且杂化轨道理论有三条基本原则[5]:(1)杂化轨道的归一性.杂化轨道满足;(2)杂化轨道的正交性.;(3)单位轨道贡献.每个参加杂化的单位轨道,在所有的新杂化轨道中该轨道成分之和必须为一个单位,即=1.由杂化轨道原理,原子轨道的杂化,实际是由一组相互正交的单位基向量,通过线性变换转化成为另一组相互正交的单位基向量.在线性代数中由一组标准正交基到另一组标准正交基的过渡矩阵是正交矩阵,那么原子轨道的杂化,就可以转化为求出正交矩阵,作线性变换的过程.(A)杂化轨道.以甲烷分子的结构为例,激发态碳原子的电子组态为,这样在形成分子时,激发态碳原子的一个2原子轨道和3个原子轨道进行杂化形成4个等同的杂化轨道.设在激发态碳原子中四个能量相近的原子轨道,,,是一组相互正交的基向量,再通过线性变换将它们转化成另一组相互正交的基向量,,,,那么线性变换系数矩阵A必为正交矩阵,即=.A为正交矩阵,分别是,,,在四个坐标轴的分量.在等性杂化中,四个基向量,,,在四个坐标轴上的分量是相等的,即由四个能量相近的原子轨道,,,进行杂化时形成四个等同的杂化轨道,在四个杂化轨道上,原子轨道和成份完全相同.根据这些理论,我们来求正交矩阵A.因为A 是正交矩阵,由定义可得,即,所以,得=(取正值).又因为是等性杂化轨道.有,=1,所以=(取正值).即得到.又因,,,取符合条件的,,.同理,,即,,得,,取,.又,,得,,.所以,.可以写出四个杂化轨道的杂化轨道式为,,.(B)杂化轨道一个和一个原子轨道杂化形成两个杂化轨道.同样,线性变换的系数矩阵是正交矩阵.根据等性杂化理论有,,,于是,,(取正值).又,,故,,即,.所以杂化轨道式为.3.3正交矩阵在物理学中的应用任意刚体运动都对应一个正交矩阵, 三维空间一条曲线经过刚体运动, 其曲率和挠率是不变的, 称它们为运动不变量.首先我们来简单认识曲率和挠率.曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度.曲率越大,表示曲线的弯曲程度越大.(为角变量,为弧长)趋向于0的时候,定义就是曲率.即.而挠率,它的绝对值度量了曲线上邻近两点的次法向量之间的夹角对弧长的变化率.平面曲线是挠率恒为零的曲线.空间曲线如不是落在一平面上,则称为挠曲线,又由于挠率体现了密切平面的扭转状况,通常说它表示了曲线的扭曲程度.曲线在某点的挠率记为,=.下面, 我们来考察曲线作刚体运动时的不变量[6],[9].设曲线与曲线只差一个运动, 从曲线到曲线的变换为(3-21)其中,是三阶正交矩阵,是常数.对(3-21)两边求阶导数,得.从而有. (3-22)因为是正交矩阵, 所以也有. (3-23) 另一方面, 由一阶, 二阶, 三阶导数, 可作成矩阵.两边取行列式, 由,得.现在取可类似地讨论.因为, (3-24), (3-25)(3-22)代入(3-24)的右边,得=++. (3-26)因(3-24)与(3-25)右边相等, 有(3-25)右边与(3-26)式右边相等,得,,.由正交矩阵的性质2.2.6知,且由,将上面三式左右分别平方相加,=++=.写成矢量函数, 即得于是我们可推得,.这里的分别是曲线的曲率与挠率.参考文献:[1] 陈景良,陈向晖.《特殊矩阵》.第一版.清华大学出版社,2001:353-360[2] 程云鹏.《矩阵论》.第二版.西北工业大学出版社,1999:94.99,196-215[3] 王萼芳,石生明.《高等代数》.第三版.北京:高等教育出版设,2007:162-392[4] 周公度,段连运.《机构化学基础》.第4版.北京大学出版社,2009:79-187[4] 王立东主编《数学》.第一版.大连理工大学出版社,2008:63-74[5] 赵成大等《物质结构》.人民教育出版社. 1982:219-226[6] 强元棨,程嫁夫.《力学》上册.第一版.中国科学技术大学出版社:2005:332-53[7] 张焕玲等《一种求欧氏空间子空间的标准正交基的新方法》山东大学.1996.3.9卷(1)期:14-16[8] 刘钊南.《正交矩阵的作用》.湘潭师范学院学报.1987.11.16: 3[9] 陈少白.《空间曲线的刚体运动基不变量》. 武汉科技大学学报.2003.12.26卷(4)期:424-426[10] 刘国志.《欧氏空间子空间的标准正交基的全新方法—Givens变换法》.抚顺石油学院学报.1996.3.16卷(1)期:78-81致谢感谢父母,给了我生命,也让我懂得这世上什么是真情!当我们遇到困难的时候,会倾注所有一切来帮助我们的人是父母;当我们受到委屈的时候,能耐心听我们哭诉的人是父母.当我们犯错误时,能够毫不犹豫地原谅我们的人是父母;当我们取得成功的时候,会衷心为我们庆祝与我们分享成功的喜悦的,仍然是父母;而现在我们远在外地学习,依然牵挂着我们还是父母.感谢父母给予我爱,是您们让我感到骄傲与自豪!感谢老师,授予我知识!大学四年,不少老师给予我无微不至的关怀,这将成为我人生中难以忘怀的回忆.我不仅从您们身上学到许多专业知识,更多的是学到了为人处世的道理.在和您们的交流中,我对我的未来有了更好的规划.您们是我人生的航标,让我在迷茫时找到前进的方向;您们是我精神上的支柱,让我在困难时重新振作.大学四年,如果没有您们的博学知识,没有您们的倾注爱心,没有您们的谆谆善诱,我将不可能收获那么多.假如我能搏击蓝天,那是您们给了我腾飞的翅膀;假如我是击浪的勇士,那是您们给了我弄潮的力量;假如我是不灭的火炬,那是您们给了我青春的光亮!感谢帮助过我、教导过我的老师们,是您们,让我懂得给予与付出才是最重要的,是您们,让我明白做人就要不断进取,迎难而上,力争上游!本毕业论文是在我的导师XX的亲切关怀和悉心指导下完成的,她给我的论文提出了不少宝贵的意见;她严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感染和激励着我.从课题的选择到项目的最终完成,XX老师都始终给予我细心的指导和不懈的支持,在此谨向XX老师致以诚挚的谢意和崇高的敬意.。
本科毕业论文(设计)正定矩阵及其应用学生:学号:专业:指导老师:答辩时间:装订时间:A Graduation Thesis(Project)Submitted to School of Science,Hubei University for Nationalities In Partial Fulfillment of the Requiring for BS DegreeIn the Year of 2016Positive definite matrices and their applicationsStudent Name: Student No.:Specialty:s Supervisor:Date of Thesis Defense: Date of Bookbinding:摘要矩阵是高等代数里的一个基本概念,是代数知识的基础,是矩阵代数的一个主要研究对象. 它不仅是数学的一个重要分支,而且已经成为现在科技领域处理有限维空间形式与数量关系的强有力的工具. 而正定矩阵是从矩阵延伸出来的具有特殊性质的矩阵,是研究二次型的基础,在函数、不等式中都有应用,因此正定矩阵的特殊性质和广泛应用得到了许多学者关注,进而对此进行了大量的研究. 本文从矩阵最基本的概念和性质出发,由浅入深,层层递进. 从矩阵的性质出发,给出了正定矩阵定义及其等价定义,归纳整理了正定矩阵的性质及其部分证明,总结了正定矩阵的判定定理,最后研究正定矩阵在理论证明和在函数极值中的应用.关键词:矩阵正定二次型正定矩阵极值AbstractThe matrix is very important in advanced algebra. It is not only an important branch, but also have become a powerful tool for studying finite dimensional space and quantity r- elationship in the real of modern science and technology. However , extending from the m- atrices, the positive definite matrix is a special matrix, which is a foundation for studying quadratic form and apply properly to both functions and inequality. Thus, its special prop- erty and wide applications have drawn scholars'attention, and a lot of research have been done. This paper begins with the matrix'primary concept and properties, going from the e- asy to the difficult. We define the positive definite matrix and its equivalent one, the sum up its properties and partial evidence, and summarize the determined theorems. At last, we study its application in theory and the solution of the function extremum.Keywords: matrix,positive definite quadratic,positive definite matrix,extremum目录摘要IAbstractII1绪论11.1 课题背景11.2 课题研究的目的和意义11.3 国外研究概况22 预备知识32.1 矩阵32.2二次型53正定矩阵83.1正定二次型83.2正定矩阵的判定定理94正定矩阵的应用134.1正定矩阵的相关命题134.2正定矩阵在函数极值中的应用15总结与展望18致201绪论我们知道矩阵是高等代数中非常重要的容之一. 在学习高等代数时,矩阵方面的知识也经常被用到. 而正定矩阵又是矩阵中的重点,它不单单用来解决数学中的问题,还应用于许多的科学领域. 本课题阐述了正定矩阵研究背景、正定矩阵的研究的目的和意义、正定矩阵的现状以及发展方向,明确指出了研究正定矩阵应用所面临的问题.1.1 课题背景正定矩阵作为一类常用矩阵,对它的研究最早出现在二次型中. 它也是从正定二次型中抽象出来的一个概念,有了正定矩阵的概念后,解决二次型的问题就变得简单方便. 不仅在代数学中应用广泛,在函数学、几何学、图像处理学、概率统计和物理学等学科中都得到了广泛的应用. 因此它的性质、定理以及应用问题一直备受学者关注. 而在实际生活问题中也经常出现一些相关数学问题,而用正定矩阵解决问题可能会更方便简洁一点. 这就需要我们研究正定矩阵的应用,如正定矩阵在四则运算、在函数极值、在不等式中的应用. 因此可以使得我们可以更好地使用正定矩阵这一重要工具. 本文通过对正定矩阵的理解和掌握,查阅各种相关资料,对正定矩阵及其相关知识点进行归纳总结,并且由此给出了正定矩阵在四则运算和函数极值及中的应用.根据课题研究容和手中相关文献资料,了解课题研究现状,学习掌握相关理论基础知识,并进行初步研究,撰写开题报告.1.2 课题研究的目的和意义矩阵是代数中一个非常重要的概念,是研究和解决数学问题的一个重要工具. 而正定矩阵是一类非常重要的矩阵,在矩阵中扮演着重要的角色,因此是我们学习矩阵时不可忽略的重点. 本文对我们对数学感兴趣的学生深入理解和掌握正定矩阵理论有非常重要的意义. 能够加强我们对正定矩阵的掌握,也可以促进正定矩阵理论的进一步完善,丰富正定矩阵的应用,加强我们对正定矩阵的理解,丰富矩阵的理论知识. 有助于我们对整个高等代数知识的一体化的认识. 从而可以培养我们对代数知识的串联思想. 正定矩阵多方面的应用,能够开阔我们的视野,加强我们的联想能力,引起我们对数学的探究欲望,对知识的渴望.研究矩阵的正定性,在代数理论和应用中具有重要意义. 正定矩阵不仅在数学方面,在其他各个领域都具有广泛的应用价值,因此引起了学者们极大的研究兴趣. 这些研究不断丰富了正定矩阵的理论知识,也引起了我们对正定矩阵的兴趣.1.3 国外研究概况随着数学的影响力越来越大,矩阵对数学的研究也显得越来越重要. 在代数方面,正定矩阵也同样占有非常重要的地位. 因此人们对正定矩阵的研究也越来越广泛. 因而对正定矩阵的理解和应用也越来越深入,其应用围也越来越广泛. 在函数学、几何学、经济学、图像处理学、概率统计和物理学等学科中都得到了广泛的应用.在历史上,正定矩阵的相关研究最早出现在二次型和Hermite型中. 但是当时对于的正定矩阵局限于对实对称矩阵或者Hermite矩阵. 1970年,Johnson引入了不再局限于对实对称矩阵或者Hermite矩阵实对称矩阵的概念. 他给出了正定矩阵较为广义的定义. 1985年,炯生也给出了正定矩阵较为广义的定义. 1984年,佟文廷再次将正定矩阵的定义进行了推广. 他给出了推广正定矩阵的各种定义. 1988年,夏长富将实对称矩阵的正定性做了深入推广. 他又进一步极大的丰富了正定矩阵的理论. 1990年,屠伯埙将各类广义正定矩阵进行深度结合. 他重新定义了广义正定矩阵,将它称之为亚正定矩阵. 在研究正定矩阵的过程中,许多学者取得了惊人的理论成果,其成果也得到了广泛的应用. 除了对正定矩阵的研究,许多学者还对正定矩阵相关容进行了研究,同样取得了巨大的成就. 近年来,在完善正定矩阵理论成果的历史中,得出了许多其他的概念和定理,将各类正定阵统一起来. 这些新的研究成果对完善正定矩阵的理论和其应用具有非常大的价值.虽然对正定矩阵的研究这么广泛,但是这些正定矩阵的研究只局限在正定矩阵的理论分析方面. 它的一些实际方面的应用还有待笔者和一些学者去探索挖掘.2 预备知识2.1 矩阵定义2.1.1 由n m ⨯个数),2,1,,2,1(n j m i a ij ==;排成的m 行n 列的数表⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mn m m n n a a a a a aa a a A 212222111211, 称为n m ⨯矩阵,记作.n m ij a A ⨯=)( 特殊地,当n m =时,矩阵称为方阵.定义2.1.2 把一矩阵A 的行列互换,所得到的矩阵称为A 的转置. 记为T A (或者记为'A ).即, 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=sn s s n n a a a a a a a a a A 212222111211,所谓A 的地转置就是指矩阵.212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=sn n n s s T a a a a a a a a a A 显然,n s ⨯矩阵的转置是s n ⨯矩阵,即n s ij a A ⨯=)(,则.s n ij a A ⨯=)( 转置矩阵满足以下运算规律()()()().T T TT T T T T TT kA kA A B AB B A B A A A ==+=+=,,,定义2.1.3 数域P 上的n n ⨯矩阵A 称为对称矩阵,如果T A A =.即若⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211, 且满足=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a a a a a 212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n nn n a a a a a a a a a212221212111,则称A 为对称矩阵.定理2.1.1 任意一个n 阶实对称矩阵A ,都存在一个n 阶正交矩阵T ,使得AT T T 成对角型. 对角线上的元素为矩阵A 的特征根.定义2.1.4 数域P 上的n n ⨯矩阵A 称为非退化的,如果0≠A ;否则称为退化的. 即,若.0212222111211≠=nnn n nna a a a a a a a a A则A 为非退化的.定义2.1.5N 级方阵A 称为可逆的,如果有n 级方阵B ,使得.E BA AB == (1)这里E 是n 级单位阵.如果矩阵B 适合(1),那么B 称为A 的逆矩阵,记为T A . 注1:只有方阵才可能可逆; 注2:非零的矩阵不一定可逆;注3:若A 可逆,则(1)中的B 必唯一; 注4:若AC AB =,且A 可逆,则C B =.设A 是n 阶可逆矩阵,下列结论成立:()()()()()()()()().5);(4;13;2;111111111-*-------=====n TT AA k kA kA AA A A A A 为非零数定理2.1.2 矩阵A 是可逆的充分必要条件是A 是非退化的.定义2.1.6 数域P 上n n ⨯矩阵B A ,称为合同的,如果有数域P 上可逆的n n ⨯矩阵C ,使.AC C B T =合同是矩阵之间的的一个关系,不难看出,合同关系具有: (1) 反身性:;AE E A T =(2) 对称性:由T C B =即得();11--=BC C A T(3) 传递性: 由111AC C A T =和2122C A C A T= 即得()().21212C C A C C A T=定义2.1.7 设n n y y y x x x ,,,,,,2121 ;是两组文字,系数在数域P 中的一组关系式⎪⎪⎩⎪⎪⎨⎧++=+++=+++=.22112222121212121111n nn n n n nn n n y c y c y c x y c y c y c x y c y c y c x ,,(2) 称为由n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或者简称线性替换,如果系数行列式,0≠cij那么线性替换(2)称为非退化的.2.2二次型定义2.2.1设P 是一数域. 一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式() ++=211221113212,,x x a x a x x x f+++++n n n x x a x a x x a 22222212122+2nnn x a + (3) 称为数域P 上的一个n 元二次型,或者,在不致引起混淆时简称二次型. 令ji ij a a =,.j i >由于i j j i x x x x =,所以二次型(3)可以写成()n n x x a x x a x a x x x f 1121122111321,,+++=n n x x a x a x x a 2222221221+++++22211n nn n n n n x a x x a x x a ++++j i n i nj ij x x a ∑∑-==11(5)把(5)的系数排成一个n n ⨯矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211, 它就称为二次型(5)的矩阵.令.21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X于是,二次型可以用矩阵的乘积表示出来()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=n nn n n n n n Tx x x a a a a a a a a a x x x AX X 2121222211121121,,..),,(21AX X x x x f T n =定理2.2.1 在数域P 上,任意一个对称矩阵都合同于一对角阵. 