11-12学年高中数学 1.7 定积分的简单应用同步练习 新人教A版选修2-2
- 格式:doc
- 大小:412.00 KB
- 文档页数:7
1.7.2 定积分在物理中的应用[学习目标]1.能利用定积分解决物理中的变速直线运动的路程、变力做功问题.2.通过定积分在物理中的应用,学会用数学工具解决物理问题,进一步体会定积分的价值. [知识链接]下列判断正确的是________.(1)路程是标量,位移是矢量,路程和位移是两个不同的概念; (2)利用定积分求变速直线运动的路程和位移是同一个式子⎠⎛t 1t 2v (t )d t ;(3)利用定积分求变速直线运动的路程和位移不是同一个式子⎠⎛t 1t 2v (t )d t .答案 (1)(3)解析 (1)显然正确.对于(2),(3)两个判断,由于当v (t )≥0时,求某一时间段内的路程和位移均用⎠⎛t 1t 2v (t )d t 求解;当v (t )<0时,求某一时间段内的位移用⎠⎛t 1t 2v (t )d t 求解,这一时段的路程是位移的相反数,即路程为 -⎠⎛t 1t 2v (t )d t .所以(2)错(3)正确. [预习导引]1.在变速直线运动中求路程、位移路程是位移的绝对值之和,从时刻t =a 到时刻t =b 所经过的路程s 和位移s ′分别为: (1)若v (t )≥0,则s =⎠⎛a b v (t )d t ,s ′=⎠⎛ab v (t )d t .(2)若v (t )≤0,则s =-⎠⎛a b v (t )d t ,s ′=⎠⎛ab v (t )d t .(3)若在区间[a ,c ]上,v (t )≥0,在区间[c ,b ]上v (t )<0, 则s =⎠⎛a c v (t )d t -⎠⎛c b v (t )d t ;s ′=⎠⎛ab v (t )d t .2.定积分在物理中的应用(1)做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即s =⎠⎛ab v (t )d t .(2)一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s (单位:m),则力F 所作的功为W =Fs ;而若是变力所做的功W ,等于其力函数F (x )在位移区间[a ,b ]上的定积分,即W =⎠⎛ab F (x )d x .要点一 求变速直线运动的路程、位移例1 有一动点P 沿x 轴运动,在时间t 时的速度为v (t )=8t -2t 2(速度的正方向与x 轴正方向一致).求(1)P 从原点出发,当t =6时,求点P 离开原点的路程和位移; (2)P 从原点出发,经过时间t 后又返回原点时的t 值.解 (1)由v (t )=8t -2t 2≥0得0≤t ≤4,即当0≤t ≤4时,P 点向x 轴正方向运动,当t >4时,P 点向x 轴负方向运动. 故t =6时,点P 离开原点的路程 s 1=⎠⎛04(8t -2t 2)d t -⎠⎛46(8t -2t 2)d t=⎝⎛⎭⎫4t 2-23t 3⎪⎪⎪40-⎝⎛⎭⎫4t 2-23t 3⎪⎪⎪64=1283. 当t =6时,点P 的位移为⎠⎛06(8t -2t 2)d t =⎝⎛⎭⎫4t 2-23t 3⎪⎪⎪60=0. (2)依题意⎠⎛0t (8t -2t 2)d t =0,即4t 2-23t 3=0,解得t =0或t =6,t =0对应于P 点刚开始从原点出发的情况, t =6是所求的值.规律方法 (1)用定积分解决变速直线运动的位移和路程问题时,将物理问题转化为数学问题是关键.(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间,然后分别计算,否则会出现计算失误.跟踪演练1 变速直线运动的物体的速度为v (t )=1-t 2,初始位置为x 0=1,求它在前2秒内所走的路程及2秒末所在的位置.解 当0≤t ≤1时,v (t )≥0,当1≤t ≤2时,v (t )<0.所以前2秒钟内所走的路程 s =⎠⎛01v (t )d t +⎠⎛12[-v (t )]d t=⎠⎛01(1-t 2)d t +⎠⎛12(t 2-1)d t=⎝⎛⎭⎫t -13t 3⎪⎪⎪10+⎝⎛⎭⎫13t 3-t ⎪⎪⎪21=2. 