描述简谐运动的物理量
- 格式:doc
- 大小:98.32 KB
- 文档页数:4
描述简谐运动的物理量
1、振幅A:
如果我们要乘车,我想大家都愿意坐小汽车,而不坐拖拉机,因为拖拉机比小汽车颠簸得厉害。
从O点开始,一次全振动的完整过程为:O→A→O→A′→O。
从A点开始,一次全振动的完整过程为:
从A'点开始,一次全振动的完整过程为:
在判断是否为一次全振动时不仅要看是否回到了原位置,而且到达该位置的振动状态
(速度)也必须,才能说完成了一次全振动。
只有物体振动状态再次恢复到与起始时刻完全相同时,物体才完成一次全振动。
振动物体以相同的速度相继通过同一位置所经历的过程,也就是连续的两次位置和振动状态都相同时所经历的过程,叫做一次全振动。
一次全振动是简谐运动的最小运动单元,振子的运动过程就是这一单元运动的不断重
22
结论:弹簧振子的振动周期与振子的质量有关,质量较小时,周期较小。
实验三:保持小球的质量和振幅不变,换用劲度系数不同的弹簧,测出振动的周期T3和T3′
结论:弹簧振子的振动周期与弹簧的劲度系数有关,劲度系数较大时,周期较小。
综合结论:弹簧振子的周期由振动系统本身的质量和劲度系数决定,而与振幅无关。
(简谐运动的周期公式T=2πm
k,式中m为振子的质量,k为比例常数)
⑤固有周期和固有频率
对一个确定的振动系统,振动的周期和频率只与振动系统本身有关,所以把周期和频率叫做该振动固有周期和固有频率。
一、描述简谐运动的物理量┄┄┄┄┄┄┄┄① 1.振幅(1)定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。
用A 表示,单位为米(m)。
(2)物理意义:振幅是描述振动强弱的物理量;振幅的大小反映了振动系统能量的大小。
2.全振动:振动物体以相同的速度相继通过同一位置所经历的过程。
3.周期(T)和频率(f)内容 周期频率定义 做简谐运动的物体完成一次全振动需要的时间 单位时间内完成全振动的次数单位 秒(s)赫兹(Hz)物理含义 表示振动快慢的物理量关系式T =1f相位:表示振动物体不同状态的物理量,用来描述周期性运动在各个时刻所处的不同状态。
[说明]1.振幅是振子离开平衡位置的最大距离,数值上等于最大位移的绝对值。
2.正确理解全振动,应注意把握全振动的五个特征 (1)振动特征:一个完整的振动过程。
(2)物理量特征:位移(x)、加速度(a)、速度(v)三者第一次同时与初始状态相同。
(3)时间特征:历时一个周期。
(4)路程特征:振幅的4倍。
(5)相位特征:增加2π。
①[判一判]1.振幅就是指振子的位移(×)2.振子从离开某位置到重新回到该位置的过程为一次全振动过程(×) 3.振子完成一次全振动的路程等于振幅的4倍(√) 二、简谐运动的表达式┄┄┄┄┄┄┄┄②简谐运动的一般表达式为:x =Asin(ωt+φ)。
1.x 表示振动物体相对于平衡位置的位移。
2.A 表示简谐运动的振幅。
3.ω是一个与频率成正比的量,称做简谐运动的圆频率,表示简谐运动振动的快慢,ω=2πT =2πf。
4.(ωt+φ)代表简谐运动的相位,φ表示t =0时的相位,叫做初相。
[说明]1.相位差是指两个相位之差,在实际应用中经常用到的是两个具有相同频率的简谐运动的相位差,设其初相位分别为φ1和φ2,其相位差Δφ=(ωt+φ2)-(ωt+φ1)=φ2-φ1,它反映出两个简谐运动的步调差异。
(1)同相:表明两个振动物体步调相同,相差位Δφ=0。
高中物理知识点总结-简谐运动
简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.。
简谐运动的描述知识集结知识元简谐运动的振幅、周期和频率知识讲解2.相关物理量:①振幅A:振动物体离开平衡位置的最大距离。
②周期T:做简谐运动的物体完成一次全振动所需要的时间。
③频率f:单位时间内完成全振动的次数。
④相位:描述周期性运动在各个时刻所处的不同状态。