即,对于任意一个对称矩阵A 都可以找到一个可逆矩阵C 使AC C T成对角矩阵.定义2.2.2二次型),,,(21n x x x f 经过非退化的线性替换所变成的平方和形式称为二次型),,,(21n x x x f 的一个标准形. 即222221121),,,(n n n x d x d x d x x x f ++=为二次型),,,(21n x x x f 的标准形.定义2.2.3 任意一个复系数的二次型,经过一适当的非退化线性替换可以变成规形. 且规形是唯一的.即任一复数的对称矩阵合同于⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0011的对角阵.定义 2.2.4 实二次型),,,(21n x x x f 经过某一个非线性替换,可使),,,(21n x x x f 变成标准形22112211r r p p p p y d y d y d y d --++++ ,再做一次非退化线性替换就变成221221r p p z z z z --+++ ,称为实二次型),,,(21n x x x f 的规形.3正定矩阵在二次型中,正定二次型占有特殊的地位. 作为本章的开始,我们给出了它的定义,引出正定矩阵的定义. 正定矩阵同样占有非常特殊的地位,我们给出了正定矩阵的判定定理.3.1正定二次型定义3.1.1 在实二次型 ),,,(21n x x x f 的标准型形中,正平方项的个数p 称为),,,(21n x x x f 的正惯性指数;负平方项的个数p r -称为),,,(21n x x x f 的负惯性指数;它们的差()r p p r p -=--2称为),,,(21n x x x f 的符号差.定义3.1.2 实二次型),,,(21n x x x f 称为正定的. 如果对于任意一组不全为零的实数 n c c c ,,,21 都有 0),,,(21>n c c c f .定理3.1.1 n 元实二次型 ),,,(21n x x x f 是正定的充分必要条件是它的正惯性指数等于n .推论3.1.1 正定矩阵的行列式大于零.定义3.1.3 在n 阶矩阵中任选k 行,再取相同行号的列,所选取的行列交汇处的2k 个元素组成的新的矩阵称为n 阶矩阵的一个k 阶主子式.定义3.1.4 子式),2,1(212222111211n i a a a a a aa a a P ii i i i i i=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=, 称为矩阵()n n ij a A ⨯=的顺序主子式.定理3.1.2实二次型AX X x x x x x f T ni nj j i ij n a ==∑∑==1121),,,(是正定的充分必要条件为:矩阵A 的顺序主子式全大于零.定义3.1.5 若对于方阵A 存在一个非零向量X 和实数λ,使得X AX λ=成立. 则称λ为矩阵A 的特征值,X 称为A 相对于λ的特征向量.定义3.1.6 设实二次型AX X x x x f T n =),,,(21 (A 为对称矩阵). 如果对于任意的0X 21≠⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x ,有0),,,(21>=AX X x x x f T n ,则称该二次型为正定二次型. 矩阵A为正定矩阵.注:本文所讨论的都为实正定矩阵.3.2正定矩阵的判定定理定理3.2.1实对称矩阵A 为正定矩阵的充分必要条件是:存在可逆矩阵P ,使得P P A T =.证明 必要性 因为矩阵A 为正定矩阵,所以矩阵A 合同于单位矩阵,即存在可逆矩阵Q ,使得E AQ Q T =, 即()()()1111----==Q Q EQ Q A TT ,若我们记1-=QP ,则有.P P A T =充分性 设存在可逆矩阵P 使得P P A T =,则对任意()0,,,x 21≠=Tn x x x , 有()()PX PX PX P X AX X TT T T ==,若我们记()Tn y y y PX Y ,,,21 ==. 则22221n T T y y y Y Y AX X +++== ,所以矩阵A 为正定矩阵.定理3.2.2实对称矩阵A 为正定矩阵的充分必要条件是:存在可逆矩阵P ,使得n T E AP P =.证明 充分性 因为矩阵A 为正定矩阵,所以矩阵A 对应的是正定二次型. 因此可以经过非退化线性替换PY X =. 其中()Tn y y y Y ,,,21 =. 使得()()()).,,,(),,,(212121n n T T TT n y y y g a a a Y AP P Y PY A PY AX X x x x f=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛====所以有n E AP P ='.必要性 存在可逆矩阵P 使得 n T E AP P =,则其对应的二次型).,,,()()(),,,(2121n T T T T n x x x f PY A PY APY P Y EY Y y y y g ==== 因),,(21n x x x g 为正定二次型,所以),,,(21n x x x f 也为正定二次型. 所以其对应的矩阵A 为正定矩阵.定理3.2.3实对称矩阵A 为正定矩阵的充分必要条件是:矩阵A 的正惯性指数n p =.证明 充分性 因为矩阵A 为正定矩阵. 由定理3.2.2知矩阵A 合同于单位阵E . 所以矩阵A 的正惯性指数为n .必要性 因为矩阵A 的正惯性指数为n ,由定理3.1.1知矩阵A 对应的二次型为正定二次型. 因此矩阵A 为正定矩阵.定理3.2.4实对称矩阵A 为正定矩阵的充分必要条件是:矩阵A 的所有顺序主子式都大于零.证明 充分性 因为矩阵A 为正定矩阵,所以矩阵A 对应的二次型为正定二次型. 则构造函数)00)(,,,(21≤<k x x x f k 也为正定二次型. 所以其对应的矩阵顺序主子式k A 为正定矩阵,即0>k A . 所以正定矩阵A 的所有顺序主子式都大于零. 必要性 因为矩阵A 的所有顺序主子式都大于零,所以矩阵A 的任一顺序主子式k A 对应的二次函数都为正定二次型. 因此当n k =时对应的二次型),,,(21n x x x f 为正定二次型. 即对应的矩阵A 为正定矩阵.例3.2.1 设二次型323121232221214-2224),,,(x x x x x x x x x x x x f n -+++=λ ,求λ的取什么围,使得),,,(21n x x x f 为二次型.解 二次型),,,(21n x x x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛=22-1-2-41-1λλA .由定理3.2.4得,011>=A()(),02244122>+-=-==λλλλλA 得.22<<-λ(),02-24222-12-41123>-=+-=--=λλλλλλA 得.20<<λ 综合可知当20<<λ时,),,,(21n x x x f 正定.定理3.2.5实对称矩阵A 为正定矩阵的充分必要条件是:矩阵A 的所有主子式都大于零.证明 设正定矩阵()n n ij a A ⨯=,则它的任一m 阶主子式为()mm m mk k k k k k k k m a a a a A1111=.作二次型AX X T 和().Y A Y m T 对任意()0,10≠=m k k b b Y ,都有().0,,10≠=n c c X 其中⎩⎨⎧==其它时当,0,,,,21m i i k k k i b c ,由于AX X T 正定,所以000>AX X T . 从而().0000Y A Y AX X m TT= 由0Y 的任意性即证()Y A Y m T 是正定二次型,即().0>m A例3.2.2 判断⎪⎪⎪⎭⎫⎝⎛=1-10121011A 是否为正定矩阵.解 我们直接可以看出矩阵A 的主子式不全大于零.定理3.2.6实对称矩阵A 为正定矩阵的充分必要条件是:矩阵A 的所有特征值都大于零.证明 由定理2.1.1知对于对称矩阵A 存在一个n 阶正交矩阵T . 使得AT T T 成对角型. 对角线上的元素为矩阵A 的特征根.充分性 因为矩阵A 为正定矩阵,所以存在正交矩阵P ,满足⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n T a a a AP P21. 其中n a a a ,,,21 是矩阵A 的全部特征值. 则矩阵A 对应的二次型为AX X x x x f T n =),,,(21 . 令PY X =,则有()()().,,,)(),,,(2121n T T TT n y y y g Y AP P Y PY A PY AX X x x x f ====又因为矩阵A 为正定矩阵,所以二次型为正定二次型. 因此矩阵A 的特征值全部大于零.必要性 因为矩阵A 的特征值),,2,1(n i a i =都是大于零,所以存在正交矩阵P ,满足⎪⎪⎪⎪⎪⎭⎫⎝⎛=n T a a a AP P21. 则矩阵A 所对应的二次型 ()()()),,,(,,,),,,(2121212121n TT T n n n n x x x f PY A PY APY P Y y y y a a a y y y y y y g===⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=所以二次型()n y y y g ,,,21 是正定二次型. 因此矩阵A 为正定矩阵.4正定矩阵的应用正定矩阵作为本论文的中心容,我们不仅仅只是研究它的定义和性质,它的应用也是我们需要研究的反向. 正定矩阵的应用非常广泛,它在函数学、几何学、图像处理学、概率统计和物理学等学科中都得到了广泛的应用. 本论文主要研究了它在理论证明中和在函数极值中的应用.4.1正定矩阵的相关命题命题4.1.1 若矩阵B A ,是n 阶正定矩阵,则矩阵B A +也是正定矩阵. 证明 因为矩阵B A ,为正定矩阵,所以对所有00,0>>≠BX X AX X X T T ,. 因此0)(>+X B A X T .命题4.1.2 若矩阵A 是n 阶正定矩阵,R k ∈<0,则kA 也为正定矩阵. 证明 因为所有0,0>≠AX X X T ,所以0)()(>=AX X k X kA X T T .命题4.1.3 若矩阵B A ,都是n 阶正定阵,BA AB =,则AB 也是正定阵. 证明 因为BA AB =,所以()AB BA A B AB T T T===. 所以AB 是对称矩阵又因为B A ,为正定矩阵,所以存在可逆矩阵Q P ,,使得.,Q Q B P P A T T == 因此Q PQ P AB T T =.又因为()()TT T PQ PQ PQ QP QABQ ==-1正定, 且与AB 相似,所以AB 正定.命题4.1.4 设矩阵A 是正定阵,则*1A A ,-为正定阵.证明 因为矩阵A 为正定矩阵. 所以存在可逆矩阵C ,使得C C A T =. 因此()()()TTT C C C C CC A 111111------===. 所以1-A 正定.又因为01*>⋅=-A A A A ,此时,所以*A 也是正定阵.命题4.1.5 设矩阵A 为正定阵,则与矩阵A 合同的矩阵也是正定阵. 证明 因为正定矩阵A 合同于单位矩阵E ,又因为合同矩阵具有传递性 所以结论成立.命题4.1.6 若矩阵A 为正定矩阵,那么矩阵A 的绝对值最大的元素一定在矩阵A 的主对角线上.证明 设{}00,max 00j i a a ij j i ==,000000000≤j j i j j i i i a a a a . 这与矩阵A 为正定矩阵矛盾.例4.1.1判断矩阵⎪⎪⎪⎭⎫ ⎝⎛=113121311B 是不是正定矩阵.解 因为绝对值最大的元素不在主对角线上,所以矩阵B 不是正定矩阵.- . -4.2正定矩阵在函数极值中的应用定义4.2.1 设n 元函数()),,,(21n x x x f x f =在n n R x x x x ∈⎪⎪⎪⎪⎪⎭⎫ ⎝⎛= 210的某个邻域存在一阶和二阶连续偏导数.记⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂=∇n x x f x x f x x f x f )(,,)(,)()(02010 .)(x f ∇称为函数)(x f 在点⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x x 210处的梯度,或记为).(0x gradf定义4.2.2设n 元函数()),,,(21n x x x f x f =有二阶连续偏导数,并且在⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n αααα 21处的一阶偏导全部为零. 则称α为()),,,(21n x x x f x f =的一个驻点,则n 阶矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=n n n n n n x x x x x x x x x x xx x x x x x x f f f f f f f f f x H212221212121)(. 称为()),,,(21n x x x f x f =在α点的黑塞矩阵.定理4.2.1 设函数),,,()(21n x x x f x f =的一阶和二阶连续偏导数存在.并且在),,,(21n αααα =处的一阶偏导为零. 则由函数二阶偏导所确定的n 元黑塞矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=n n n n n n x x x x x x x x x x xx x x x x x x f f f f f f f f f x H212221212121)(,满足 (1)当)(αH 为正定矩阵时,()),,,(21n x x x f x f =在α处取得极小值; (2)当)(αH 为负定矩阵时,()),,,(21n x x x f x f =在α处取得极大值; (3)当)(αH 为不定矩阵时,()),,,(21n x x x f x f =在α无极值.- . -证明 因为()),,,(21n x x x f x f =在α的所有二阶偏导数都存在,所以由泰勒公式得()n n x x x f ∆+∆+∆+ααα,,,2211()+=n f ααα,,,21 ()n n n n x x x f x x x x x x ∆+∆+∆+⎪⎪⎭⎫⎝⎛∂∂∆++∂∂∆+∂∂∆θαθαθα,,,22112211 ())10(,,,21221122211<<∆+∆+∆+⎪⎪⎭⎫⎝⎛∂∂∆++∂∂∆+∂∂∆+θθαθαθα其中!n n n n x x x f x x x x x x 又因为()),,,(21n x x x f x f =在α处的一阶偏导为零,所以()n n n i x i x x x f x f i∆+∆+∆+∆=∆∑=θαθαθα,,,(!212211122()).,,,2221111n n ni x x jni j ix x x f xx j i ∆+∆+∆+∆∆+∑∑=+=θαθαθα所以我们可以得到()n n x x x x x f j i ∆+∆+∆+θαθαθα,,,2211 ()).,2,1,(,,,21n j i c f ij n x x j i =+=ααα 当()0,,,21→∆∆∆=∆n x x x x 时,.0→ij c 所以()n n i x i if x f ααα,,,(!2121122 ∑=∆=∆()n n i x x j ni j i j i f x x ααα,,,22111∑∑=+=∆∆+)211122∑∑∑=+==∆∆+∆+ni jni j iijn i iix x c x c .因为()0,,,21→∆∆∆=∆n x x x x 时.0→ij c 所以存在x 的一个领域,使得在这个区域f ∆的符号与()n n i x i if x f ααα,,,2112'2 ∑=∆=()n ni x x jni j ij i f xx ααα,,,22111∑∑=+=∆∆+的符号一致.所以由实二次型及正定矩阵的定义可以证明以上定理的正确性.例4.2.1 求三元函数()32123222132162432,,x x x x x x x x x f -+-++=的极值. 解 求驻点⎪⎩⎪⎨⎧=-==⇒⎪⎩⎪⎨⎧=-==+==-=.111.066022044321321321x x x x f x f x f x x x ,,,,所以驻点为()1,1-1,α. 求得二阶偏导分别为.0,6,0,2,0,4313332222111======x x x x x x x x x x x x f f f f f f所以矩阵()⎪⎪⎪⎭⎫ ⎝⎛=600020004αH , 由以上判定定理可知H 为正定矩阵.所以),,(321x x x f 在()1,1-1,α处取得极小值,极小值为()().51,1,1-=-=f f α例4.2.2 求三元函数32123223132126),,(x x x x x x x x x f -+++=的极值. 解 求驻点⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧=-==+==+=.1,27,9.1,0,0.022062063321321312221321x x x x x x x f x x f x x f x x x 或,,所以驻点为()1,001,α,()1,2792,α. 求得二阶偏导分别为.0,0,2,0,0,2,6,6,61331332332221221111=========x x x x x x x x x x x x x x x x x x f f f f f f f f x f所以矩阵()⎪⎪⎪⎭⎫ ⎝⎛=2000260661x H α.所以矩阵().2000260601⎪⎪⎪⎭⎫ ⎝⎛=αH在()1,001,α处的顺序主子式为 .7220002606036266000321-==-====H H H ,,由定理3.2.4知矩阵()1αH 不是正定矩阵,所以()1,001,α不是),,(321x x x f 的极值点. ().20002606542⎪⎪⎪⎭⎫⎝⎛=αH在()1,2792,α处的顺序主子式为 .0144200026065407226654054321>==>==>=H H H ,,由定理3.2.4知矩阵()2αH 是正定矩阵,在()1,2792,α处取得极小值,极小值为 ()().29151,27,92==f f α总结与展望正定矩阵在高等代数中有很多重要的应用,其实质就是简化二次型的运算. 本文一共有四章. 第一章主要介绍了本文的研究背景和现状;第二章归纳了部分矩阵知识和二次型知识;第三章通过正定二次型导出正定矩阵的定义,并且整理了正定矩阵的相关知识,着重归纳证明了正定矩阵的六个判定定理及其证明;第四章在前面两部分的知识基础上,给出了正定矩阵的六个命题及其证明,给出了解决了函数极值存在问题的方法,即正定矩阵在函数极值中的应用. 从代数方面解决分析问题,使我意识到数学的跨度非常大,我们应该加强自己的逻辑思维和联想能力并且要学会多方面思考问题.以上这些正定矩阵的研究只局限在正定矩阵的理论分析方面,也可能总结不太完整,归纳的不够完善,这就希望其它研究者完善,还有它的一些实际方面的应用还有待笔者和一些学者去探索挖掘. 本文作者知识和写作水平有限,不足之处请读者和专家批评指正.致在论文完成之际,我首先要向我的指导老师老师表示最真挚的意,本论文是在导师老师的悉心指导下完成的.在论文写作期间,老师一边要兼顾自己的学业一边还耐心认真地指导我的论文,不辞辛苦,花费了许多宝贵时间和心血. 