2秒末所在的位置x 1=x 0+⎠⎛02v (t )d t =1+⎠⎛02(1-t 2)d t=1+⎝⎛⎭⎫t -t 33⎪⎪⎪20 =1+2-83=13.它在前2秒内所走的路程为2, 2秒末所在的位置为x 1=13.要点二 求变力所作的功例2 在底面积为S 的圆柱形容器中盛有一定量的气体,在等温条件下,由于气体的膨胀,把容器中的一个活塞(面积为S )从点a 处推到b 处,计算在移动过程中,气体压力所做的功. 解 由物理学知识易得,压强p 与体积V 的乘积是常数k ,即pV =k . ∵V =xS (x 指活塞与底的距离),∴p =k V =k xS .∴作用在活塞上的力F =p ·S =k xS ·S =kx .∴所做的功W =⎠⎛a b kx d x =k ·ln x ⎪⎪ba =k ln ba . 规律方法 解决变力作功注意以下两个方面:(1)首先要将变力用其方向上的位移表示出来,这是关键的一步. (2)根据变力作功的公式将其转化为求定积分的问题.跟踪演练2 设有一长为25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm ,求使弹簧伸长到40 cm 所做的功.解 设以x 表示弹簧伸长的厘米数,F (x )表示加在弹簧上的力,则F (x )=kx . 依题意,使弹簧伸长5 cm ,需力100 N ,即100=5k ,所以k =20,于是F (x )=20x . 所以弹簧伸长到40 cm 所做的功即计算由x =0到x =15所做的功:W =∫15020x d x =10x2⎪⎪⎪15=2 250(N·cm).1.从空中自由下落的物体,在第一秒时刻恰经过电视塔顶,在第二秒时刻物体落地,已知自由落体的运动速度为v =gt (g 为常数),则电视塔高为( ) A.52g B .72gC .32gD .2g答案 C解析 h =⎠⎛12gt d t =12gt 2⎪⎪21=32g .2.一列车沿直线轨道前进,刹车后列车速度v (t )=27-0.9t ,则列车刹车后前进多少米才能停车 ( )A .405B .540C .810D .945答案 A解析 停车时v (t )=0,由27-0.9t =0,得t =30,∴s =∫300v (t )d t =∫300(27-0.9t )d t =(27t -0.45t 2)⎪⎪30=405.3.(2013·湖北)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ) A .1+25ln 5 B .8+25ln 113C .4+25ln 5D .4+50ln 2答案 C解析 由v (t )=7-3t +251+t =0,解得t =4(t =-83舍去),所以所求的路程为⎠⎛04⎝⎛⎭⎫7-3t +251+t d t =⎪⎪⎝⎛⎭⎫7t -32t 2+25 ln (1+t )40=4+25ln 5,选C.4.一个弹簧压缩x cm 可产生4x N 的力,把它从自然长度压缩到比自然长度短5 cm ,求弹簧克服弹力所做的功.解 设F (x )=kx ,因为弹簧压缩x cm 可产生4x N 的力,∴k =4. ∴弹簧克服弹力所做的功为W =4⎠⎛05x d x =4×⎪⎪⎝⎛⎭⎫12x 250=50(N·cm)=0.5(J).1.已知变速运动方程,求在某段时间内物体运动的位移或者经过的路程,就是求速度方程的定积分.解这类问题需注意三点:(1)分清运动过程中的变化情况;(2)如果速度方程是分段函数,那么要用分段的定积分表示;(3)明确是求位移还是求路程,求位移可以正负抵消,求路程不能正负抵消.2.利用定积分求变力做功问题,关键是求出变力与位移之间的函数关系,确定好积分区间.求变力做功时,要注意单位,F (x )单位:N ,x 单位:m.一、基础达标1.一物体沿直线以v =2t +1 (t 的单位:s ,v 的单位:m/s)的速度运动,则该物体在1~2 s 间行进的路程为( ) A .1 m B .2 m C .3 m D .4 m答案 D解析 s =⎪⎪⎠⎛12(2t +1)d t =(t 2+t )21=4(m).2.