3.受力特征:①做简谐运动的质点受到的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,通常将这种力称为回复力。
②回复力:F=-kx③若质点受到的回复力为F=-kx,则质点的运动为简谐运动。
4.运动特征位移x:方向始终背离平衡位置,每经过平衡位置位移方向发生改变;远离平衡位置时位移增大,靠近平衡位置时位移减小。
速度v:每经过最大距离处速度方向发生改变,远离平衡位置时速度方向和位移方向相同,靠近平衡位置时速度方向和位移方向相反。
加速度,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动.在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
5.振动能量简谐运动过程中动能和势能相互转化,机械能守恒.振动能量与振幅有关,振幅越大,能量越大。
6.周期性:简谐运动是一种复杂的非匀变速运动,要结合牛顿运动定律、动量定理、动能定理、机械能守恒定律来分析解决简谐运动的问题。
(1)简谐运动的对称性:振动物体在振动的过程中,在关于平衡位置对称的位置上,描述物体振动状态的物理量(位移、速度、加速度、动量、动能、势能等)大小相等。
(2)简谐运动的周期性:振动物体完成一次全振动(或振动经过一个周期),描述物体振动状态的物理量(位移、速度、加速度、动量、动能、势能等)又恢复到和原来一样。
简谐运动的周期是由振动系统的特性决定的,与振幅无关。
弹簧振子的周期只决定于弹簧的劲度系数和振子的质量,与其放置的环境和方式无关。
例题精讲简谐运动的振幅、周期和频率例1.如图所示,一质点在x轴上以O为平衡位置做简谐运动,其振幅为8cm,周期为4s。
t=0时物体在x=4cm处,向x轴负方向运动,则()A.质点在t=1.0s时所处的位置为x=+4cmB.质点在t=1.0s时所处的位置为x=-4cmC.由起始位置运动到x=-4cm处所需的最短时间为sD.由起始位罝运动到x=-4cm处所需的最短时间为s例2.如图所示,一质点在平衡位置O点附近做简谐运动,若从质点通过O点时开始计时,经过0.9s质点第一次通过M点,再继续运动,又经过0.6s质点第二次通过M点,该质点第三次通过M点需再经过的时间可能是()A.1s B.1.2s C.2.4s D.4.2s例3.如图1所示,弹簧振子以O点为平衡位置,在A、B两点之间做简谐运动。
2 简谐运动的描述一、描述简谐运动的物理量 1.振幅振动物体在振动过程中离开平衡位置的最大距离叫作振动的振幅.振幅是标量,用A 表示,单位是米(m).振幅是反映振动强弱的物理量,振幅越大表示振动越强.2.周期和频率做简谐运动的物体完成一次全振动所需要的时间叫作振动的周期.单位时间内完成全振动的次数叫作振动的频率.周期和频率都是表示物体振动快慢的物理量.它们的关系是T =1/f .在国际单位制中,周期的单位是秒.频率的单位是赫兹,1 Hz =1 s -1.3.相位用来描述周期性运动的物体在各个时刻所处的不同状态的物理量. 二、简谐运动的表达式简谐运动的正弦函数表达式可以写成x =A sin(ωt +φ).其中A 代表简谐运动的振幅;ω叫作简谐运动的“圆频率”,它与周期的关系是ω=2πT.它和周期、频率都表示简谐运动的快慢;ωt +φ代表简谐运动的相位,其中φ称为初相位.从简谐运动的正弦函数表达式中,我们知道(ωt +φ)表示相位,你能据此表达式导出相位的单位吗?提示:由ω=2πT 及ωt +φ知ωt +φ=2πT t +φ,其中φ表示角度,2πTt 也表示角度,所以其单位应为角度的单位——弧度.考点一描述简谐运动的物理量1.振幅说明:振幅的两倍(2A)表示振动物体的运动X围,如上图所示.振幅、位移和路程的关系振幅位移路程定义振动物体离开平衡位置的最大距离从平衡位置指向振子所在位置的有向线段运动轨迹的长度矢、标性标量矢量标量变化在稳定的振动系统中不发生变化大小和方向随时间做周期性变化随时间增加联系①振幅等于最大位移的大小;②振子在一个周期内的位移等于零,在一个周期内的路程等于4个振幅,在半个周期内的路程等于2个振幅1在一个稳定的振动系统中,振幅是不变的,它与振动系统的周期频率或质点的位移无关.2振幅是标量,它没有负值,也无方向,它等于振子最大位移的大小,却不是最大位移.2.