导师渊博的学识,宽厚待人的学者风,严谨求学的治学态度,忘我的敬业精神让我受益匪浅. 能够师从先平老师,是我的幸运,更是我的荣幸.衷心感和我是同一个指导老师的付江林同学. 感他帮助我指正和修改我论文的不足之处. 因为他的帮助我才能顺利完成我的论文.感我的室友们,感他们的督促与各方面的帮助.还有感我的家人们,没有他们的支持,我的论文不可能顺顺利利的完成.最后,向评阅论文和参加论文答辩的老师们表示由衷的感.由于我知识水平的限制,再加上我写此论文的时间仓促. 文中难免有错误和有待改进之处. 真诚欢迎各位老师、同学提出宝贵意见.参考文献[1]慕生. 高等代数[M]. 复旦大学, 2007.9.[2]王蕚芳. 石生明. 高等代数[M]. . 高等教育, 2003.9.[3]岳贵鑫. 正定矩阵及其应用[J]. 省交通高等专科学校学报, 2008, 10(5):31-33.[4]周杰. 矩阵分析及应用[M]. 大学, 2009.7.[5]王松江. 矩阵不等式[M]. 科学. 科学, 2006.5.[6]文杰. 静. 多元函数的极值问题[J]. 工业大学学报:自然科学版, 2004, 24(1):27-30.[7]邵东南. 马鸿. 正定矩阵的性质及应用.大学学报:自然科学版(2), 1999, 59-62.[8]黄云美. 正定矩阵的性质及其应用.职业学院学报, 17.3(2011).[9]王昊. 正定矩阵的性质及应用[J]. 城市建设理论研究:电子版, 2011(20):59-62.[10]路红军. 一类正定矩阵的性质及其应用[J]. 工学院学报, 2003, 12(3):6-7.[11]史秀英. 正定矩阵的等价命题及其应用[J]. 学院学报:自然科学版,2000(2):44-47.[12]Roger A.Horn . Charles R.Johnson. Matrix Analysis (Second Edition), 剑桥大学,20012.11.[13]宋国际. 论正定矩阵在多元函数极值问题中的应用[J]. 旅游职业学院学报,2010,15(1):58-60.[14]丹. 庆平. 正定矩阵的性质及相关问题[J]. 数学理论与应用, 2011(4):124-128.[15]庭骥. 判别正定矩阵的充分必要条件及其等价性[J]. 矿业学院学报, 1992,20(2):107-110.[16]建忠. 关于正定矩阵的一个不等式及应用[J]. Studies in College Mathematics, 2001,4(1):40-40.[17]贤淑. 莉军. 正定矩阵的降阶判别法及其应用[J]. 印刷学院学报, 2000(2):40-43.[18]家昶. 齐远伟. 条件正定矩阵及其在多元插值计算中的应用[J]. 计算数学, 1989,11(4):386-393.[19]景晓. 正定矩阵基与正交矩阵基及其应用[J]. 师大学学报:自然科学版,2003,18(3):15-17.[20]定华. 矩阵的次特征值及其应用[J]. 中国科学技术大学学报, 2012,42(11):920-924.独创性声明本人声明所呈交的论文(设计)是我个人在导师指导下进行的研究工作及取得的研究成果。
山西师范大学本科毕业论文(设计) 矩阵的秩及其应用姓名杨敏娜院系数学与计算机科学学院专业数学与应用数学班级11510102学号1151010240指导教师王栋答辩日期成绩矩阵的秩及其应用内容摘要矩阵在高等代数的研究中占有极其重要的地位,矩阵的秩更是研究矩阵的一个重要纽带。
通过对矩阵的秩的分析,对判断向量组的线性相关性,求其次线性方程组的基础解系,求解非其次线性方程组等等都有一定的意义和作用。
论文第一部分介绍矩阵的概念,一般性质及秩的求法,这对之后介绍秩的应用有重要的铺垫作用。
第二部分再利用这些性质及定理解决向量组和线性方程组的有关问题。
第三部分研究矩阵的秩在解析几何应用中,着重用于判断空间两直线的位置关系。
在与特征值间的关系主要是计算一些复杂矩阵的值。
最后将矩阵的秩推广到特征值和其他与向量组有关的向量空间的应用。
本文主要对矩阵的秩相关定义定理进行总结和证明,并将其运用到一些具体事例中。
【关键词】矩阵的秩向量组线性方程组特征值解析几何The Rank of Matrix and the Application of the Rank ofMatrixAbstractThe matrix plays a very important role in the research on advanced algebra. The rank of matrix is an important link of matrix. The analysis of the rank of matrix determines the linear relation of vector group. And there are certain significance and role to solve some linear equations and non linear equations.First, the article introduces the concept of matrix, general nature and method for the rank of matrix, it plays an important role for the application of the rank. Second, use the properties and theorems of vector group to solve the problem of linear equations. Third, analysis the rank of matrix in geometry application, it focuses on the judgment of space position relationship of two lines. In the characteristics of value, it mainly calculates some complex matrix. Finally, the application of the rank of matrix is extended to Eigen value and other related vectors in vector space.This paper mainly summarizes the matrix rank and its related theorem, and applies it to some specific examples.【Key Words】rank of matrix vector group linear equations characteristic value Analytic geometry目录一、引言 (01)二、矩阵的秩 (01)(一)矩阵的秩的定义 (01)(二)矩阵的秩的一般性质及求法 (01)(三)求抽象矩阵的秩 (02)三、矩阵的秩的应用 (03)(一)矩阵的秩在判定向量组的线性相关性方面的应用 (03)(二)矩阵的秩在线性方程组方面的应用 (04)(三)矩阵的秩在解析几何方面的应用 (07)(四)矩阵的秩在特征值方面的应用 (07)(五)矩阵的秩在其他方面的应用 (08)四、小结 (09)参考文献 (10)致谢 (11)矩阵的秩及其应用学生姓名:杨敏娜 指导老师:王栋一、引言矩阵概念在代数的学习中是一个关键的分支,是研究线性代数的基石,矩阵的秩作为矩阵的核心内容,更是研究它的一个纽带。
内蒙古财经大学本科毕业论文正定矩阵的性质及应用作者郝芸芸系别统计与数学学院专业信息与计算科学年级10级学号102093113指导教师高菲菲导师职称讲师答辩日期成绩内容提要矩阵是数学中的一个重要基本概念,也是一个主要研究对象,同时矩阵论又是研究线性代数的一个有力工具.而矩阵的正定性是矩阵论中的一个重要概念.正定矩阵是一种特殊的矩阵,其等价定理在解题过程中可以灵活使用.且正定矩阵具有一般矩阵不具有的特殊性质,尤其是这些性质广泛地应用于各个领域.本文在第一部分介绍了实矩阵的正定性的相关定义以及其等价条件.在第二部分列举了正定矩阵的一系列性质,主要介绍了正定矩阵的关联矩阵的正定性.本文在第三部分介绍了正定矩阵的相关定理.本文在第四部分介绍了矩阵正定性的判定方法:定义法、主子式法、特征值法、与单位矩阵合同法.且简单地举了一些实例来阐述实矩阵正定性的判定.最后本文分别从不等式的证明和多元函数的极值两个方面介绍了正定矩阵的实际应用.关键词:二次型正定矩阵判定方法应用AbstractMatrix is an important basic concepts in mathematics,but also a main research object,at the same time matrix theory is a powerful tool for the study of linear algebra。
At the same time,the positive definiteness of matrix is an important concept in the matrix theory。
The positive definite matrix is a special matrix, the equivalence theorem in the problem solving process can be used flexibly。
正交矩阵及其应用The orthogonal matrix and its applicalion摘要正交矩阵是数学研究中的一类重要的工具, 它的应用非常广泛. 本文从以下主要例举了正交矩阵的三大应用: 正交矩阵在线性代数中的应用、正交矩阵在拓扑和近世代数中的应用、正交矩阵在物理中的应用.关键词: 矩阵; 正交矩阵; 标准正交基; 集合; 特征根; 行列式AbstractOrthogonal matrix is the mathematical study of an important class of tools, it is widely used. This article cites the following main four orthogonal matrix applications :orthogonal matrix in linear algebra, Orthogonal matrix topology and Modem Algebra, orthogonal matrix the application of physics.Keywords: matrix; orthogonal matrix; orthonormal basis; a collection of eigenvalues; determinant目录摘要 (I)Abstract (II)0 引言 (1)1 正交矩阵的定义及其简单性质 (1)1.1 正交矩阵的定义及其判定 (1)1.2 正交矩阵的性质 (1)2 正交矩阵的应用 (2)2.1 正交矩阵在线性代数中的应用 (2)2.2 正交矩阵在拓扑和近世代数中的应用 (8)2.3 正交矩阵在物理中的作用 (11)参考文献 (15)0 引言正交矩阵是一类重要的实方阵, 由于它的一些特殊性质, 使得它在不同的领域都有着广泛的应用, 也推动了其它学科的发展. 本文从正交矩阵的定义以及其性质入手, 来探讨它的四大应用即: 正交矩阵在线性代数中的应用、正交矩阵在拓扑和近世代数中的应用、正交矩阵在物理中的应用.1 正交矩阵的定义及其简单性质1.1 正交矩阵的的定义及其判定定义1.1[1] n 阶实矩阵A , 若满足E A A =', 则称A 为正交矩阵. 判定1 A 为正交矩阵1'-=⇔A A .判定2 A 为正交矩阵⇔'1,,,1,2,,0,,i j i j i j n i j αα=⎧==⎨≠⎩.判定3 A 为正交矩阵⇔'1,,1,2,...0,,i ji j i j n i j ββ=⎧===⎨≠⎩.1.2 正交矩阵的性质设A 为正交矩阵, 它有如下性质:性质1[5] 1A =±, 1A -存在, 并且1A -也为正交矩阵; 性质2[5] 'A ,*A 也是正交矩阵; 当1A =时, '*A A =, 即ij ij a A =; 当1A =-时. '*A A =-, 即ij ij a A =-.性质3[5] 若B 也是正交矩阵, 则''11,,,AB A B AB A B AB --都为正交矩阵. 证明 性质1 显然1A =±, ()()()'11''1A A A ---==所以1A -也是正交矩阵.性质2 '1A A -=, 显然'A 为正交矩阵.由*'11,A A A A A-=±==,当1A =时, '*A A =, 即ij ij a A =; 当1A =-时, '*A A =-, 即ij ij a A =-; 所以*A 为正交矩阵.性质3 由'1'1,A A B B --==可知()()'1''11AB B A B A AB ---===,故AB 为正交矩阵. 由性质1, 性质2推知''11,,,A B AB A B AB --均为正交矩阵.正交矩阵的性质主要有以上几点, 还有例如它的特征值的模为1, 且属于不同特征值的特征向量相互正交; 如果λ是它的特征值, 那么1λ也是它的特征值, 另外正交矩阵可以对角化, 即存在复可逆矩阵T , 使112A T T λλ-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦其中1,...,n λλ为A 的全部特征值, 即()11,2,...,i i n λ==. 这些性质这里就不再证明了.2 正交矩阵的应用2.1 正交矩阵在线性代数中的应用在正交矩阵中,有一类初等旋转矩阵,我们也称它为Givens 矩阵. 这里, 我们将利用正交矩阵可以表示成若干初等旋转矩阵的乘积, 给出化欧空间的一组基为标准正交基的另一种方法.设向量()'21,n w w w W = , 令()i j w w s ji >+=22,sw d sw c ji==,, 则称n 阶矩阵行行j i c d d c T ij ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-=11 i 列 j 列 为初等旋转矩阵.初等旋转矩阵ij T , 是由向量W 的第j i ,两个元素定义的, 与单位矩阵只在第j i ,行和第j i ,列相应的四个元素上有差别.设ij T 是由向量W 定义的初等旋转矩阵()i j >, 则有如下的性质: <1> ij T 是正交矩阵;<2> 设()',21,,n ij u u u W T =, 则有()j i k w u u s u k k j i ,,0,≠===;<3> 用ij T 左乘任一矩阵A ,ij T A 只改变A 的第i 行和j 行元素(用ij T 右乘任一矩阵A ,A ij T 只改变A 的第i 列和j 列元素).证明 <1> ()122222=+=+sw wdc j i , 故E T T ij ij =', ij T 是正交矩阵.<2> 由ij T 得定义知, 用ij T 左乘向量W , 只改变W 的第j i ,两个元素, 且22=+-=+-==+=+=sw w s w w cw dw u ss w s w dw cw u ji i j j i j ji j i i 所以ij T 左乘W , 使ij T W 的第i 个分量非负, 第j 个分量为0, 其余分量不变. <3> 根据 <2> 及矩阵乘法即可以得出结论. 引理 2.1.1[7] 任何n 阶实非奇异矩阵()nn ija A ⨯=, 可通过左连乘初等旋转矩阵化为上三角矩阵, 且其对角线元素除最后一个外都是正的.定理 2.1.1[7] 设P 是n 阶正交矩阵<1> 若1=P , 则P 可表示成若干个初等旋转矩阵的乘积, 即r P P P P 21=;<2> 若1-=P , 则P 可以表示成若干个初等旋转矩阵的乘积再右乘以矩阵n E -, 即n r E P P P P -= 21, 其中),2,1(r i P i =是初等旋转矩阵.nn nE ⨯-⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=1111证明 由于P 是n 阶正交矩阵, 根据引理1知存在初等旋转矩阵r S S S ,,21使R P S S S S r r =-121 这里R 是n 阶上三角阵, 而且R 得对角线上的元素除最后一个外都是正的, 所以有R S S S P r ''2'1 = (2.1)由P 是正交矩阵和(2.1)式得E R S S S S R P P r r ==''11'' 即 E R R =' (2.2)设 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n r r r r r r R 22211211其中,()12,10-=>n i r ii ,则 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1112221121121221211'nn n n nn nnr r r r r r r r r r r r R R由上式得⎪⎪⎩⎪⎪⎨⎧-===-===-==≠=1P 11P 11,2,1,;1;0且且n j i n j i n j i j i j i r ij所以⎩⎨⎧-===1P ,E 1P E R n -当,当 (2.3) 于是由(2.1)(2.3)式得<1> 当1=P 时, ''2'1r S S S P =; <2> 当1-=P 时, n r E S S S P -=''2'1 . 记()r i S P i i ,,2,1' ==, i P 是初等旋转矩阵, 故定理1结论成立.引理 2.1.2[7] 设()mn ija A ⨯=, 秩()m A =, 则A 可以通过左连乘初等旋转矩阵, 把'A 变为⎪⎪⎭⎫⎝⎛O R 的形式, 其中R 是m 阶上三角阵, O 是()m m n ⨯-矩阵.证明 由引理2知⎪⎪⎭⎫⎝⎛=O R P A 1, 其中P 是n 阶正交矩阵, 1R 是m 阶上三角阵, 又根据定理1知:⎩⎨⎧-===-1,1,11P E P P P P P P n r r 其中()r i P i ,2,1=是初等旋转矩阵.<1> 当1=P 时, ⎪⎪⎭⎫ ⎝⎛=O R P P P A r 121 令⎪⎪⎭⎫ ⎝⎛==O R A P P R R r '1'1, <2> 当1-=P 时, ⎪⎪⎭⎫⎝⎛=-O R E P P P A n r 121 于是有⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=-O R O R E A P P n r1'1'显然, R 是m 阶上三角阵, 当m n =时R 与1R 除最后一行对应元素绝对值相等、符号相反外, 其余元素对应相等. 当m n >时,1R R =, 所以由<1>、<2>知本定理的结论成立.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nm m m m n n a a a a a a a a a 21222122121111,,,ααα是欧式空间n R 的子空间m V 的一组基, 记()⎪⎪⎪⎪⎪⎭⎫⎝⎛==nm n n m m m a a a a a aa a a A 21222211121121ααα是秩为m 的m n ⨯矩阵.若()mn ija A ⨯=满足定理2的条件, 则存在初等旋转矩阵r P P P 21使⎪⎪⎭⎫⎝⎛=O R A P P r '1' (2.4)且()()'1'2'21',,,,,,P P P P P P PP E r r ==所以''1'2''1'2'1'P P P P E P P P P r r r ==- (2.5)由(2.4)、(2.5)两式知, 对E A 、做同样的旋转变换, 在把A 化为⎪⎪⎭⎫⎝⎛O R 的同时,就将E 化成了'P , 而P 的前m 个列向量属于子空间m V .