一物体从A 处向B 处运动,速度为1.4t m/s(t 为运动的时间),到B 处时的速度为35 m/s ,则AB 间的距离为( ) A .120 m B .437.5 m C .360 m D .480 m答案 B解析 从A 处到B 处所用时间为25 s .所以|AB |= |∫2501.4t d t =0.7t 2250=437.5 (m).3.以初速度40 m/s 竖直向上抛一物体,t s 时速度v =40-10t 2,则此物体达到最高时的高度为( ) A.1603 m B .803 mC .403 mD .203m答案 A解析 v =0时物体达到最高, 此时40-10t 2=0,则t =2 s. 又∵v 0=40 m/s ,∴t 0=0 s.∴h =⎠⎛02(40-10t 2)d t =⎪⎪⎝⎛⎭⎫40t -103t 320=1603(m).4.如果1 N 的力使弹簧伸长1 cm ,在弹性限度内,为了将弹簧拉长10 cm ,拉力所做的功为( ) A .0.5 J B .1 J C .50 J D .100 J答案 A解析 由于弹簧所受的拉力F (x )与伸长量x 成正比,依题意,得F (x )=x ,为了将弹簧拉长10 cm ,拉力所做的功为W =∫100F (x )d x =∫100x d x =⎪⎪12x 2100=50 (N·cm)=0.5 (J). 5.汽车以每小时32 km 的速度行驶,到某处需要减速停车,设汽车以加速度a =-1.8 m/s 2刹车,则从开始刹车到停车,汽车所走的路程约为________. 答案 21.95 m解析 t =0时,v 0=32 km/h =32×1 0003 600m/s =809 m/s.刹车后减速行驶,v (t )=v 0+at =809-1.8t .停止时,v (t )=0,则809-1.8t =0,得t =40081 s ,所以汽车所走的距离s =∫400810v (t )d t =⎪⎪⎝⎛⎭⎫809t -12t 2×1.8400810≈21.95(m).6.有一横截面的面积为4 cm 2的水管控制往外流水,打开水管后t 秒末的流速为v (t )=6t -t 2(单位:cm/s)(0≤t ≤6).则t =0到t =6这段时间内流出的水量为________. 答案 144 cm 3解析 由题意可得t =0到t =6这段时间内流出的水量V =⎠⎛064(6t -t 2)d t =4⎪⎪⎪⎠⎛06(6t -t 2)d t =4⎝⎛⎭⎫3t 2-13t 360=144 (cm 3).故t =0到t =6这段时间内流出的水量为144 cm 3. 7.一物体做变速直线运动,其v -t 曲线如图所示,求该物体在12s ~6 s 间的运动路程.解 由题意,得 v (t )=⎩⎪⎨⎪⎧2t (0≤t ≤1),2(1≤t ≤3),13t +1(3≤t ≤6),由变速直线运动的路程公式,可得:s =错误!v (t )d t =错误!2t d t +错误!2d t +错误!错误!d t =t 2⎪⎪⎪⎪⎪⎪112+2t 31+⎪⎪⎝⎛⎭⎫16t 2+t 63=494(m).所以该物体在12s ~6 s 间的运动路程是494 m.二、能力提升8.一物体在力F (x )=⎩⎪⎨⎪⎧10(0≤x ≤2)3x +4(x >2)(单位:N)的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为( ) A .44 J B .46 J C .48 J D .50 J答案 B解析 W =⎠⎛04F (x )d x =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x ⎪⎪⎪⎪20+⎝⎛⎭⎫32x 2+4x 42=46(J).9.做直线运动的质点在任意位置x 处,所受的力F (x )=1+e x ,则质点沿着与F (x )相同的方向,从点x 1=0处运动到点x 2=1处,力F (x )所做的功是( ) A .1+e B .e C .1eD .e -1答案 B解析 W =⎠⎛01F (x )d x =⎪⎪⎠⎛01(1+e x )d x =(x +e x)10=(1+e)-1=e. 10.