全振动(1)如图,如果从振子向右通过O点的时刻开始计时,它将运动到M,然后向左回到O,又继续向左运动到达M′,之后又向右回到O.这样一个完整的振动过程称为一次全振动.若从图中P0点向右运动开始计时,经历的一次全振动应为P0→M→P0→O→M′→O→P0.(2)全振动的等时性:不管以哪里作为开始研究的起点,弹簧振子完成一次全振动的时间总是相同的.(3)对一次全振动的认识对做简谐运动的物体,某一阶段的振动是否为一次全振动,可以从以下两个角度判断:①从物体经过某点时的特征物理量看,如果物体的位移和速度都回到原值(大小、方向与初始状态完全相同),即物体完成了一次全振动.②看物体在这段时间内通过的路程是否等于振幅的四倍.3.周期【拓展延伸】简谐运动的周期与什么因素有关?简谐运动的周期公式:T=2πm k .公式中m为做简谐运动物体的质量,k为做简谐运动物体受到的合外力跟位移大小的比值.(特例:水平方向的弹簧振子,k指弹簧的劲度系数)4.频率(1)单位时间内完成全振动的次数,叫作振动的频率,用f表示.(2)单位:在国际单位制中,频率的单位是赫兹(Hz).(3)意义:频率是表示物体振动快慢的物理量.频率越大,表示振动得越快;频率越小,表示振动得越慢.(4)频率与周期的关系:T=1 f .(1)简谐运动的频率(周期)由振动系统本身的因素决定,与振幅和其他因素无关,因此又称固有频率(周期).(2)简谐运动的频率不是用来描述振动物体某时刻运动快慢的物理量,而是用来描述完成一次全振动快慢的物理量.简谐运动的振幅和周期(频率)分别表示振动的强弱和快慢,各自是独立的,即振动的强弱与振动的快慢没有关系.或者说:周期(频率)与振幅无关.5.相位在物理学中,我们用不同的相位来描述周期性运动在各个时刻所处的不同状态.【例1】如右图所示,弹簧振子以O为平衡位置在BC间做简谐运动,则( )A.从B→O→C为一次全振动B.从O→B→O→C为一次全振动C.从C→O→B→O→C为一次全振动D.从D→C→O→B→O为一次全振动【审题指导】思路1:全振动的意义是什么?物体完成一次全振动时,一定回到了初位置,且以与原来相同的速度回到初位置.思路2:全振动中路程与振幅有固定关系,即一次全振动通过的路程是振幅的4倍.【解析】一次全振动不是必须从平衡位置开始计时,只要再次同向经过某一位置,就完成了一次全振动,运动时间就是一个周期,运动的路程为4个振幅.【答案】 C(多选)如图,弹簧振子在BC间做简谐运动,O为平衡位置,B、C间距离是10 cm,B→C 运动时间是1 s,则( CD )A.振动周期是1 s,振幅是10 cmB.从B→O→C振子做了一次全振动C.经过两次全振动,通过的路程是40 cmD.从B开始运动经过3 s,振子通过的路程是30 cm解析:明确描述振动的物理量,弄清它们之间的关系是解题的关键.由题,BC间距离为10 cm,则振幅A=5 cm,B→C运动时间为1 s,则周期T=2 s.故A错误;从B→O→C,振子通过的路程是两个振幅,不是一次全振动,B错误;经过两次全振动,通过的路程s=8A=40 cm,C正确;从B开始经过3 s,振子振动了1.5个周期,通过的路程s=1.5×4A=30 cm,故D正确.【例2】一质点在平衡位置O附近做简谐运动,从它经过平衡位置起开始计时,经0.13 s质点第一次通过M点,再经0.1 s第二次通过M点,则质点振动周期的值为多少?【审题指导】由于振动的往复性,质点经过某一位置时因速度方向不确定会导致多解.【解析】 将物理过程模型化,画出具体情景.设质点从平衡位置O 向右运动到M 点,那么质点从O 点到M 点运动时间为0.13 s ,再由M 点经最右端A 点返回M 点经历时间为0.1 s ,如图甲、乙所示.根据以上分析,可以看出从O →M →A 历时0.18 s ,根据简谐运动的对称性,可得到T 1=4×0.18 s=0.72 s.