综上所述可得化欧式空间的子空间m V 的一组基:()()m i a a a ni i i i m ,,2,1,,,,,,'2121 ==αααα为一组标准正交基德方法为:<1> 由已知基m ααα ,,21为列向量构成矩阵()mn ija A ⨯=;<2> 对矩阵()E A 施行初等旋转变换, 化A 为⎪⎪⎭⎫⎝⎛O R , 同时E 就被化为正交矩阵'P , 这里R 是m 阶上三角阵;<3> 取P 的前m 个列向量便可得m V 的一组标准正交基. 显然, 上述方法是求子空间m V 的一组标准正交基的另一种方法. 下面, 我们通过实例说明此方法的应用.例 2.1.1 求以向量()()()'3'2'11,0,0,1,0,1,0,1,0,0,1,1-=-=-=ααα为基的向量空间3V 的一组标准正交基.解 矩阵()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---==100010001111321αααA 对分块矩阵()E A 依次左乘342312,,T T T , 其中⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=21230023210000100001,10000313200323100001,10000100002222002222342312T T T 得()⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----------=2121212100233213213213320002361616123000212121212122334E A T T T 则⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----------=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----------=21230021321320213216*********121,21212121233213213210326161002121'P P 取⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=23321321321,0326161,002121321P P P 则321,,P P P 就是由321,,ααα得到 的3V 的一组标准正交基.2.2 正交矩阵在拓扑和近世代数中的应用全体n 阶正交矩阵作成的集合, 记为()n O , 从代数和拓扑的角度来看, 我们可以证明它构成一拓扑群, 并且进一步证明它是不连通的紧致lie 群.(1) ()n O 构成拓扑群在证明()n O 构成拓扑群之前, 先介绍一下相关的概念.定义 2.2.1[3] 设G 是任一集合, R 是G 的子集构成的子集族, 且满足: 1、结合G 与空集φ属于R ; 2、R 中任意个集的并集属于R ; 3、R 中任意有穷个集的交集属于R ;称R 是G 上的一个拓扑, 集合G 上定义了拓扑R , 称G 是一个拓扑空间.定义 2.2.2[3] 如果G 是一个拓扑空间, 兵赋予群的机构, 使得群的乘法运算 :u G G G →⨯; 求逆运算 :v G G →;是连续映射, 就称G 为拓扑群.根据上面的定义, 我们分三步来实现证明全体n 阶正交矩阵作成的集合()n O 构成拓扑群.<1> 全体n 阶正交矩阵作成的集合()n O 构成一拓扑空间. <2> 全体n 阶正交矩阵作成的集合()n O 构成一群.<3> 全体n 阶正交矩阵作成的集合()n O 构成一拓扑群.证明 <1> 设M 表示所有具有实元素的n 阶矩阵作成的集合, 以()ij a A =表示M 的一个代表元素. 我们可以把M 等同于2n 维欧氏空间2n E , 也就是将()ij a A =对应于2nE 的点()nn n a a a a a a ,,,,,,312211211 .R 是点集2n E 的子集族, 则2n E 和φ都属于R ,R 中任意个集的并集属于R ,R 中有穷个集的交集也属于R , 可以验证2n E 构成一拓扑空间, 从而M 成为一拓扑空间. ()n O 是所有实元素的n 阶正交矩阵, 所以是M 的子集合, 于是由M 的拓扑可以诱导出这个子集合的拓扑, 从而()n O 构成M 的一个子拓扑空间.<2> 10 ()n O C B A ∈∀,,由于矩阵的乘法满足集合律, 所以()()BC A C AB → 20 ()st O E n n ,∈∃ ()A AE A E O A n n n ==∈∀,30 ()st A A O A n ,,'1=∃∈∀- E AA AA A A A A ====--'1'1所以正交矩阵作成的集合()n O 对于乘法运算可构成一群.<3> 对于<1>中的拓扑空间M 的拓扑, 定义矩阵乘法M M M m →⨯:设()()ij ij b B a A ==∀,, 则乘积()B A m ,的ij 个元素是∑=nk kj ik b a 1现在M 具有乘积空间111E E E ⨯⨯⨯ (2n 个因子)的拓扑, 对于任何满足n j i ≤≤,1的j i ,, 我们有投影映射1:E M M M m ij →→⨯π, 将A 和B 的乘积()B A m ,映为它的第ij 个元素. 现在()∑==nk kj ik ij b a B A m 1,π是A 和B 的元素的多项式, 因此m ij π连续, 投影映射ij π是连续的,从而证明映射m 是连续的. 因为()n O 具有M 的子空间拓扑, 是M 的一个子拓扑空间,且由正交矩阵的性质<3>及上面的讨论知, 映射()()()n n n O O O m →⨯:也是连续的.()n O 中的矩阵可逆,定义求逆映射()()n n O O f →:,()()1-=∈∀A A f O A n . 由于合成映射()()1:E O O f n n ij →→π, 将()n O A ∈∀映为1-A 的第ij 个元素, 由正交矩阵的性质<2>,AA A *'=, 所以A A a ji ji =, 即()A A A f ji ij =π, A 的行列式及A 的代数余子式都是A 内元素的多项式, 且0≠A , 所以f ij π为连续的, 而投影映射ij π为连续的, 所以求逆映射()()n n O O f →:为连续的.至此, ()n O 又是一个拓扑空间,并且构成群, 对群的乘法与求逆运算都是拓扑空间的连续映射, 因而所有n 阶正交矩阵作成的集合()n O 构成一拓扑群, 称它为正交群.(2) ()n O 是紧致lie 群在证明之前我们知道以下有关的定义和定理.定义 2.2.3[4] 设G 为拓扑群, G 的拓扑为n 维实(或复)解析流形, 且映射()12121,-→g g g g G g g ∈∀21, 为解析流形G G ⨯到G 上的解析映射, 则称G 为n 维lie群.定理 2.2.1[4] 欧氏空间内的有界闭集是紧致子集.证明 M A ∈∀(所有具有实元素的n 阶矩阵作成的集合), A 对应2n 维欧氏空间2n E 的点()nn n a a a a a a ,,,,,312111211α,M 可作为2n 维欧氏空间. A 的行列式A det 为元素nn n a a a a a a ,,,,,312111211的解析函数, {}0det =∈A M A 为M 中的开子集. 这时, 按诱导拓扑可以知道*M 为解析流形, 且关于矩阵的乘法和求逆运算均解析, 故*M 为2n 维lie 群. ()n O 为*M 的闭子集, 按诱导拓扑为子流形, ()n O 为lie 群.为了证明()n O 紧致, 根据定理内容, 只要证明M 等同于2n E 时, ()n O 相当于2n E 内的有界闭集. 设()n O A ∈∀, 由于E A A ='有∑==nj ik kjij ba 1δ n k i ≤≤,1对于任意的k i ,,定义映射E M f ik →: M A ∈∀ ()∑==nj kj ij ik b a A f 1则()n O 为系列各集合的交集()01-ik f n k i ≤≤,1 k i ≠()11-ii f n i ≤≤1由于()n k i f ik ≤≤,1都是连续映射, 所以上述每个集合都是闭集. 因此()n O 是M 的有界闭集, 这就证明了()n O 的紧致性.在拓扑结构上是紧致的lie 群, 我们称为紧lie 群, 所以()n O 是紧lie 群. (3) ()n O 是不连通的定义 2.2.4[3] 设X 是一个拓扑空间, X 中存在着两个非空的闭子集A 和B , 使X B A = 和φ=B A 成立, 则称X 是不连通的.证明 我们再设()n SO 是所有行列式为1的正交矩阵构成的集合, S 为所有行列式为-1的正交矩阵构成的集合. 因为()1:det E SO n →是连续映射, 而我们知道单点集{}1是1E 的闭集,()()1det 1-=n SO , 在连续映射下, 任何一个闭集的原象也是闭集, 所以()n SO 也为闭集,()n SO 为()n O 的闭集, 同理, 我们也可以证明S 是闭集, 因为()(),n n O S SO =()φ=S SO n ,而()n SO 和S 是闭集, 有不连通的定义我们可以直接证明()n O 是不连通的.2.3 正交矩阵在物理中的应用任意刚体运动都对应一个正交矩阵, 三维空间一条曲线经过刚体运动, 其曲率和挠率是不变的, 称它们为运动不变量. 下面, 我们来考察曲线作刚体运动时的量. 设曲线()()()(){}1111r t x t y t z t =与曲线()()()(){}r t x t y t z t =只差一个运动, 从曲线()1r t 到曲线()1r t 的变换为111213x x b y A y b z z b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2.6) 其中111213212223313233a a a A a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭是三阶正交矩阵, 123,,b b b 是常数.对(2.6)两边求n 阶导数得()()()()()()111n n n n n n x x y A y z z ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭从而有111121312122231313233m m m m m m m m m m m m m m m x x a x a y a z y A y a x a y a z z z a x a y a z ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭(2.7)因为A 是正交矩阵, 所以也有()()1r t r t = (2.8) 另一方面, 由一阶, 二阶, 三阶导数, 可作成矩阵''''''111''''''''''''111''''''''''''''''''111T x y z x y z x y z x y z A x y z x y z ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭两边取行列式, 由det 1A =±得'''''''''111''''''''''''''''''111'''''''''''''''''''''''''''111T x y z x y z x y z x y z x y z A x y z x y z x y z x y z ==±现在取()()()()()()()()111r t r t r t r t r t r t =可类似地讨论. 因为'''111''''''''''''''''111111111111'''''''''''''''''''''111111111m x y z y z z x x y x y z x y z y z z x x y x y z =++ (2.9) '''''''''''''''''''''''''''''''''''''''''''''x y z y z z x x y x y z x yzyzzxxyx y z =++ (2.10)(2.7)代入(2.9)的右边得()()()''''''''''''''''''''''''111111111213212223313233''''''''''''111111m m m y z z x x y ax a y a za x a y a z a x a y a z y z z x z y ++++++++ '''''''''''''''111111112131''''''''''''111111y z z x x y a x a xa xy zzxx y ⎛⎫=+++ ⎪ ⎪⎝⎭''''''''''''111111122232''''''''''''111111m y z z x x y a y a ya yy z z x xy ⎛⎫+++ ⎪ ⎪⎝⎭'''''''''''''''111111132333''''''''''''111111y z z x x y a z a z a z y zzxx y ⎛⎫++ ⎪ ⎪⎝⎭(2.11) 因(2.9)与(2.10)右边相等, 有(2.10)右边与(2.11)式右边相等得111131111121111111y y x x a x x z z a z z y y a z z y y ''''''+''''''+''''''='''''' 111132111122111112y y x x ax z x z a z z y y a x x z z ''''''+''''''+''''''='''''' 111132111122111112y y x x a x z x z a z z y y a x x z z ''''''+''''''+''''''=''''''由正交矩阵的性质2知, ij ij a A =且由1(,1,2,3)njikj jk i AA j k δ===∑将上面三式左右分别平方相加222y z z x x y y z z x x y ''''''++''''''''''''=21122211121311()y z A A A y z ''++''''+21122221222311()z x A A A z x ''++''''+21122231323311()x y A A A x y ''++''''=222111111111111z x x y y z z x x y y z ''''''++''''''''''''写成矢函数, 即得11()()()()r t r t r t r t →→→→''''''⨯=⨯于是我们可推得111331()()()()()()r t r t r t r t K K r t r t →→→→→→''''''⨯⨯===''11112211(()()())(()()())(()())(()())r t r t r t r t r t r t r t r t r t r t ττ→→→→→→→→→→''''''''''''===''''''⨯⨯这里的11,;,K K ττ分别是曲线1(),()r t r t →→的曲率与挠率.致谢 本文是在 的指导和帮助下完成的, 在此对汪老师表示衷心的感谢!参考文献[1] 张凯院, 徐仲.矩阵论同步学习辅导[M]. 西安: 西北工业大学出版社, 2002. 10.160-164[2] 赵大成等.物质机构[M].人民教育出版社 1982.9 219-226[3] 熊金城. 点集拓扑讲义[M]. 高等教育出版社, 1998.5 110-111, 193-195[4] 严志达等. Lie群及其lie代数[M]. 高等教育出版社, 1985.10 16-17[5] 戴立辉. 正交矩阵的若干性质[M]. 华东地质学院学报, 2002.9 第25卷第31期 267-268[6] 刘钊南.正交矩阵的作用[M]. 湘潭师范学院学报, 1987.11-16[7] 刘国志. 欧氏空间子空间的标准正交基德全新方法—Givens变换法[J]. 抚顺石油学院学报, 1996.3 16卷1期 78-81[8] 张焕玲. 一种求欧氏空间子空间的标准正交基的新方法[J].山东科学,1996.3 9卷1期 14-16[9] 陈少白. 空间曲线的刚体运动基不变量[J]. 武汉科技大学学报, 2003.12 26卷4期 424-426[10] Fuzhen zhang, Matrix Theory, Springer, 1999.[11] Horn R A, Johnson C R. 1989. Matrix Analysis(矩阵分析),杨奇.天津:天津大学出版社[12] D J Field What is the goal of sensory coding?4(1994).[13] M Heiler.C Schnorr Learning sparse representations by non-negative matrix factorization Matrix factorization and sequential cone programming7 (2006).。
数学专业本科毕业论文--矩阵求逆的若干方法矩阵求逆摘要本文在借鉴参考文献的基础上,对高等代数学这门课程中的一些有关矩阵求逆的内容简要地进行了分析、研究和总结。
笔者在参考的各种不同版本的教材中发现,大多教材给出矩阵的求逆的方法无非三种,即:定义法,初等变换法,伴随矩阵法。
其中初等变换包括初等行变换和初等列变换。
这三种方法虽然在大多情况下都能很好解决问题,但有时候使用这些方法就会显得很繁琐。
比如,对于阶数大于4的矩阵我们用初等变换和伴随矩阵就会显得很麻烦,而且容易出错。
本文在这里详细讨论了6种逆矩阵的求解方法,首先介绍了常用的那三种矩阵求逆方法,而且对于初等变换法,本文做了进一步的探讨,给出了同时初等行变换与列变换法。
然后又介绍了分块矩阵法、分解矩阵法、Hamilton-Caylay定理法等方法,其中分块矩阵法中又包括三角矩阵的分块求逆法和非三角矩阵的分块求逆法。
本文对于每一种方法不仅给出了这些方法的理论依据并给出了具体应用,有的还给出了具体方法步骤,就是为了使读者明白各种方法的特点,在使用的时候能够选择合适的方法进行快速解题。