如图所示,将一弹簧从平衡位置拉到离平衡位置l m 处,则克服弹簧力所做的功为________.答案 12kl 2(J)解析 在弹性限度内,拉伸(压缩)弹簧所需的力与弹簧拉伸(压缩)的长度成正比,即F (x )=kx ,其中k 为比例系数.由变力做功公式得W =⎪⎪⎪⎠⎛0l kx d x =12kx 2l 0=12kl 2(J). 11.一物体按规律x =bt 3作直线运动,其中x 为时间t 内通过的距离,媒质的阻力正比于速度的平方,试求物体由x =0运动到x =a 时,阻力所做的功.解 物体的速度v =x ′(t )=(bt 3)′=3bt 2,媒质的阻力F 阻=k v 2=k ·(3bt 2)2=9kb 2t 4(其中k 为比例常数,k >0).当x =0时,t =0;当x =a 时,t =⎝⎛⎭⎫a b 13. 所以阻力所做的功为W 阻=⎠⎛0a F 阻d x =∫⎝⎛⎭⎫ab 130k v 2·v d t =∫⎝⎛⎭⎫a b 1309kb 2t 4·3bt 2d t =∫⎝⎛⎭⎫a b 13027kb 3t 6d t =⎪⎪277kb 3t 7⎝⎛⎭⎫a b 130=277kb 23·a 73. 12.物体A 以速度v A =3t 2+1(米/秒)在一直线上运动,同时物体B 也以速度v B =10t (米/秒)在同一直线上与物体A 同方向运动,问多长时间物体A 比B 多运动5米,此时,物体A ,B 运动的距离各是多少?解 依题意知物体A ,B 均作变速直线运动,所以可借助变速直线运动的路程公式求解.设a 秒后物体A 比B 多运动5米,则A 从开始到a 秒末所走的路程为 s A =⎠⎛0a v A d t =⎠⎛0a (3t 2+1)d t =a 3+a ;B 从开始到a 秒末所走的路程为s B =⎠⎛0a v B d t =⎠⎛0a 10t d t =5a 2.由题意得s A =s B +5,即a 3+a =5a 2+5,得a =5. 此时s A =53+5=130(米),s B =5×52=125(米).故5秒后物体A 比B 多运动5米,此时,物体A ,B 运动的距离分别是130米和125米. 三、探究与创新13.A 、B 两站相距7.2 km ,一辆电车从A 站开往B 站,电车开出t s 后到达途中C 点,这一段的速度为1.2t m/s ,到C 点的速度为24 m/s ,从C 点到B 站前的D 点以等速行驶,从D 点开始刹车,经t s 后,速度为(24-1.2t ) m/s ,在B 站恰好停车,试求: (1)A ,C 间的距离; (2)B ,D 间的距离.解 (1)设A 到C 的时间为t 1 s ,则 1.2 t 1=24,解得t 1=20,则AC =∫2001.2t d t =0.6t 2⎪⎪200=240(m ),即A ,C 间的距离为240 m.(2)设D 到B 的时间为t 2 s ,则24-1.2t 2=0, 解得t 2=20,则BD =∫200(24-1.2t )d t =(24t -0.6t 2)⎪⎪20=240(m).即B 、D 间的距离为240 m .。
定积分在几何中的应用课时演练·促提升A组1.如图,阴影部分的面积为()A.9B.C.D.解析:由求得两曲线交点为A(-2,-4),B(1,-1).结合图形可知阴影部分的面积为S=[-x2-(x-2)]d x=(-x2-x+2)d x=.答案:B2.若y=f(x)与y=g(x)是[a,b]上的两条光滑曲线的方程,则这两条曲线及直线x=a,x=b所围成的平面图形的面积为()A.[f(x)-g(x)]d xB.[g(x)-f(x)]d xC.|f(x)-g(x)|d xD.解析:因为f(x),g(x)两条曲线上下位置关系不确定,故选C.答案:C3.已知函数y=x2与y=kx(k>0)的图象所围成的封闭区域的面积为,则k=()A.3B.2C.1D.解析:由消去y得x2-kx=0,所以x=0或x=k,则所求区域的面积为S=(kx-x2)d x=,则k3=27,解得k=3.答案:A4.由曲线y=x2,y=x3围成的封闭图形面积S为()A. B. C. D.解析:作出曲线y=x2,y=x3的草图,所求面积即为图中阴影部分的面积.解方程组得曲线y=x2,y=x3交点的横坐标为x=0及x=1.