另一种可能如图丙所示,由O →A →M 历时t 1=0.13 s ,由M →A ′历时t 2=0.05 s ,则34T 2=t 1+t 2,故T 2=43(t 1+t 2)=0.24 s ,所以周期的可能值为0.72 s 和0.24 s.【答案】 0.72 s 或0.24 s一弹簧振子做简谐运动,周期为T ,则( C )A .若t 时刻和(t +Δt )时刻振子运动位移的大小相等、方向相同,则Δt 一定等于T 的整数倍B .若t 时刻和(t +Δt )时刻振子运动速度的大小相等、方向相反,则Δt 一定等于T2的整数倍C .若Δt =T ,则在t 时刻和(t +Δt )时刻振子运动的加速度一定相等D .若Δt =T2,则在t 时刻和(t +Δt )时刻弹簧的长度一定相等解析:弹簧振子做简谐运动的图像如图所示,图中A 点与B 、E 、F 、I 等点的振动位移大小相等,方向相同.由图可知,A 点与E 、I 等点对应的时间差为T 或T 的整数倍,A 点与B 、F 等点对应的时间差不为T 或T 的整数倍,因此A 选项不正确.图中A 点跟B 、C 、F 、G 等点的振动速度大小相等,方向相反,由图可知A 点与C 、G 等点对应的时间差为T 2或T 2的整数倍,A 点与B 、F 等点对应的时间差不为T 2或T2的整数倍,因此B选项不正确.如果t 时刻和(t +Δt )时刻相差一个周期T ,则这两个时刻的振动情况完全相同,加速度一定相等,选项C 正确.如果t 时刻和(t +Δt )时刻相差半个周期,则这两个时刻振动的位移大小相等,方向相反,弹簧的长度显然是不相等的,选项D 也不正确.考点二 简谐运动的表达式1.简谐运动的表达式:x =A sin(ωt +φ).(1)式中x 表示振动质点相对于平衡位置的位移,t 表示振动的时间. (2)A 表示振动质点偏离平衡位置的最大距离,即振幅.(3)ω称为简谐运动的圆频率,它也表示做简谐运动的物体振动的快慢.ω与周期T 及频率f 的关系为ω=2πT=2πf .所以简谐运动的表达式也可写成:x =A sin(2πTt +φ)或x =A sin(2πft +φ).(4)φ表示t =0时,简谐运动的质点所处的状态,称为初相位或初相.(5)(ωt +φ)代表了简谐运动的质点在t 时刻处在一个运动周期中的哪个状态,所以代表简谐运动的相位.2.相位差(1)相位差是指两个相位之差,在实际应用中经常用到的是两个具有相同频率的简谐运动的相位差,它反映出两个简谐运动的步调差异.设两频率相同的简谐运动的振动方程分别为x 1=A 1sin(ωt +φ1),x 2=A 2sin(ωt +φ2), 它们的相位差Δφ=(ωt +φ2)-(ωt +φ1)=φ2-φ1.可见,其相位差恰好等于它们的初相之差,因为初相是确定的,所以频率相同的两个简谐运动有确定的相位差.(2)若Δφ=φB -φA >0,则称B 的相位比A 的相位超前Δφ或A 的相位比B 的相位落后Δφ;若Δφ=φB -φA <0,则称B 的相位比A 的相位落后Δφ或A 的相位比B 的相位超前Δφ.1在比较相位或计算相位差时,一定要用同种函数来表示振动方程.2相位差的取值X 围:-π≤φ≤π;相位每增加2π就意味着完成了一次全振动.【例3】 (多选)物体A 做简谐运动的振动位移x A =3sin ⎝ ⎛⎭⎪⎫100t +π2 m ,物体B 做简谐运动的振动位移x B =5sin ⎝⎛⎭⎪⎫100t +π6 m .比较A 、B 的运动( )A .振幅是矢量,A 的振幅是6 m ,B 的振幅是10 m B .周期是标量,A 、B 周期相等为100 sC .A 振动的频率f A 等于B 振动的频率f BD .A 的相位始终超前B 的相位π3【审题指导】1.振动位移公式x =A sin(ωt +φ),各物理量分别表示什么? 2.振动的超前、落后由什么物理量决定?【解析】 振幅是标量,A 、B 的振动X 围分别是6 m 、10 m ,但振幅分别为3 m 、5 m .A 错.A 、B 振动的周期T =2πω=2π100s =6.28×10-2s ,B 错;因T A =T B ,故f A =f B ,C 对;Δφ=φA -φB =π3为定值,D 对,故选C 、D.