关键字逆矩阵;初等变换;伴随矩阵;分块矩阵;Hamilton-Caylay定理Six methods to find inverse matrixAbstract In this paper, on the basis of reference, some relevant content of the inverse matrix in the course of higher algebra is analyzed, researched and summarized briefly. There are only three methods of inverse matrix in most different teaching materials referred. The methods are definition method, adjoint matrix methodand elementary transformation method. The elementary transformation method Includes elementary row transformation and elementary column transformation. Though the three methods can well solve problem in most cases, sometimes these methods will appear very complicated. As for the matrix whose rank is more than four, if we use adjoint matrices or elementary transformation, it will be very troublesome, and error-prone. Six kinds of inverse matrix solution was discussed in this paper in detail. Firstly we introduces the three frequently-used methods, and also makes a further discussion for elementary transformation method, giving elementary row transform and column transform method. Then this paper introduces the partitioned matrix method, the decomposition of matrix method, Hamilton - Caylay theorem method. The partitioned matrix method includes the partitioned matrix method of triangle matrix and the partitioned matrix method of common matrix. In this paper every method not only includes the theoretical basis and the specific application, but also includes the concrete steps, the purpose is to make the reader understand the characteristics of every methods, and can choose appropriate methods to solve problems quickly. Keywords Inverse matrix; elementary transformation;adjoint matrix; partitioned matrix; Hamilton-Caylay theorem矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。
相似矩阵的性质及应用毕业论文一.相似矩阵的定义定义:设A 、B 为数域P 上两个n 级矩阵,如果可以找到数域P 上的n 级可逆矩阵X ,使得B=1-X AX ,就说A 相似于B ,记做B A ~.二.相似矩阵的重要性质性质1 数域P 上的n 阶方阵的相似关系是一个等价关系.证明:1〉(反身性) 由于单位矩阵E 是可逆矩阵,且A=1-E AE ,故任何方阵A 与A 相似.2〉(对称性) 设A 与B 相似,即存在数域P 上的可逆方阵C ,使得B=1-C AC ,由此可得A=CB 1-C =11)(--C B 1-C ,显然可逆,所以B 与A 相似.3〉(传递性)设A 与B 相似,B 与C 相似,即存在数域P 上的n 阶可逆方阵P 、Q ,使B=1-P AP ,C=1-Q BQ ,则 C=BQ=1-Q 1-P APQ=1)(-PQ A (PQ ),从而A 与C 相似.〈证毕〉 性质2 相似矩阵有相同的行列式.证明:设A 与B 相似,即存在数域P 上的可逆矩阵C ,使得B=1-C AC ,两边取行列式得:|B |=|1-C AC |=|1-C ||A ||C |=|A ||1-C C |=|A |.从而相似矩阵有相同的行列式. 〈证毕〉 下面先介绍两个引理引理1:设A 是数域P 上的n ×m 矩阵,B 是数域P 上m ×s 矩阵,于是秩(AB )≤min[秩(A ),秩(B )] (1)即乘积的秩不超过各因子的秩.证明:为了证明(1),只需要证明秩(AB )≤秩(A ),同时,秩(AB )≤秩(B ).现在来分别证明这两个不等式.设A=⎪⎪⎪⎪⎪⎭⎫⎝⎛nm n n m m a a a a a a a a a 212222111211,B=⎪⎪⎪⎪⎪⎭⎫⎝⎛ms m m s s b b b b b b b b b212222111211令1B ,2B ,…,m B 表示B 的行向量,1C ,2C ,…n C ,表示AB 行向量.由计算可知,i C 的第j 个分量和m im i i B a B a B a +++ 2211的第j 个分量都等于kj mk ikb a∑=1,因而i C =m im i i B a B a B a +++ 2111 (i=1,2,…n ).即矩阵AB 的行向量组n C C C ,,,21 可经B 的行向量组线性表出.所以AB 的秩不能超过B 的秩,也即, 秩(AB )≤秩(B ).同样,令m A A A ,,21 表示A 的列向量,s D D D ,,21表示AB 的列向量,由计算可知i D =11A b i +22A b i +…+m mi A b (i=1,2,…,s ).这个式子表明,矩阵AB 的列向量可以经矩阵A 的列向量组表出,前者的秩不可能超过后者的秩,这就是说,秩(AB )≤秩(A ). <证毕>引理2:A 是一个s ×n 矩阵,如果P 是个s ×s 可逆矩阵,Q 是n ×n 可逆矩阵,那么秩(A )=秩(PA )=秩(AQ ).证明:令 B=PA,由引理1知秩(B )≤秩(A ); 但是由A=1-P B,又由秩(A )≤秩(B ),所以秩(A )=秩(B )=秩(PA ).同理可证, 秩(A )=秩(AQ ).从而, 秩(A )=秩(PA )=秩(AQ ). 〈证毕〉 性质3 相似矩阵有相同秩.证明:设A,B 相似即存在数域P 上的可逆矩阵C,使得 B=1-C AC , 由引理2可知秩(B )=秩(1-C AC )=秩(AC )=秩(A ). 〈证毕>性质4 相似矩阵或同时可逆或同时不可逆.证明:设A 与B 相似,由性质3可知B A = .若A 可逆,即0≠A ,从而0≠B 故B 可逆; 若A 不可逆,即0=A ,从而0=B ,故B 不可逆. 〈证毕〉性质5 若A 与B 相似,则n A 相似于n B .(n 为正整数)证明:由于A 与B 相似,即存在数域P 上的可逆矩阵X,使得AX X B 1-=,从而X A X AX X AX X AX X n n 1111----=•••个,即 n A 相似于n B . 〈证毕〉性质6 设A 相似于B,)(x f 为任一多项式,则)(A f 相似于)(B f . 证明:设0111)(a x a x a x a x f n n n n ++++=-- 于是Ea B a Ba B a B f E a A a A a A a A f n n nn n n n n 01110111)()(++++=++++=----由于A 相似于B,由性质5可知k A 相似于k B ,(k 为任意正整数) ,即存在可逆矩阵X,使得X A X B K k 1-=,因此)()()(01110111111011111B f Ea B a B a B a E a AX X a X A X a X A X a X E a A a A a A a X X x f X n n nn n n n n n n n n =++++=++++=++++=-----------这就是说)(A f 相似于)(B f . 〈证毕〉性质7 相似矩阵有相同的特征多项式.证明:设A 相似于B ,即存在数域P 上的可逆矩阵C ,使得AC C B 1-=, 则AE C C A E C A E CACC EC C AC C C C AC C E B E -=-=-=-=-=-=--------λλλλλλλ1111111由此可见,B 与A 有相同的特征多项式. 〈证毕〉 性质8:相似矩阵有相同的迹.证明:设A 相似于B 。
矩阵不等式的证明及其应用一矩阵的秩在矩阵理论中起着非常重要的作用, 矩阵的秩是矩阵的一个重要不变量, 初等变换不改变矩阵的秩, 矩阵的秩有一定的规律, 我们有下面一些基本的不等式:Frobenius 不等式: R(ABC) ≥R(AB)+R(BC)-R(B) (1) R(A)-R(B) ≤ R(A±B) ≤ R(A)+R(B) (2) Sylvester 不等式:R(A)+R(B) - n≤R(AB)≤min( R(A),R(B) )(3)对于(1) , (2), (3) 三个不等式有不同的证明和理解,在这里我们利用分块矩阵的知识,来论证上面的结论.在论证之前,我们先来探讨分块矩阵秩的一些性质.矩阵的秩满足一定的规律,同样在分块矩阵中,它们的秩也有一定的规律可寻.利用矩阵的一些基本的不等式,我们对分块矩阵的秩进行探讨.(1)我们首先从特殊的分块矩阵分析,形如A OB C⎛⎫⎪⎝⎭或A BC⎛⎫⎪⎝⎭或0AB C⎛⎫⎪⎝⎭定理1 设A是n阶矩阵,B和C分别是m⨯n矩阵和m⨯1矩阵, 则R(A)+R(C) ≤R(AB C⎛⎫⎪⎝⎭) ≤ min{}m+R(A), n+R(C)证明:AB C⎛⎫⎪⎝⎭=mAB I⎛⎫⎪⎝⎭nCI⎛⎫⎪⎝⎭因为RAB C⎛⎫⎪⎝⎭= R(mAB I⎛⎫⎪⎝⎭nCI⎛⎫⎪⎝⎭)≥ R(mAB I⎛⎫⎪⎝⎭) + R(nCI⎛⎫⎪⎝⎭) - (n+m)= R(A)+R(mI)+ R(n I) +R(C)- (n+m)= R(A) + R(C) (1)又由于 R(0A B C ⎛⎫⎪⎝⎭) = R(0m A B I ⎛⎫ ⎪⎝⎭00n C I ⎛⎫⎪⎝⎭) ≤ min{ R(0m AB I ⎛⎫⎪⎝⎭),R(00n C I ⎛⎫ ⎪⎝⎭) }= min {}m+R(A), n+R(C) (2)综合(1) (2)两式, 故 R(A)+R(C) ≤ R(0A B C ⎛⎫⎪⎝⎭) ≤min {}m+R(A), n+R(C)定理2 设A 为n 阶距阵,B 为n ⨯1矩阵,C 为m ⨯1矩阵, 则R(A)+R(C) ≤ R(A B O C ⎛⎫⎪⎝⎭) ≤ min{ n+R(C), 1+R(A) }证明: 0A B C ⎛⎫⎪⎝⎭ = 0n B C I ⎛⎫⎪⎝⎭100A I ⎛⎫⎪⎝⎭ 因为 R(0A B C ⎛⎫⎪⎝⎭) = R(0n B C I ⎛⎫ ⎪⎝⎭100A I ⎛⎫ ⎪⎝⎭≥ R(0n B C I ⎛⎫⎪⎝⎭) + R(100A I ⎛⎫⎪⎝⎭) - (n+1) = R (n I ) + R (C ) + R(A) + R (1I ) - (n+1) = R(C) + R(A) (1)又由于R(0A B C ⎛⎫⎪⎝⎭) = R(0n B C I ⎛⎫⎪⎝⎭100A I ⎛⎫⎪⎝⎭≤ min{ R(0n B C I ⎛⎫⎪⎝⎭),R(100A I ⎛⎫ ⎪⎝⎭} = min{ n+R(C), 1+R(A) } (2)综合(1),(2) 两式,故R(A)+R(C) ≤R(A BO C⎛⎫⎪⎝⎭)≤ min{ n+R(C), 1+R(A) }定理3 设A是n阶矩阵,B和C分别是m⨯1矩阵和m⨯n矩阵,则 R(A) + R(B) ≤ R(0AB C⎛⎫⎪⎝⎭) ≤ min{}m+R(A), n+R(B)证明:0AB C⎛⎫⎪⎝⎭=mAI C⎛⎫⎪⎝⎭nBI⎛⎫⎪⎝⎭因为R(0AB C⎛⎫⎪⎝⎭) = R(mAI C⎛⎫⎪⎝⎭nBI⎛⎫⎪⎝⎭)≥ R(mAI C⎛⎫⎪⎝⎭) + R(nBI⎛⎫⎪⎝⎭) - (n+m)= R(A)+R(mI)+ R(n I)+R(B)- (n+m) = R(A) + R(B) (1)又由于R(0AB C⎛⎫⎪⎝⎭) = R(mAI C⎛⎫⎪⎝⎭nBI⎛⎫⎪⎝⎭)≤ min{ R(mAI C⎛⎫⎪⎝⎭),R(nBI⎛⎫⎪⎝⎭) }= min{}m+R(A), n+R(B)(2)综合(1) (2)两式, 故R(A)+R(B) ≤R(0AB C⎛⎫⎪⎝⎭) ≤ min{}m+R(A), n+R(B)(2) 我们分析了特殊情况后,接着探讨一下一般情形,形如A BC D ⎛⎫ ⎪⎝⎭.定理4 设A为n阶矩阵,其中B是n⨯1矩阵,C是m⨯n矩阵,D是m⨯1矩阵, 则R(A B C D ⎛⎫ ⎪⎝⎭) ≤ min{ m+R(A)+R(B), n+R(D)+R(B) }证明: 因为 A B C D ⎛⎫ ⎪⎝⎭ = 0A C D ⎛⎫ ⎪⎝⎭ + 000B ⎛⎫⎪⎝⎭所以 R(A B C D ⎛⎫ ⎪⎝⎭) = R(0A C D ⎛⎫ ⎪⎝⎭ + 000B ⎛⎫⎪⎝⎭)≤ R(0A C D ⎛⎫ ⎪⎝⎭) + R(000B ⎛⎫⎪⎝⎭)≤ min{ m + R(A), n + R(D)} + R(B)= min { m+R(A)+R(B), n+R(D)+R(B) } 证毕二 分块矩阵是讨论矩阵的重要手段,利用分块矩秩的不等式,可以系统地推证关于矩阵秩的一些结论,在这里我们利用上面得出的一些定理来证明矩阵秩的某些性质.在证明性质之前,为了便于证明,首先介绍一个引理:引理1 R(AB) ≤ min{R(A),R(B)}, 特别当A ≠0时, R(AB) = R(B)(1) A, B 都是m ⨯n 矩阵, 则R(A+B) ≤ R(A)+R(B)证明: 由于A + B = (m I m I )00A B ⎛⎫ ⎪⎝⎭nn I I⎛⎫⎪⎝⎭由引理1得: R(A+B) = R ((m I m I )00A B ⎛⎫ ⎪⎝⎭nn I I ⎛⎫⎪⎝⎭) ≤R (00A B ⎛⎫ ⎪⎝⎭nn I I⎛⎫ ⎪⎝⎭) ≤ R (00A B ⎛⎫⎪⎝⎭)= R(A) + R(B)故 R(A+B) ≤ R(A)+R(B)(2) 设A 为m ⨯n 矩阵,B 为n ⨯s 矩阵,且A B=0, 则R(A) + R(B) ≤n证明: n n n n A O AAB A O I B I O I B I B O O ⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由引理1得: R(n A O I B ⎛⎫ ⎪⎝⎭) ≤ R(n A O I O ⎛⎫⎪⎝⎭)由定理1得: R(n A O I B ⎛⎫⎪⎝⎭) ≥ R(A) + R(B)又mn n n I A A O O O O I I O I O -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭且 0mnI A OI -≠由引理1得: R(n O O I O ⎛⎫ ⎪⎝⎭ = R(n A O I O ⎛⎫⎪⎝⎭) = n由定理1得: R(A)+R(B) ≤ R(n A O I B ⎛⎫ ⎪⎝⎭ ≤ R(n A O I O ⎛⎫ ⎪⎝⎭) = R(000nI ⎛⎫⎪⎝⎭) = n 从而有 R(A) + R(B) ≤ n(3) 设A 是m ⨯ n 矩阵,B 是n ⨯s 矩阵,则 R(AB) ≥ R(A) +R(B) - n证明: 000sn n n AB I AB O I B I B I ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 且0s nI o BI ≠, 由引理1得:R(AB)+ R(n I ) = R(0n AB B I ⎛⎫⎪⎝⎭)即 R(AB) + n = R(0n AB B I ⎛⎫⎪⎝⎭) (1)又00mn n n IA AB O A I B I B I -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭且00m nI A I -≠, 由引理1,定理3得:R(0n AB B I ⎛⎫⎪⎝⎭) = R(n O A B I ⎛⎫⎪⎝⎭) ≥R(A)+R(B) (2)由(1), (2) 得: R(AB) ≥ R(A)+R(B) – n(4) 设A,B,C 分别是m ⨯n,n ⨯s,s ⨯t 矩阵,则 R(ABC)≥ R(AB) + R(BC) - R(B)证明: 因为 0000mn I A ABC ABC AB I B B ⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 且 0;:0m nI A I ≠由引理1得R(ABC) + R(B) = R 0ABCAB B ⎛⎫⎪⎝⎭(1) 又因为 0ABCAB B ⎛⎫⎪⎝⎭000ts I AB CI BC B -⎛⎫⎛⎫=≠ ⎪ ⎪⎝⎭⎝⎭t s - I 0且C I由引理1定理3得: R 0ABCAB B ⎛⎫⎪⎝⎭ = R 0()()AB R AB R BC BC B ⎛⎫≥+ ⎪⎝⎭(2) 由(1) (2)得: R(ABC) ≥ R(AB) + R(BC) - R(B) (5)如果 秩(A-I ) = r, 秩( B-I ) = s, 则 秩(AB-I ) ≤ r + s .证明: 令X = 00A IB I -⎛⎫⎪-⎝⎭则: 秩X = r + s由00A IB I -⎛⎫ ⎪-⎝⎭0I B I ⎛⎫ ⎪⎝⎭ = 0A I AB B B I --⎛⎫⎪-⎝⎭且 0I B I≠0 , 由引理1得:R (00A IB I -⎛⎫⎪-⎝⎭) = R(0A IAB B B I --⎛⎫⎪-⎝⎭) = r + s (1) 又因为 0I I I ⎛⎫ ⎪⎝⎭0A IAB B B I --⎛⎫⎪-⎝⎭ = 0A IAB I B I --⎛⎫⎪-⎝⎭得 R(0A IAB I B I --⎛⎫⎪-⎝⎭) ≥ R(AB-I ) (2) 且00I II≠ , 由引理1得:R(0A I AB B B I --⎛⎫ ⎪-⎝⎭) = R(0A IAB I B I --⎛⎫⎪-⎝⎭) (3) 综合 (1) (2) (3) 式可: R(AB-I ) ≤ r + s参考文献[1]樊恽主编. 代数学词典. 武汉: 华中师范大学出版社, 1994.[2] 高等数学研究. 2003.01.[3]北京大学数学系编. 高等代数. 高等教育出版社.[4]张禾瑞.郝炳新主编.高等代数.高等教育出版社.[5]华东师范大学学报.2002.04.[6]西北师范大学学报.1989.01.。
行列式与矩阵知识在解析几何某些问题中的应用西安文理学院本科毕业论文(设计)开题报告注:此表前4项由学生填写后,交指导教师签署意见,经主管系主任审批后,才能开题行列式与矩阵知识在解析几何某些问题中的应用摘要:高等代数与解析几何不仅是作为数学学科中三大支柱课程中的一部分,也是数学系课程中联系最为密切的两门基础课程,在代数与几何的发展过程中,高等代数与解析几何互相联系、互相促进的关系日趋明显。
行列式与矩阵是高等代数的一部分主要内容,本文主要讨论行列式与矩阵的知识在解析几何某些问题中的应用,认为行列式与矩阵的知识对于解析几何的研究有着重要的意义。
关键词:行列式;矩阵;解析几何;应用The determinant and matrix knowledge in the application of someproblems in analytic geometryAbstract : higher algebra and analytic geometry as mathematics is not only part of the three pillarcourses in math courses, also is most closely connected, the two basic courses in algebra and geometry of the development process, the higher algebra and analytic geometry connected each other, promote each other relationship has become increasingly evident. The determinant and matrix is higher algebra part of main contents, this article mainly discusses the determinant and matrix knowledge in analytic geometry, and some problems reflect the application for the knowledge with matrix determinant of analytic geometry is of great significance to the study. Keywords : determinant; Matrix; Analytic geometry; application引言:在解析几何中,许多问题的解决都需要运用高等代数中行列式与矩阵的知识,行列式与矩阵知识是解决解析几何问题的重要桥梁。