因此,所求图形的面积为S=(x2-x3)d x=.答案:A5.由曲线y=x2+2与y=3x,x=0所围成的平面图形的面积为()A.4B.3C.2D.1解析:如图,由x2+2=3x,得x=1,或x=2,直线y=3x与抛物线y=x2+2的交点坐标为(1,3),(2,6), 所求的面积为S=(x2+2-3x)d x+(3x-x2-2)d x==1.答案:D6.曲线y=e x,y=e-x及x=1所围成的图形的面积为.解析:作出图形,如图所示.S=(e x-e-x)d x=(e x+e-x)=e+-(1+1)=e+-2.答案:e+-27.由正弦曲线y=sin x,x∈和直线x=π及x轴所围成的平面图形的面积等于.解析:如图,所围成的平面图形(阴影部分)的面积S=|sin x|d x=sin x d x-sin x d x=-cos x+cos x=2+1=3.答案:38.计算由抛物线y2=x与直线x-2y-3=0所围成的平面图形的面积.解法一:由得抛物线与直线的交点为P(1,-1),Q(9,3)(如图所示),所以S=-(-)]d x+d x=2d x+d x===10.解法二:抛物线和直线方程可改写为x=y2,x=2y+3,则S=(2y+3-y2)d y==10.9.计算由曲线y=x2+1,直线x+y=3以及两坐标轴所围成的图形的面积S.解:画出两函数的图象,如图所示:由又直线x+y=3与x轴交于点(3,0),∴S=(x2+1)d x+(3-x)d x==+1+.B组1.曲线y=sin x(0≤x≤π)与直线y=围成的封闭图形的面积为()A. B.2-C.2-D.解析:因为曲线y=sin x(0≤x≤π)与直线y=的交点的横坐标分别为x=及x=,所以所求图形的面积为d x=.答案:D2.由y=x2,y=,y=1所围成的图形的面积为()A. B. C.2 D.1解析:如图,y=1与y=x2交点A(1,1),y=1与y=交点B(2,1),由对称性可知面积S=2.答案:A3.已知函数f(x)=x3+ax2+bx(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为,则a的值为.解析:f'(x)=3x2+2ax+b⇒f'(0)=b⇒b=0,令f(x)=0⇒x=-a(a<0),=S==⇒a=-3.答案:-34.椭圆=1围成的面积是.解析:设椭圆在第一象限内围成图形的面积为S1,则由对称性,得椭圆面积S=4S1.在第一象限内椭圆方程可化为y=,故S1=d x=d x.而d x表示以5为半径的圆的面积,如图.从而d x=π·52=.故S1==5π,从而S=20π.答案:20π5.求正弦曲线y=sin x与余弦曲线y=cos x与直线x=-,x=围成的图形的面积.解:如图,画出y=sin x与y=cos x在上的图象,它们共有三个交点,分别为.在上,cos x>sin x,在上,sin x>cos x.∴面积S=(cos x-sin x)d x+(sin x-cos x)d x=2(sin x-cos x)d x=-2(sin x+cos x)=4.6.求曲线y=x2和直线x=0,x=1,y=t2,t∈(0,1)所围成的图形(如图阴影部分)的面积的最小值.解:由定积分的性质与微积分基本定理,得S=S1+S2=(t2-x2)d x+(x2-t2)d x==t3-t3+-t2-t3+t3=t3-t2+,t∈(0,1),所以S'=4t2-2t,所以t=或t=0(舍去).当t变化时,S',S变化情况如下表tS'-0 +S↘极小值↗所以当t=时,S最小,且S min=.7.过原点的直线l与抛物线y=x2-4x所围成图形的面积为36,求l的方程.解:由题意可知直线的斜率存在,故设直线l的方程为y=kx, 则由(1)当k+4>0,即k>-4时,面积S=(kx-x2+4x)d x==k(k+4)2-(k+4)3+2(k+4)2=(k+4)3=36,∴k=2,故直线l的方程为y=2x.(2)当k+4<0,即k<-4时,S=(kx-x2+4x)d x==-=-(k+4)3=36,∴k=-10,∴直线l的方程为y=-10x.综上,所求直线l的方程为y=2x或y=-10x.。