应用简谐运动的表达式解决相关问题时,首先明确振幅A 、周期T 、频率f 的对应数值,其中T =2πω,f =ω2π;然后把确定的物理量与所要求解的问题相对应,找到关系.【答案】 CD某质点做简谐运动,其位移随时间变化的关系式为x =10sin ⎝ ⎛⎭⎪⎫π4t cm ,则下列关于质点运动的说法中正确的是( C )A .质点做简谐运动的振幅为5 cmB .质点做简谐运动的周期为4 sC .在t =4 s 时质点的速度最大D .在t =4 s 时质点的位移最大解析:由x =10sin ⎝ ⎛⎭⎪⎫π4t cm 可知,A =10 cm ,ω=2πT =π4 rad/s ,得T =8 s .t =4 s 时,x =0,说明质点在平衡位置,此时质点的速度最大、位移为0,所以只有选项C 正确.学科素养提升 振幅与位移和路程的关系1.振动的振幅与振动的位移(1)振幅是振动物体离开平衡位置的最大距离;位移是物体相对于平衡位置的位置变化. (2)振幅是表示振动强弱的物理量,在同一简谐运动中振幅是不变的,但位移却时刻变化.(3)振幅是标量,位移是矢量.(4)振幅在数值上等于最大位移的绝对值. 2.振幅与路程的关系(1)振动物体在一个周期内的路程一定为四个振幅. (2)振动物体在半个周期内的路程一定为两个振幅.(3)振动物体在14T 内的路程可能等于一个振幅,可能大于一个振幅,还可能小于一个振幅.只有当14T 的初时刻振动物体在平衡位置或最大位移处,14T 内的路程才等于一个振幅.【典例】 如图所示,将弹簧振子从平衡位置拉下一段距离Δx ,释放后振子在A 、B 间振动,且AB =20 cm ,振子首次由A 到B 的时间为0.1 s ,求:(1)振子振动的振幅、周期和频率; (2)振子由A 到O 的时间;(3)振子在5 s 内通过的路程及偏离平衡位置的位移大小. 【解析】 (1)由题图可知,振子振动的振幅为10 cm ,t =0.1 s =T2,所以T =0.2 s.由f =1T得f =5 Hz.(2)根据简谐运动的对称性可知,振子由A 到O 的时间与振子由O 到B 的时间相等,均为0.05 s.(3)设弹簧振子的振幅为A ,则A =10 cm.振子在1个周期内通过的路程为4 A ,故在t =5 s =25T 内通过的路程s =25×40 cm=1 000 cm.5 s 内振子振动了25个周期,5 s 末振子仍处在A 点,所以振子偏离平衡位置的位移大小为10 cm.【答案】 (1)10 cm 0.2 s 5 Hz (2)0.05 s(3)1 000 cm10 cm求路程时,首先应明确振动过程经过几个整数周期,得到这几个周期内的路程,再分析最后不到一个周期的时间内的路程,两部分之和即为总的路程,振子在14周期内的路程可能等于一个振幅,也可能大于一个振幅,还可能小于一个振幅,只有从平衡位置或最大位移处开始运动,14周期内的路程才等于一个振幅.1.如图所示是一质点做简谐运动的振动图像,下列说法正确的是( C )A .t 1至t 2时刻质点完成一次全振动B .t 1至t 3时刻质点完成一次全振动C .t 1至t 4时刻质点完成一次全振动D .t 2至t 4时刻质点完成一次全振动解析:一次全振动结束,各物理量刚好回到本次全振动开始时的值,从图像上来看,刚好完成一次周期性变化,所以只有t 1~t 4时间对应一次全振动.2.(多选)振动周期是指振动物体( CD )A .从任一个位置出发又回到这个位置所用的时间B .从一侧最大位移处运动到另一侧最大位移处所用的时间C .从某一位置出发又沿同一运动方向回到这个位置所用的时间D .经历了四个振幅的时间解析:振子经历一个振动周期,速度的大小和方向又完全恢复到初始状态,振子运动的路程为四倍振幅.3.(多选)一个质点做简谐运动,质点每次经过同一位置时,下列物理量一定相同的是( BCD )A .速度B .加速度C .动能D .位移解析:质点做简谐运动,每次经过同一位置时,它的位移、加速度、动能一定相同;而速度大小相同,方向不一定相同.