分块矩阵行列式计算的若干方法摘要:矩阵是线性代数中研究的重要对象,也是数字计算中的一个重要工具,矩阵运算具有整体性和简洁性的特点。
我们应该充分注意矩阵运算的一些特殊规律。
为了研究问题的需要,适当的对矩阵进行分块,把一个大矩阵看成是由一些小矩阵块为元素组成的,这样可使矩阵的结构看的更清楚,表达和运算更简便的特点。
矩阵分块的思想在线性代数证明以及应用中是十分有用的。
运用矩阵分块的思想,可使解题更简洁,思路更开阔。
本文就将分块矩阵的思想运用到行列式的计算当中来,利用分块矩阵来计算行列式,并且得出一些简便的方法。
借助准三角形分块矩阵的行列式值的结果简化高阶行列式的计算。
例如,本文讨论了利用分块矩阵计算行列式的︱H ︱=BC DA 方法,即(1)当矩阵A 或B 可逆时;(2)当矩阵A=B,C=D 时;(3)当A 与C 或者B 与C 可交换时;(4)当矩阵H 被分成两个特殊矩阵的和时等一些方法去探究分块矩阵行列式计算求值的若干方法。
关键词:分块矩阵;准三角形分块矩阵;可逆矩阵;行列式;计算;单位矩阵Several Measures Of Block Matrix In ComputingDeterminantAbstract :Matrix is the important object which in the linear algebra studies, is also a important tool in the digital computation . The matrix operation with integrity and simplicity of the characteristics. We should pay attention to some special rules of the matrix operation fully.In order to study the issue of the need, we carries on the piecemeal suitably to the matrix,regard a big matrix as some small ones,which integrate it, This will enable the matrix structure more clearly,with the characteristics of expression and computing easier.The thought of dividing matrix into blocks is veryimportant in proving and applying the linear e the thought of dividing matrix to blocks can help us to solve problems more pithily and think methods more widely.This thesis uses the blocking matrix method into the calculation of determinant,tries to solve the linear equations . Severa1 more general results are proved through the way aided by the result of the determinants for quasi-triangle piece matrices ,which does not change the nature of the determinnts ,For example,this article discussed the methods of computing ︱H ︱=B C DA with using blockmatrix. That is:(1)A and B are invertible matrixes;(2)A=B and C=D;(3)AC=CA or BC=CB;(4)matrix H is divided into two particular matrix , And some other ways to explore block matrix determinant for Calculating its valueKey words :block matrix; quasi —triangle piece matrices ;inverse matrices ;determinants ; computation ;unit matrix目 录1、引言.............................................................................................1 1.1、矩阵分块的意义...........................................................................1 1.2、关于矩阵的引理及符号..................................................................2 1.2.1矩阵的一些符号.....................................................................2 1.2.2关于矩阵的引理.....................................................................2 1.2.3 矩阵的分块和分块矩阵的定义 (3)1.2.4 分块矩阵的性质 (3)2、将分块矩阵分成方阵元素计算行列式 (5)2.1分块矩阵行列式计算的几种情况 (5)2.1.1分块矩阵的元素可逆 (5)2.1.2分块矩阵有元素相等的情况 (8)2.1.3定理2.2的推广 (9)2.1.4分块矩阵的元素可交换 (10)2.1.5定理2.4的另一种情况 (11)3、将分块矩阵分成非方阵元素计算行列式 (13)3.1分块矩阵行列式计算的其它结果 (13)3.1.1分块矩阵元素中有行、列向量 (13)3.1.2将矩阵分成两个特殊矩阵的和 (13)3.2分块矩阵应用于行列式计算的例题 (17)3.3将分块矩阵的元素划分为m×n矩阵 (19)4、参考文献 (21)5、致谢 (22)1、引言1.1矩阵分块的意义在理论研究及一些实际问题中,经常遇到阶数很高或结构特殊的矩阵。
本科毕业论文(设计)题目矩阵在数学中的应用____________________________________毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。
据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。
对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。
作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。
有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。
学校可以公布论文(设计)的全部或部分内容。
保密的论文(设计)在解密后适用本规定。
作者签名:指导教师签名:日期:日期:注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。
4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。
图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它目录摘要 (I)Abstract. (II)1 前言 (1)2 有关概念及重要结论 (1)2.1矩阵的概念 (1)2.2矩阵的秩 (2)2.3矩阵的逆 (3)2.4 用矩阵表示二次型 (3)3 矩阵的应用 (6)3.1矩阵的高次幂 (6)3.1.1 矩阵的幂 (6)3.1.2矩阵高次幂的求法 (7)3.2 解线性方程组 (13)3.2.1线性方程组的有解判定定理 (13)3.2.2 线性方程组一般形式的运用 (14)3.3 解矩阵方程 (16)3.4 矩阵对角化方法 (19)3.4.1 讨论对于有n个特征单根的n阶方阵 (19)3.4.2 讨论对于有特征重根的n阶方阵 (21)结论 (24)致谢 (24)参考文献 (24)矩阵及应用杨灿(重庆三峡学院数学与统计学院数学与应用数学专业2010级重庆万州 404100)摘要:矩阵理论既是学习经典数学的基础,又是一门很有实用价值的数学理论.随着科学技术的发展,这一理论已成为现代各科技领域处理大量数据的有效工具.本文就是利用矩阵的基本理论,把矩阵作为计算工具,对实际问题如方程组的解、矩阵的幂、二次型进行了较为系统的研究并简化了一些计算.关键词: 矩阵;矩阵的幂;线性方程组Matrix and Its ApplicationYANG Can(Grade 2010, Mathematics and Applied Mathematics, College of Mathematics and statistics, Chongqing Three Gorges University, Wan Zhou, Chongqing 404100 )Abstract:Matrix theory is not only the foundation of learning classical mathematics,but also is a very useful mathematical theory.With the development of science and technology,this theory has become the effective tool for modern technology in the field of large amounts of data.This article is on the undamental theory of matrix,the matrix as a calculation tool,the practical problems such as the solution of the equations,the power of matrix,the two type are systematically studied and some simplified calculation.Keywords:Matrix; The power of matrix; Linear equation2014届数学与应用数学专业毕业设计(论文)1 前言矩阵是数学中的一个重要的基本概念,是代数学的主要研究对象之一,也是数学研究和应用的一个重要工具.“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个术语.而实际上,矩阵在它的课题诞生之前就已经发展的很好了.18世纪中期,数学家们开始研究二次曲线和二次曲面的方程简化问题,即二次型的化简.在这一问题的研究中,数学家们得到了与后来的矩阵理论密切相关的许多概念和结论.1748年,瑞士数学家欧拉(L .Euler,1707—1783)在将三个变数的二次型化为标准形时,隐含地给出了特征方程的概念.1773年,法国数学家拉格朗日(J .L .Lagrange,1736—1813)在讨论齐次多项式时引入了线性变换.1801年德国数学家高斯(C .F .Gauss,1777一1855)在《算术研究》中,将欧拉与拉格朗日的二次型理论进行了系统的推广,给出了两个线性变换的复合,而这个复合的新变换其系数矩阵是原来两个变换的系数矩阵的乘积.另外,高斯还从拉格朗日的工作中抽象出了型的等价概念,在研究两个互逆变换的过程中孕育了两个矩阵的互逆概念.在线性方程组的讨论中,我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解线性方程组的过程也表现为变换这些矩阵的过程.除了线性方程组之外,还有大量的各种各样的问题也都提出矩阵的概念,并且这些问题的研究常常反映为有关矩阵的某些方面的研究,甚至于有些性质完全不同的、表面上完全没有联系的问题,归结成矩阵问题以后却是相同的.这使矩阵成为数学中一个极其重要的应用广泛的概念,因而也就使矩阵成为代数特别是线性代数的一个主要研究对象,也是处理高等数学很多问题的有力工具.矩阵的秩是一个基本的概念,也是矩阵最重要的数量特征之一,它在初等变换下是一个不变量.矩阵的秩是反映矩阵固有特性的一个重要概念,无论是在线性代数中,还是在解析几何中,甚至在概率论中,都有不可忽略的作用.矩阵方幂在高等代数题解、矩阵稳定性讨论及预测、控制等方面有广泛的应用,它的求解原理贯穿于代数教学过程的始终,可以用到矩阵各方面的知识.其计算量往往较大,但方法适当,可大大简化其计算难度.本文将给出六种求矩阵方幂地方法.矩阵方程是矩阵运算的一部分,这里我们主要讨论如何求解矩阵方程的问题.掌握简单的矩阵方程的求法,对于求解复杂的矩阵方程有很大帮助.2 有关概念及重要结论2.1矩阵的概念为了便于叙述并考虑以后的应用,我们引进矩阵的概念.由mn 个数排列而成的m 行(横的)n 列(纵的)的表⎪⎪⎪⎪⎪⎭⎫⎝⎛mn m m n n a a a a a a a a a 212222111211称为一个n m ⨯杨灿:矩阵及其应用矩阵.定义 1 把矩阵A 的行换成同序数的列得到的新矩阵, 称为A 的转置矩阵, 记作T A (或A ').即若,212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mn n n m m Ta a a a a a a a a A 212221212111. 2.2矩阵的秩定义2 所谓矩阵的行秩就是指矩阵的行向量组的秩;所谓矩阵的列秩就是指矩阵的列向量组的秩.引理1 如果齐次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n sn s s nn n n x a x a x a x a x a x a x a x a x a 的系数矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=sn s s n n a a a a a a a a a A 212222111211的行秩n r <,那么它有非零解.定理1 矩阵的行秩与列秩相等.定理 2 n n ⨯矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211的行列式为零的充分必要条件是A 的秩小于n .推论 1 齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a 有非零解的充分必要条件是它的系数矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211的行列式等于零.2.3矩阵的逆我们知道,n 阶单位矩阵E 单位性质,即对于任意n 阶方阵A 都有A EA AE ==,是否存在n 阶方阵B 使得E AB =呢?即是否与数域P 中数一样的性质:1)0(1=⋅⇒∈≠∀-a a P a .为此,我们引进逆矩阵的概念.定义1 n 阶方阵A 称为可逆的,如果有n 阶方阵B ,使得E BA AB ==. (2.3.1)这里E 是n 级单位矩阵.并且称B 为A 的一个逆矩阵.定义2 如果矩阵B 适合(2.3.1),那么B 就称为A 的逆矩阵,记为1-A . 定理1 n 阶矩阵A 可逆的充分必要条件是A 非退化,此时,A 的逆矩阵为0,1*1≠==-A d A dA . 定理2 给出了矩阵可逆时逆矩阵的计算公式.下面给出可逆矩阵的一些性质: 性质1 如果n 阶方阵A 可逆,那么0≠=A d ,并且dA 11=-. 性质2 如果矩阵B A ,同级且都可逆,那么T A 与AB 也可逆,且11111)(,)()(-----==A B AB A A T T .性质3 如果n 阶方阵A 可逆,那么kA N k ,∈∀也可逆,并且k k A A )()(11--=. 性质4 如果n 阶方阵A 可逆,那么k A Z k ,∈∀也可逆,并且k k A A )()(11--=.性质5 如果n 阶方阵A 可逆,那么Z l k ∈∀,,有l k l k k l kl l k A A A A A A +===,)()(. 定理3 A 是一个n s ⨯矩阵,如果P 是s s ⨯可逆矩阵,Q 是n n ⨯可逆矩阵,那么)()()(A r AQ r PA r ==.推论1 在定3的假设下有,)()(A r PAQ r =成立.2.4 二次型及矩阵表示定义1 设P 是一个数域,一个系数ij a 在数域P 中的n x x x ,,,21 的二次齐次多项式 jinj i ij i ni ii n xx a x a x x x f ∑∑≤≤≤=+=121212),,,( . (2.4.1)定义2 记ij ji a a =,把n 元二次型(2.4.1),写成对称形式j i ni nj ij n x x a x x x f ∑∑===1121),,,( . (2.4.2)这样,系数ij a 可以构成一个n n ⨯对称矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛==nn n n n n nn ij a a a a a aa a a a A 212222111211)(, (2.4.3) 称(2.4.3)为n 元二次型(1)的矩阵. 令Tn x x x x ),,,(21 =,则有i n i j nj ij j i n i n j ij n x x a x x a x x x f ∑∑∑∑======111121)(),,,( ,=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∑∑∑===n j j nj n j j j n j j j n x a xa x a x x x 1121121),,,( ,=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛n nn n n n n n x x x a a a a a a a a a x x x 2121222211121121),,,(,=Ax x T, (2.4.4)这就是二次型的矩阵表示.对确定的n 元二次型(2.4.1),就确定唯一的对称矩阵(2.4.3)通过(2.4.4)联系起来,即Ax x xx a x x x f T jin i nj ij n ==∑∑==1121),,,( .