1.7定积分的简单应用积为S 1.由直线x =a ,x =b ,曲线y =g(x )和x 轴围成的曲边梯形的面积为S 2.问题1:如何求S 1? 提示:S 1=⎠⎛a b f(x)d x.问题2:如何求S 2? 提示:S 2=⎠⎛ab g(x)d x.问题3:如何求阴影部分的面积S? 提示:S =S 1-S 2.平面图形的面积由两条曲线y =f (x ),y =g (x )和直线x =a ,x =b (b >a )所围图形的面积.(1)如图①所示,f (x )>g (x )>0,所以所求面积S =⎠⎛ab d x .(2)如图②所示,f (x )>0,g (x )<0,所以所求面积S =⎠⎛a b f (x )d x +⎪⎪⎪⎪⎠⎛a b=⎠⎛ab d x .相交曲线所围图形的面积求法如下图,在区间上,若曲线y =f (x ),y =g (x )相交,则所求面积S =S 1+S 2=⎠⎛ac d x +⎠⎛c b-=⎠⎛ab |f (x )-g (x )|d x .问题:在《1.5.2 汽车行驶的路程》中,我们学会了利用积分求物理中物体做变速直线运动的路程问题,利用积分还可以解决物理中的哪些问题?提示:变力做功.1.变速直线运动的路程做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间上的定积分,即s =⎠⎛ab2.变力做功如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F (x )相同的方向从x =a 移动到x =b(a<b),那么变力F(x)所做的功为W =⎠⎛ab F(x )d x.求变速直线运动的路程的注意点对于给出速度-时间曲线的问题,关键是由图象得到速度的解析式及积分的上、下限,需要注意的是分段解析式要分段求路程,然后求和.计算曲线由⎩⎪⎨⎪⎧y =x +3,y =x2-2x +3,解得x =0或x =3.如图.因此所求图形的面积为S =⎠⎛03(x +3)d x -⎠⎛03(x 2-2x +3)d x=⎠⎛03d x =⎠⎛03(-x 2+3x )d x =⎝ ⎛⎭⎪⎫-13x3+32x23=92.求由两条曲线围成的平面图形的面积的解题步骤(1)画出图形;(2)确定图形范围,通过解方程组求出交点的坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数图象上、下位置; (4)写出平面图形面积的定积分表达式;(5)运用微积分基本定理计算定积分,求出平面图形的面积.求曲线y =e x,y =e -x及x =1所围成的图形面积.解:作图,并由⎩⎪⎨⎪⎧y =ex ,y =e -x ,解得交点(0,1). 所求面积为⎠⎛01(e x-e -x)d x =(e x +e -x)1=e +1e-2.先求抛物线和直线的交点,解方程组⎩⎪⎨⎪⎧y2=2x ,y =-x +4,求出交点坐标为A (2,2)和B (8,-4).法一:选x 为积分变量,变化区间为,将图形分割成两部分(如图),则面积为S =S 1+S 2=2⎠⎛022xd x +⎠⎛28(2x -x +4)d x=423x322+⎝ ⎛⎭⎪⎫223x -12x2+4x 82=18.法二:选y 作积分变量,则y 的变化区间为,如图得所求的面积为 S =⎠⎛-42⎝ ⎛⎭⎪⎫4-y -y22d y =⎝ ⎛⎭⎪⎫4y -12y2-16y324-=18.需分割的图形的面积的求法由两条或两条以上的曲线围成的较为复杂的图形,在不同的区间上位于上方和下方的曲线不同.求出曲线的不同的交点横坐标,将积分区间细化,分别求出相应区间上曲边梯形的面积再求和,注意在每个区间上被积函数均是由上减下.试求由抛物线y =x 2+1与直线y =-x +7以及x 轴、y 轴所围成图形的面积.解:画出图形(如下图).解方程组⎩⎪⎨⎪⎧y =x2+1,y =-x +7,得⎩⎪⎨⎪⎧x =2,y =5或⎩⎪⎨⎪⎧x =-3,y =10(舍去),即抛物线与直线相交于点(2,5).