所以B 、C 、D 选项正确.4.一质点做简谐运动的位移—时间图线如图所示.关于此质点的振动,下列说法中正确的是( D )A .质点做简谐运动的表达式为x =10sin(πt ) cmB .在0.5~1.0 s 时间内,质点向x 轴正向运动C .在1.0~1.5 s 时间内,质点的动能在增大D .在1.0~1.5 s 时间内,质点的加速度在增大解析:本题考查简谐振动.由图像可知,质点振幅为5 cm ,振动周期T =2.0 s ,则ω=2πT=π.因此,振动方程为x =5sin(πt )cm ;0.5~1.0 s 时间内,质点向x 轴负向运动;1.0~1.5 s 时间内,质点由平衡位置向x 轴负向运动,速度逐渐减小,动能逐渐减小,加速度逐渐增大.选项A 、B 、C 错误,D 正确.5.一个简谐运动的振动方程为x =5sin(2πt +π2) cm ,这个振动的振幅是5 cm ;频率是1 Hz ;在t =0.1 s 时的相位是7π10;在1 s 的时间内振子通过的路程是20 cm. 解析:振幅可直接由表达式读出,A =5 cm ,圆频率ω=2π,由ω=2πf 知其频率f =1 Hz.t =0.1 s 时,2πt +π2=0.2π+π2=710π,即相位为710π,因为f =1 Hz ,则T =1f =1 s ,故1 s 内通过的路程s =4A =4×5 cm=20 cm.。
简谐运动的描述
一、描述简谐运动的物理量 1.振幅
(1)定义:振动物体离开平衡位置的最大距离,用A 表示。
(2)物理意义:表示振动的强弱,是标量。
2.全振动
图11-2-1
类似于O →B →O →C →O 的一个完整振动过程。
3.周期(T )和频率(f )
描述周期性运动在各个时刻所处的不同状态。
二、简谐运动的表达式
简谐运动的一般表达式为x =A sin(ωt +φ) 1.x 表示振动物体相对于平衡位置的位移。
2.A 表示简谐运动的振幅。
3.ω是一个与频率成正比的量,表示简谐运动的快慢,ω=2π
T =2πf 。
4.ωt +φ代表简谐运动的相位,φ表示t =0时的相位,叫做初相。
1.对全振动的理解
(1)全振动的定义:振动物体以相同的速度相继通过同一位置所经历的过程,叫作一次全振动。
(2)全振动的四个特征:
①物理量特征:位移(x )、加速度(a )、速度(v )三者第一次同时与初始状态相同。
②时间特征:历时一个周期。
③路程特征:振幅的4倍。
④相位特征:增加2π。
2.简谐运动中振幅和几个物理量的关系
(1)振幅和振动系统的能量:对一个确定的振动系统来说,系统能量仅由振幅决定。
振幅越大,振动系统的能量越大。
(2)振幅与位移:振动中的位移是矢量,振幅是标量。
在数值上,振幅与振动物体的最大位移相等,但在同一简谐运动中振幅是确定的,而位移随时间做周期性的变化。
(3)振幅与路程:振动中的路程是标量,是随时间不断增大的。
其中常用的定量关系是:一个周期内的路程为4倍振幅,半个周期内的路程为2倍振幅。
(4)振幅与周期:在简谐运动中,一个确定的振动系统的周期(或频率)是固定的,与振幅无关。
做简谐运动的物体位移x 随时间t 变化的表达式: x =A sin(ωt +φ)
(1)x :表示振动质点相对于平衡位置的位移。
(2)A :表示振幅,描述简谐运动振动的强弱。
(3)ω:圆频率,它与周期、频率的关系为ω=2π
T =2πf 。
可见ω、T 、f 相当于一个量,描述的都是振动的快慢。
(4)ωt +φ:表示相位,描述做周期性运动的物体在各个不同时刻所处的不同状态,是描述不同振动的振动步调的物理量。
它是一个随时间变化的量,相当于一个角度,相位每增加2π,意味着物体完成了一次全振动。
(5)φ:表示t =0时振动质点所处的状态,称为初相位或初相。
(6)相位差:即某一时刻的相位之差。
两个具有相同ω的简谐运动,设其初相分别为φ1
和φ2,其相位差Δφ=(ωt +φ2)-(ωt +φ1)=φ2-φ1。
当Δφ=0时,两振动物体的振动步调一致. 当Δφ=π时,两振动物体的振动步调完全相反.