因此,一个n 元二次型(2.4.1)对应一个n 阶对称矩阵.每个二次型都有一个对称矩阵与之对应;反之,每个对称矩阵也有一个二次型与之对应.二次型与它的矩阵是相互唯一确定的.一般地,关于二次型的矩阵有下列结果.定理1 设B 是n n ⨯矩阵,则Bx x x x x f Tn =),,,(21 是一个二次型,它的矩阵为2BB T +.2.5 特征值与特征向量n 维线性变换空间V 与矩阵空间nn p ⨯是同构关系,可以通过矩阵来研究线性变换的性质,我们希望找到一组基,,,21n ξξξ 使得线性变换A L 在这组基下的矩阵A 的形式最简单.这个问题的一个简单设想是A 是否可以是对角形式?即),,,(,,,3,2,1,21n j j j A a a a diag A n j a L ===ξξ.这个设想可以归结为:对线性空间V 的线性变换ξξk L A =,P k ∈.这就是线性变换的特征值与特征向量.定义1 设A L 是数域P 上线性空间V 的一个线性变换,如果对于数域P 中一数0λ,存在一个非零向量ξ,使得ξλξ0=A L .那么0λ称为A L 的是一个特征值,而ξ称为A L 的属于特征值0λ的一个特征向量.定义2 设A 是数域P 上一n 级矩阵, λ是一个文字. 矩阵A -E λ的行列式nnn n nn a a a a a a a a a ---------=A -E λλλλ212222111211,称为A 的特征多项式, 这是数域P 上的一个n次多项式.上面的分析说明, 如果0λ是线性变换A L 的特征值, 那么0λ一定是矩阵A 的特征多项式的一个根; 反过来, 如果0λ是矩阵A 的特征多项式在数域P 中的一个根, 即00=-E A λ, 那么齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-----=---+-=----0)(0)(0)(022111222012112121110n nn n n nn n n x a x a x a x a x a x a x a x a x a λλλ (2.5.1)就有非零解. 这时,如果),,,(00201n x x x 是方程组(2.5.1)的一个非零解, 那么非零解向量.n n x x x ζζζζ0202101+++= .满足(2.5.1)式, 即0λ是线性变换A L 的一个特征值, ζ就是属于特征值0λ的一个特征向量.定理1 设A L 是数域P 上n 维线性空间V 的一个变换,则P ∈0λ是A L 的一个特征值当且仅当0λ是A L 的特征多项式)()(λλA L f f A≡的一个根.定理2 设0λ是线性空间V 的线性变换A L 的一个特征值,则集合{}V L V A ∈==ααλααλ,00 (2.5.2)构成V 的一个子空间.在有限维情形,)(dim 00A E R n V --=λλ,其中,V n dim =,A 是A L 在V 在某个基下的矩阵.定义3 设0λ是线性空间V 的线性变换A L 的一特征值,式(2.5.2)定义的V 的子空间称为A L 的对应特征值0λ的特征子空间0λV因此, 确定一个线性变换A 的特征值与特征向量的方法可以分成一下几步: (1)在线性空间V 中取一组基n ζζζ,,,21 , 写出A L 在这组基下的矩阵A ;(2)求出A 的特征多项式A -E λ在数域P 中全部的根, 它们也就是线性变换A L 的全部特征值;(3)把所得的特征值逐个代入方程组(2.5.1)式, 对于每一个特征值, 解方程组(2.5.1)式,求出一组基础解系, 它们就是属于这个特征值的几个线性无关的特征向量在基n ζζζ,,,21 下的坐标, 这样, 我们也就求出了属于每个特征值的全部线性无关的特征向量.矩阵A 的特征多项式的根有时也称为A 的特征值, 而相应的线性方程组(2.5.1)式的解也就称为A 的属于这个特征值的特征向量.3 矩阵的应用3.1矩阵的高次幂3.1.1 矩阵的幂定义1 设方阵n n ij a A ⨯=)(, 规定.,,0为自然数个k A A A A E A k k⋅⋅⋅==k A 称为A 的k 次幂.方阵的幂满足以下运算规律(假设运算都是可行的): (1) );,(为非负整数n m A A A n m n m +=(2) .)(mn n m A A =注意: 一般地,,)(m m m B A AB ≠ m 为自然数命题1 设B A ,均为n 阶矩阵,,BA AB = 则有,)(m m m B A AB = m 为自然数,反之不成立.3.1.2 矩阵高次幂的求法矩阵方幂在高等代数题解、矩阵稳定性讨论及预测、控制等方面有广泛的应用,它的求解原理贯穿于代数教学过程的始终,可以用到矩阵各方面的知识.其计算量往往较大,但方法适当,可大大简化其计算难度.本文将给出六种求矩阵方幂地方法.3.1.2.1 利用凯莱——哈密尔顿(Cayley —Hamilton )定理求方阵的幂定理1 (Cayley —Hamilton 定理)设A 是n 阶矩阵,)(λf 是A 的特征多项式,则0)(=λf . 设A 是数域P 上n 阶方阵,其特征多项式为)(λf ,为求A n(n 是正整数),令n g λλ=)(,做带余除法,)()()()(λλλλr q f g +=.由定理1知,)()(λλr g =,并且)(λr 的次数小于)(λg 的次数,进而可得n r g A =A =A )()(.利用上定理求幂时在计算过程中可分为两种情形:1、所求矩阵的幂指数相对较低,可直接利用定理1及余式定理求出)(λr .例1 已知 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=101121002A ,求5A .解 令5)(λλ=g 矩 阵A 的 特 征 多 项 式 为)1()2(11121002)det()(2--=-----=A -I =λλλλλλλf 做带余除法,6811649)1750)(()(225+-+++==λλλλλλλf g 于是,由定理1知I +A -A =I +A -A ++A +A A =A =A 68116496811649)1750)(()(2225f g⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1000100016810112100211610334300449 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=10313132310032 2、所求矩阵的幂指数相对较高,不便用上法直接求出余式.此种情形下矩阵的特征多项式有重根和无重根时分别给出下面的解法.(1)矩阵的特征多项式无重根.对于i ni i c q f r q f g λλλλλλλ∑=+=+=1)()()()()()(,以其n 个不同的特征值分别代入此式即可求出)(λr .例2 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A 211110101,求991003A -A .解 令991003)(λλλ-=g .矩阵A 的特征多项式为)3)(1(211110101)det()(--=-------=A -I =λλλλλλλλf .做带余除法,注意到)(λf 的次数是3,即c b a q f g +++=-=λλλλλλλ299100)()(3)(. 以3,1,0=λ分别代入上式得0)0(==c g .2)1(-=++=c b a g .039)3(=++=c b a g . 所以0,3,1=-==c b a .由定理1 ,A -A =I +A +A =A -A =A 33)(2299100c b a g⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0000110112111101013631321312.(3)矩阵的特征多项式有重根.同上法,为获得足够的信息求出)(λr ,可对)()()()(λλλλr q f g +=求导.例3 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=A 210111111,求100A .解 A 的特征多项式是)2()1()det()(2--=A -E =λλλλf 令100)(λλ=g ,做带余除法0122)()()(b b b q f g +++=λλλλλ以2,1=λ分别代入上式,有⎩⎨⎧=++==++=100012012234)2(1)1(b b b g b b b g 为求)2,1,0(=i b i ,就)(λg 对λ求导得10012'2'1002)()()()]1()2)(1(2[)(λλλλλλλλλ=+++-+--=b b q g q g 以1=λ代入上式,有100212=+b b ,从而求得 1000201110022102,3022,2201-=-=-=b b b , 于是 I +A +A =A0122100b b b .3.1.2.2 对于秩为1的n 阶方阵A 有下面定理定理1 对于n 阶方阵A,若1)(=A rank ,那么A 可分解为一个列向量与一个行向量的乘积'αβ=A ,其中⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=n n b b b b a a a a .,.321321 βα.例4 已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=A 1233321231211,求n A . 解 显然1)(=A rank ,并且⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=A 1233321231211⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3121132`1,而331211321=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡,所以⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=A =⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A ---123332123121133312113213111n n n n .3.1.2.3 可分解为数量矩阵和零幂矩阵之和的情况要点 观察推敲矩阵A ,看其是否可以分解为一个数量矩阵E λ与一个零幂矩阵P 之和,即P +E =λA ,其中O m ≠P ,但O m =P+1,因为数量矩阵E λ和P 可以交换,于是由二项式定理得m m n kn n k k n nk k k n nk nnm n n k n k n A P ⎪⎪⎭⎫ ⎝⎛++P +=P ⎪⎪⎭⎫ ⎝⎛=P E ⎪⎪⎭⎫ ⎝⎛=P +E =---=-=∑∑λλλλλλ 100)()(.例5 已知矩阵,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2000420000210042A ,求n A . 解 观察矩阵A 的特点,可先将其分块写成⎪⎪⎭⎫ ⎝⎛=C O O B A ,其中⎪⎪⎭⎫ ⎝⎛=2142B ,⎪⎪⎭⎫⎝⎛=2042C ,则⎪⎪⎭⎫ ⎝⎛=n nn C OO B A ,下面就先求n B 和nC . 显然1)(=B r ,即pq B =,这里⎪⎪⎭⎫⎝⎛=12p ,⎪⎪⎭⎫⎝⎛=21q ,且4=qp ,所以B B n n 14-=. 至于P +E =⎪⎪⎭⎫⎝⎛+E =⎪⎪⎭⎫ ⎝⎛=2004022042C ,⎪⎪⎭⎫ ⎝⎛=P 0040满足O P =2,代入上述给出的二 次项式公式⎥⎦⎤⎢⎣⎡⋅=P +E =P E +E =+E =---nn nn n n nnnn n n P C 2024222)2()2()2(111. 因此本题得解 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅=---n n n n n n n A 2024200004200442111. 3.1.2.4 归纳法例6 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101αβαA ,求其n 次幂. 解 先来计算A 的较低次幂2A 和3A ,由矩阵乘法直接计算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=10021022122αβααA ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=100310333123αβααA ,……由此猜想⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-=100102)1(12αβααn n n n n A n. 以下用数学归纳法加以证明. (1)当1=n 时成立.(2)归纳假设结论对k n =时亦成立,即⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-=100102)1(12αβααk k k k k A k . 所以当1+=k n 时,A A Ak k =+1,而⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+(++++(=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-=100)110)1(2)1()11100101100102)1(122αβαααβααβααk k k k k k k k k k A A k , 即当1+=k n 时成立,从而证明结论成立.即⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-=100102)1(12αβααk k k k k A k. 3.1.2.5 利用相似变换法要点 若已知矩阵可以经过相似变换化为对角阵时,即存在可逆矩阵P ,使Λ=AP P -1,其中Λ为对角阵,其对角线上元素为矩阵A 的特征值.由上可得1-PΛP =A ,1-P PΛ=A n n .于是求A的方幂就转化为求过渡矩阵P 和对角阵nΛ,而对于P 和阵nΛ,我们应用代数知识要好求得多了,具体如下:例7 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A 122212221,求其n 次幂. 解 经过计算,矩阵A 的特征值1-=λ和5=λ,对于特征值1-=λ有线性无关特征向量T )101(1-=α和()3011Tα=-()T 1102-=α.对于特征值5=λ有特征向量()T 1113=α.令()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==P 111110101,,321ααα,即P 可逆,且有,5000)1(000)1(,5000100011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=Λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=Λ=AP P -n n n n 于是.,11--P PΛ=A PΛP =A nn计算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-+-+-+-+-+-+-=A ++++++n n nn n n n n n n nn n n n n nn n 52)1(5)1(5)1(5)1(52)1(5)1(5)1(5)1(52)1(31111111.3.1.2.6 利用Jordan 标准形例8 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=A 411301621,求k A .解 第一步:首先求矩阵A 的若尔当标准形.由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+=A -E 2)1(0001000141131621λλλλλλ.从而初等因子为)1(-λ,2)1(-λ,故A 的若尔当标准形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001J .第二步:求可逆矩阵T 使J AT T =-1,即TJ AT =.设),,(321ααα=T ,所以有332211,,αααααα=A =A =A .由22αα=A 得32)(αα-=A -E ,设()Tx x x 3212,,=α,()Ty y y 3213,,=α,则由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=A -E 3221321000311622311311622)(y y y y y y y , 而32)(αα-=A -E 有解,故32y y =,又33αα=A ,从而0)(3=A -E α即0311311622321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---y y y , 于是有03321=-+y y y ,所以得212y y =.令132==y y ,则21=y .于是T )112(3=α,再解T )001(2-=α.于是求得()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==101100213,,321αααT . 第三步:由第二步得1-=A TJT .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==A -k k k k k k k kk k TTJ k k 31316221010311110100100011011002131.3.2 解线性方程组3.2.1线性方程组的有解判定定理定理1 (克拉默法则) 如果线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (4.2.1)的系数矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211的行列式,0≠=A d 那么线性方程组(4.2.1)有解,并且解是唯一的,解可以通过系数表为,,,,2211dd x d dx d d x n n ===其中j d 是矩阵A 中第j 列换成方程组的常数项n b b b ,,,21 所成的矩阵的行列式,即.,,2,1,1,1,121,221,22111,111,111n j a a b a a a a b a a a a b a a d nnj n nj n n nj j nj j j==+-+-+- 定理(线性方程组的有解判定定理) 线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++sn sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********有解的充分必要条件为它的系数矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=sn s s n n a a a a a a a a a A 212222111211与增广矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=s sns s n n b a a a b a a a b a a a A 21222221111211有相同的秩.3.2.2 线性方程组一般形式的运用例9 求下述齐次线性方程组的一个基础解系⎪⎪⎩⎪⎪⎨⎧=+++-=++-+-=---+-=+-+-0931050320117630426354321543215432154321x x x x x x x x x x x x x x x x x x x x把方程组的系数矩阵经过初等行变换化成阶梯形矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------000000000078100650219131051312111716341263于是方程组的一般解为:⎩⎨⎧+=--=543542178652x x x x x x x 其中542,,x x x 是自由未知量.