于是所求面积为S =⎠⎛02(x 2+1)d x +⎠⎛27(7-x)d x=⎝ ⎛⎭⎪⎫13x3+x 20+⎝⎛⎭⎪⎫7x -12x272=143+252 =1036.A ,BC 点,这一段的速度为1.2t m/s ,到C 点的速度为24 m/s ,从C 点到B 点前的D 点以等速行驶,从D 点开始刹车,速度为(24-1.2t ) m/s ,经t s 后,在B 点恰好停车.试求:(1)A ,C 间的距离; (2)B ,D 间的距离. (1)设A 到C 的时间为t 1, 则1.2t 1=24,t 1=20 s ,则AC =⎠⎛0201.2t d t =0.6t220=240(m).(2)设D 到B 的时间为t 2, 则24-1.2t 2=0,t 2=20 s , 则DB =⎠⎛020 (24-1.2t )d t求变速直线运动的路程、位移应关注三点(1)分清运动过程中的变化情况;(2)如果速度方程是分段函数,那么要用分段的定积分表示;(3)明确是求位移还是求路程,求位移可以正负抵消,求路程不能正负抵消.一点在直线上从时刻t =0(单位:s )开始以速度v =t 2-4t +3(单位:m /s )运动,求: (1)在t =4 s 时的位置; (2)在t =4 s 时运动的路程. 解:(1)在t =4 s 时该点的位移为⎠⎛04(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫13t3-2t2+3t 40=43(m ), 即在t =4 s 时该点距出发点43m .(2)∵v(t)=t 2-4t +3=(t -1)(t -3), ∴在区间及上v(t)≥0, 在区间上,v(t)≤0. ∴在t =4 s 时的路程为s =⎠⎛01(t 2-4t +3)d t -⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫13t3-2t2+3t 10-⎝ ⎛⎭⎪⎫13t3-2t2+3t 31+13t 3-2t 2+3t43=4(m ), 即在t =4 s 时运动的路程为4 m .一物体在力F (x )(单位:N)的作用下沿与力F 相同的方向运动,力位移曲线如图所示.求该物体从x =0 m 处运动到x =4 m 处力F (x )做的功.由力位移曲线可知F (x )=⎩⎪⎨⎪⎧10,0≤x≤2,3x +4,2<x≤4,因此该物体从x =0处运动到x =4处力F (x )做的功为W =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x 2+⎝ ⎛⎭⎪⎫32x2+4x 42=46(J).解决变力做功应关注两点(1)首先将变力用其方向上的位移表示出来,这是关键的一步; (2)根据变力做功的公式将其转化为求定积分的问题.设有一长25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm ,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使弹簧由25 cm 伸长到40 cm 所做的功.解:设x 表示弹簧伸长的量(单位:m),F (x )表示加在弹簧上的力(单位:N).由题意F (x )=kx ,且当x =0.05 m 时,F (0.05)=100 N ,解得即0.05k =100,∴k =2 000, ∴F (x )=2 000x .∴将弹簧由25 cm 伸长到40 cm 时所做的功为W =⎠⎛00.152 000x d x =1 000x 2.015=22.5(J).4.利用定积分求面积的策略由抛物线y 2=8x (y >0)与直线x +y -6=0及y =0所围成图形的面积为( ) A .16-3223B .16+3223C.403D.403+3223由题意,作图形如图所示,由⎩⎪⎨⎪⎧y2=>,x +y -6=0,得⎩⎪⎨⎪⎧x =2,y =4,所以抛物线y 2=8x (y >0)与直线x +y -6=0的交点坐标为(2,4).法一:(选y 为积分变量)S =⎠⎛04⎝ ⎛⎭⎪⎫6-y -18y2d y=⎝⎛⎭⎪⎫6y -12y2-124y340=24-8-124×64=403.法二:(选x 为积分变量)S =⎠⎛02(8x)d x +⎠⎛26(6-x )d x=8×23x 322+⎝⎛⎭⎪⎫6x -12x262=163+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫6×6-12×62-⎝ ⎛⎭⎪⎫6×2-12×22=403.C1.