当堂达标
1、质点沿x 轴做简谐运动,平衡位置为坐标原点O 。
质点经过a 点(x a =-5 cm)和b 点(x b
=5 cm)时速度相同,时间t ab =0.2 s ;此时质点再由b 点回到a 点所用的最短时间t ba =0.4 s ;则该质点做简谐运动的频率为( )
A .1 Hz
B .1.25 Hz
C .2 Hz
D .2.5 Hz
2、一个质点做简谐运动,振幅是4 cm ,频率为2.5 Hz ,该质点从平衡位置起向正方向运动,经2.5 s ,质点的位移和路程分别是( )
A .4 cm 、24 cm
B .-4 cm 、100 cm
C .0、100 cm
D .4 cm 、100 cm
3、有一弹簧振子,振幅为0.8 cm ,周期为0.5 s ,初始时具有负方向的最大加速度,则它的振动方程是( )
A .x =8×10-
3sin ⎝⎛⎭⎫4πt +π2m B .x =8×10-
3sin ⎝⎛⎭⎫4πt -π2m C .x =8×10-
1sin ⎝⎛⎭⎫πt +3π2m D .x =8×10-
1sin ⎝⎛⎭⎫π4t +π2m
4、物体做简谐运动,其图像如图1所示,在t 1和t 2两时刻,物体的( ) A .相位相同 B .位移相同 C .速度相同 D .加速度相同
5、(多选)一个弹簧振子的振幅是A ,若在Δt 的时间内物体运动的路程是s ,则下列关系中可能正确的是(包括一定正确的)( )
A .Δt =2T ,s =8A
B .Δt =T
2,s =2A
C .Δt =T
4
,s =2A
D .Δt =T
4
,s >A
6、有一个在光滑水平面内的弹簧振子,第一次用力把弹簧压缩x 后释放让它振动,第
二次把弹簧压缩2x 后释放让它振动,则先后两次振动的周期之比和振幅之比分别为( )
A .1∶1 1∶1
B .1∶1 1∶2
C .1∶4 1∶4
D .1∶2 1∶2
7、(多选)如图3所示,轻弹簧上端固定,下端连接一小物块,物块沿竖直方向做简谐运动。
以竖直向上为正方向,物块简谐运动的表达式为y =0.1sin(2.5πt )m 。
t =0时刻,一小球从距物块h 高处自由落下;t =0.6 s 时,小球恰好与物块处于同一高度。
取重力加速度的大小g =10 m/s 2。
以下判断正确的是( )
A .h =1.7 m
B .简谐运动的周期是0.8 s
C .0.6 s 内物块运动的路程为0.2 m
D .t =0.4 s 时,物块与小球运动方向相反 8、多选)一水平弹簧振子做简谐运动,周期为T ,则( )
A .振子的位移为x 和-x 的两个时刻,振子的速度一定大小相等,方向相反
B .振子的速度为v 和-v 的两个时刻,振子的位移一定大小相等,方向可能相同
C .若Δt =T ,则在t 时刻和(t +Δt )时刻振子振动的速度一定相等
D .若Δt =T
2
,则在t 时刻和(t +Δt )时刻弹簧的长度一定相等
9、多选)一个质点做简谐运动的图象如图5所示,下列叙述中正确的是
( )
A .质点的振动频率为4 Hz
B .在10 s 内质点经过的路程为20 cm
C .在5 s 末,质点做简谐运动的相位为3
2
π
D .t =1.5 s 和t =4.5 s 两时刻质点的位移大小相等,都是 2 cm
10、一弹簧振子做简谐运动,周期为T ( )
A .若t 时刻和(t +Δt )时刻振子运动速度、位移的大小相等、方向相反,则Δt 一定等于
T
2的奇数倍
B .若t 时刻和(t +Δt )时刻振子运动位移的大小相等、方向相同,则Δt 一定等于T 的整数倍
C .若Δt =T
2,则在t 时刻和(t +Δt )时刻弹簧的长度一定相等
D .若Δt =T
2,则在t 时刻和(t +Δt )时刻弹簧的长度可能相等
E .若Δt =T ,则在t 时刻和(t +Δt )时刻振子运动的加速度一定相等。