令0,0,1542===x x x 得)0,0,0,1,2(1=η 0,1,0542===x x x 得)0,1,8,0,5(2-=η 1,0,0542===x x x 得)1,0,7,0,6(3-=η 这里321,,ηηη就是方程组的一个基础解系.例10 解线性方程组:⎪⎪⎩⎪⎪⎨⎧-=++-+-=++-+-=---+-=++-+2573431272327225354321543215432154321x x x x x x x x x x x x x x x x x x x x解 把此方程组的增广矩阵经过初等行变换化成阶梯形矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----------000000666100121010875001000000666100545110112111257343112111721132712253从而得到此方程组的一般解为:⎪⎩⎪⎨⎧-+=---=-+=66662875543542541x x x x x x x x x 其中54,x x 是自由未知量. 对于方程个数与未知量个数相等的非齐次线性方程组,如果它的系数行列式不为零,我们还可以用克莱姆法则求解.但是这种方法计算量很大,因此我们一般不用它,只是对少数字母系数的方程组采用克莱姆法来进行求解.例11 非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=++-=+--=+--321934443522134321432143214321x x x x a x x x x x x x x x x x x 求当a 为何值时方程组有解?此时有多少解?解 把方程组的增广矩阵经过初等行变换化成阶梯形矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------00000340000211001131132211193444352211311a a ⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------00000340000211001131132211193444352211311a a 显然,当34≠a 时,方程组无解;当34=a 时,方程组无解,此时由于阶梯形矩阵的非零行有2行,而未知量有4个,所以方程组有无穷多个解,易求出一般解为⎩⎨⎧+-=+-=27443421x x x x x 其中42,x x 是自由未知量.3.3 解矩阵方程矩阵方程是矩阵运算的一部分,这里我们主要讨论如何求解矩阵方程的问题.掌握简单的矩阵方程的求法,对于求解复杂的矩阵方程有很大帮助.简单的矩阵方程有三种形式:.,,C AXB C XA C AX ===如果这里的A 、B 都是可逆矩阵,则求解时需要找出矩阵的逆,注意左乘和右乘的区别.它们的解分别为.,,1111----===B A X CA X C A X例如,求解方程C AC =先考察A 是否可逆,如果A 可逆时,方程两边同时左乘1-A ,得,11C A AX A --=即,1C A X -=这里要注意只能左乘不能右乘,因为矩阵的乘法不满足交换律.同样,对于方程,C XA =只能右乘1-A ,得,11--=CA XAA 即.1-=CA X 而对于方程,C AXB =只能是左乘1-A 而右乘1-B ,得,1111----=CB A ACBBA 即.11--=CB A X看下面解矩阵方程例题:例12 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡315432343122321X 解 先求出1-A ,则,111253232313431223211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=332123315432111253232313154321343122321X 例13 ⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡212101343122321X解 先求出1-A ,则,111253232313431223211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-则⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-27525120111253232312121013431223212121011X 例14 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡3154321325343122321X解 先求出1-A ,则,111253232313431223211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-532113251, 则⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=--532131543211125323231132531543234312232111X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=131148735331332123当矩阵方程C AXB C XA C AX ===,,中的A 、B 不是方阵或者是不可逆的方阵时,前面的方法就不能用了.这时,我们需要用待定元素法来求矩阵方程.设未知矩阵X 的元素为ij x ,即)(ij x X =,然后由所给的矩阵方程列出ij x 所满足的线性方程组,通过解线性方程组求出所有元素ij x ,从而得到所求矩阵)(ij x X =.例15 解矩阵方程⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-4152102011X解 利用元素法,先确定X 的行数等于左边矩阵的行数3,X 的列数等于积矩阵的列数2,则X 是23⨯的矩阵.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2221y y y x x x X ,则⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-41521020112121y y y x x x. 即⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡++--4152222111y y x x y y x x ,于是得方程组⎪⎪⎩⎪⎪⎨⎧=+=+=-=-4212522211y y x x y y x x . 解得⎪⎪⎩⎪⎪⎨⎧-=-=-=-=y y x x y y x x 2421522211,所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=y y y x x x X 245212,其中y x ,为任意实数.例16 解矩阵方程,C AX =其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=031334213A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=7577111793C . 解 由于0=A ,所以A 是不可逆矩阵,需要用元素法求解.设,222111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=z y x z y x z yxX 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--7577111793031334213222111z y x z y x z y x,即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-+-+-+-+-+-7577111793323334334334232323111212121212121z z y y x x z z z y y y xx x z z z y y y x x x .比较第一列元素得⎪⎩⎪⎨⎧=+=+-=+-73133432312121x x x x x x x x ,解得⎩⎨⎧-=-=9537121x x x x 同样,比较第二、三列元素可得对应方程组,分别解得7537,3535121121-=-=-=-=z z z z y y y y ,所以可得 ⎥⎦⎤⎢⎣⎡------=7573535953711111`1z z y y x x X ,其中111,,z y x 是任意实数. 总之,对于矩阵方程,当系数矩阵是方阵时,先判断是否可逆.如果可逆,则可以利用左乘或右乘逆矩阵的方法求未知矩阵,如果方阵不可逆或是系数矩阵不是方阵,则需要用待定元素法通过解方程确定未知矩阵.3.4 矩阵对角化方法3.4.1 讨论对于有n 个特征单根的n 阶方阵3.4.1.1 基本原理引理1 设A 是秩为r 的n m ⨯阶矩阵,且()n TE A−−−→−行初等变换⎪⎪⎭⎫ ⎝⎛*--n r n mr n rmP D )()(0 其中D 是秩为r 的行满秩矩阵,则齐次线性方程组0=AX 的一个基础解系即为矩阵P 所含的r n -个行向量),,2,1(r n i i -= ξ.引理2 矩阵A 的特征矩阵)(λA 经过一系列行初等变换可化为上三角形的λ-矩阵)(λB ,且)(λB 的主对角线上元素乘积的λ多项式的解为矩阵A 的全部特征根.引理3 对于数域P 上的n 阶方阵A ,若A 的特征多项式在P 内有n 个单根,则由特征向量构成的n 阶可逆矩阵T ,使得⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n AT T λλλ211定理1 若数域P 上的n 阶方阵A 的特征多项式)(λf 在P 内有n 个单根,则A 可通过如下方法对角化:设()())()()(,)(λλλλλQ B E A A E A n TT T −−−→−-=行初等变换且)()1λB 为上三角形矩阵,则有方阵A 的特征根i λ即为)(λB 中主对角线上各个元素乘积的解;)2对于方阵A 的每一个特征根i λ,总有)(i B λ中零行向量所对应的)(i Q λ中的行向量i ξ与之对应.3.4.1.2举例说明例17 设⎪⎪⎪⎭⎫ ⎝⎛=210131012A ,问方阵A 是否可以化为对角形,若可以,求出其对角化后的方阵.解 ()⎪⎪⎪⎭⎫ ⎝⎛-------=100210010131001012)(λλλλE A T−−−−−−→−第一行与第二行互换⎪⎪⎪⎭⎫ ⎝⎛-------100210001012010131λλλ −−−−−−−−−→−-行上乘以第一行再加到第二)2(λ⎪⎪⎪⎭⎫ ⎝⎛---+-+----10021002125500101312λλλλλλ−−−−−−→−第二行与第三行互换⎪⎪⎪⎭⎫ ⎝⎛-+-+------02125501002100101312λλλλλλ −−−−−−−−−−→−+-行上乘以第二行再加到第三)55(2λλ⎪⎪⎪⎭⎫ ⎝⎛+----------5521)4)(2)(1(001002100101312λλλλλλλλ =())()(λλQ B由题意知)4)(2)(1(---λλλ=0⇒11=λ,22=λ,43=λ ,此时方阵A 有3个特征单根,故方阵A 可以化为对角形;将11=λ代入)()(λλQ B 和中知)(λB 的第三行为零,由定理1知)(λQ 的第三行向量)1,1,1(-即为属于1λ的特征向量,同理可知)1,2,1(),1,0,1(-分别为属于32λλ和的特征向量.于是可得⎪⎪⎪⎭⎫ ⎝⎛--=111201111T ,使得⎪⎪⎪⎭⎫ ⎝⎛=-4211AT T .3.4.2 讨论对于有特征重根的n 阶方阵对于有特征重根的方阵,可以通过上述方法将其化为上三角形矩阵,接着再对上三角形矩阵施行一系列初等变换将其化为对角形矩阵,这样就避免了上三角形矩阵中非零行向量可能不构成行满秩的情形. 3.4.2.1基本定理定理2 设TT A E A -=λλ)(,则()())()()(λλλP D E A T −−−→−初等变换且)(λD 为对角形矩阵,则有)1对于A 的每个特征根i λ,)(i P λ中与)(i D λ的零行对应的行向量即为属于i λ的特征向量;)2设s λλλ ,,21为A 的所有不同的特征根,重数分别为s r r r ,,21,则A 可以化成对角形⇔)(i D λ中的零行数目等于i λ的重数),,2,1(s i r i =.由此我们不难得到对于有特征重根的方阵化为对角形方阵的简单步骤如下:)1作()()())()()()()(λλλλλP D Q B E A T −−−→−−−−→−初等变换行初等变换,其中))(),(),(()(21λλλλn d d d diag D =,则A 的特征根恰为0)()()(21=λλλn d d d 的根;)2若A 的特征根全在P 内,且每个i λ有)(i D λ中零行数目等于i λ的重数,则A 可以化为对角形方阵,否则A 不可以化为对角形方阵;)3对于每个特征根i λ,在)(i P λ中取出与)(i D λ中零行对应的行向量),,,(21im i i P P P 得A属于i λ的特征向量且都是线性无关的. 3.4.2.2 举例说明例18 ⎪⎪⎪⎭⎫⎝⎛-=110111110)1A ; ⎪⎪⎪⎭⎫ ⎝⎛--=100112001)2B问方阵A 和B 是否可以化为对角形,若可以,试求出其对角化后的方阵.解 ()⎪⎪⎪⎭⎫ ⎝⎛------=10011101011100101)()1λλλλE A T−−−−−−→−第一行与第三行互换⎪⎪⎪⎭⎫ ⎝⎛------00101010111100111λλλ−−−−−−−−→−-行上乘以第一行再加到第二)1(⎪⎪⎪⎭⎫ ⎝⎛------0010111020100111λλλλ−−−−−−−→−行上乘以第一行再加到第三λ⎪⎪⎪⎭⎫ ⎝⎛-------λλλλλλλ0110110201001112 −−−−−−−−→−-二行上)乘以第三行再加到第(1⎪⎪⎪⎭⎫⎝⎛---------λλλλλλλ011011110111122−−−−−−−−−→−-三行上)乘以第二行再加到第(1λ⎪⎪⎪⎭⎫⎝⎛++------------112)1(001111010*******λλλλλλλλλ−−−−−−−−−→−-列上乘以第二列再加到第三)(2λ⎪⎪⎪⎭⎫ ⎝⎛++----------+--112)1(00111010100111222λλλλλλλλλ−−−−−−−−−−→−-+-列上乘以第一列再加到第三)1(2λλ⎪⎪⎪⎭⎫ ⎝⎛++----------112)1(0011101010001122λλλλλλλ−−−−−−→−第二行加到第一行上⎪⎪⎪⎭⎫⎝⎛++------------112)1(001110101100122λλλλλλλλ())()(λλP D =由题意知0)1(2=-λλ⇒01=λ,)(12二重=λ,因为)(2λD 中零行数目≠1等于2λ的重数,故A 不可以化为对角形方阵.)2 ()⎪⎪⎪⎭⎫ ⎝⎛--+-=100110010010001021)(λλλλE A T2014届数学与应用数学专业毕业(论文)第 23 页 共 24页−−−−−−→−第二行与第三行互换⎪⎪⎪⎭⎫ ⎝⎛+---010*********001021λλλ −−−−−−−−−→−+行上乘以第二行再加到第三)1(λ⎪⎪⎪⎭⎫ ⎝⎛+----1101001001100010212λλλλ −−−−−−−−−→−-列上乘以第二列再加到第三)1(λ⎪⎪⎪⎭⎫ ⎝⎛+----110100100010001)1(2212λλλλ −−−−−−−−→−-列上乘以第一列再加上第三)2(⎪⎪⎪⎭⎫ ⎝⎛+---1101001000100010212λλλ −−−−−−−→−行上乘以第二行再加到第一2⎪⎪⎪⎭⎫ ⎝⎛+---1101001000102010012λλλ())()(λλP D =. 由题意知0)1)(1(2=--λλ⇒)(11二重=λ,12-=λ,此时)(1λD 中零行数等于=21λ的重数,故B 可以化为对角形方阵;将11=λ代人)()(λλP D 和中知)(λD 的第一行和第三行为零,由定理2知)(λP 的第一行向量)2,0,1(和第三行向量)2,1,0(即为属于1λ的特征向量,同理可知)0,1,0(为属于2λ的特征向量.由此可知⎪⎪⎪⎭⎫ ⎝⎛=022110001T 使得⎪⎪⎪⎭⎫ ⎝⎛-=-1111BT T .结 论通过以上对矩阵的学习,我们知道,想要在学习过程中灵活应用矩阵思想,首先要理解矩阵思想,在此基础上,遇到难解的数学问题,能发现矩阵是可以解决此类问题的关键,最后能正确无误的利用矩阵思想把数学问题得以解决.矩阵是代数特别是线性代数的一个主要研究对象,他对于研究矩阵的相关运算、解线性与非线性方程组、特征值和特征向量的求解方法、对角化及二次型矩阵、求解矩阵高次幂等重要问题都有极为广泛的应用.杨灿:矩阵及其应用参考文献[1]李志慧,李永明.高等代数中的典型问题与方法[M].科学出版社,2008.205-211[2]王萼芳,石生明.高等代数(第三版).高等教育出版社[3] 张禾瑞.高等代数(第五版)[M].北京:高等教育出版社,2007[4] 吕林根,许道子.解析几何[M].北京:高等教育出版社,2006[5] 许以超.线性代数与矩阵[M].北京:高等教育出版社,1992[6] 李师正.高等代数解题方法与技巧[M].北京:高等教育出版社,2004[7] 徐仲,张凯院,陆全,冷国伟.矩阵论简明教程[M].北京:科学出版社,2005[8] 贾美娥.矩阵的秩与运算的关系[J].赤峰学院学报,2010,26(9):3-4[9] 钟成义,肖宏儒.方阵秩与零特征值代数重数相关性探讨[J].高等数学研究.2009,12(1):96-97[10] 史明仁. 线性代数600证明题详解[M]. 北京科学技术出版社.1985[11] 徐德余.高等代数(第二版)[M].四川大学出版社.2005:175-178[12] 丘维声. 高等代数[M]. 北京: 高等教育出版社, 1996[13] 赵树嫄. 线性代数(第三版[M]). 北京: 中国人民大学出版社, 2006[14] 程云鹏.矩阵论[M].第二版.西安:西北工业大学出版社,2002[15] 赵树塬.线性代数[M].北京:中国人民大学出版社,1997[16] 李君文.线性代数理论与解题方法[M].长沙 :湖南大学出版社,2002致谢从上学期选题、收集资料到这学期写开题报告,完成初稿,到定稿,期间几个月历经喜悦、聒噪、痛苦、彷徨,在写论文时心情如此复杂,到今天随着论文的完成,都落下了帷幕.在此论文撰写过程中,要特别感谢我的导师向以华老师的指导与督促,同时感谢他的谅解与包容.没有老师的帮助也就没有今天的这篇论文.求学历程是艰苦的,但又是快乐的.感谢我大学所有教过的老师,谢谢他们在这四年中的教诲.在这四年的学期中结识的各位生活和学习上的挚友让我得到了人生最大的一笔财富.在此,也对他们表示衷心感谢.本文参考了大量的文献资料,在此,向各学术界的前辈们致敬!第24页共24 页。