本题易搞错被积函数及积分上、下限,误认为S =⎠⎛04-x -8x)d x ,从而得出S =16-3223的错误答案.2.求平面图形面积时,应首先求出交点坐标,确定积分上、下限,然后确定被积函数,判定积分的正负,用公式求解面积.如本例法一中的被积函数为f(y)=6-y -18y 2,y ∈(0,4],法二中的被积函数为f(x)=⎩⎨⎧8x ,,2],6-x ,,6].3.利用定积分求面积时,应根据具体问题选择不同的方法求解,常见类型有以下几种: (1)换元积分:当两区域所围成图形纵坐标一致时,换元变成对y 积分可简化运算.如本例中的法一. (2)分割求和:当两曲线处于不同区间时,可分割成几块,分别求出面积再相加,如本节例2的求解法.事实上,本例中的法二就是分割求和.(3)上正下负:若a ≤x ≤c 时,f(x)<0,则⎠⎛a c f(x)d x <0;若c ≤x ≤b 时,f(x)≥0,则⎠⎛cb f(x)d x ≥0.此时曲线y =f(x)和直线x =a ,x =b(a <b)及y =0所围图形的面积是 S =⎪⎪⎪⎪⎠⎛ac +⎠⎛c b f(x)d x =-⎠⎛ac f(x)d x +⎠⎛c bd x.例:求正弦曲线y =sin x ,x ∈⎣⎢⎡⎦⎥⎤0,3π2和直线x =0,x =3π2及y =0所围图形的面积S .解:作出曲线y =sin x 和直线x =0,x =3π2,y =0的草图,如图所示,所求面积为图中阴影部分的面积.由图可知,当x ∈时,曲线y =sin x 位于x 轴的上方; 当x ∈⎣⎢⎡⎦⎥⎤π,3π2时,曲线位于x 轴下方. 因此,所求面积应为两部分的和,即S =π⎰32|sin x |d x =⎠⎛0πsin x d x -ππ⎰32sin x d x =-cos xπ+cos xππ32=3.(4)上下之差:若在区间上f (x )>g (x ),则曲线f (x )与g (x )所围成的图形的面积S =⎠⎛a b d x .例:求由曲线y 2=x ,y =x 3所围图形的面积S .解:作出曲线y 2=x ,y =x 3的草图,如图所示,所求面积为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y2=x ,y =x3得交点的横坐标为x =0及x =1.因此,所求图形的面积为S =⎠⎛01xd x -⎠⎛01x 3d x =23x 321-14x 41=512.1.(山东高考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .22B .4 2 C .2 D .4解析:选D 由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为⎠⎛02-=⎝⎛⎭⎪⎫2x2-14x42=4.2.一物体沿直线以v =3t +2(t 的单位:s ,v 的单位:m/s)的速度运动,则该物体在3 s ~6 s 间的运动路程为( )A .46 mB .46.5 mC .87 mD .47 m解析:选B s =⎠⎛36 (3t +2)d t =⎝ ⎛⎭⎪⎫32t2+2t 63=(54+12)-⎝ ⎛⎭⎪⎫272+6=46.5(m).3.(天津高考)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________.解析:如图,阴影部分的面积即为所求.由⎩⎪⎨⎪⎧y =x2,y =x 得A(1,1).故所求面积为S =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x2-13x3⎪⎪⎪10=16. 答案:164.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 解析:由已知得S =⎠⎛0a xd x =23x 32a=23a 32=a 2,所以a 12=23,所以a =49. 答案:495.一物体在变力F (x )=36x2(x 的单位:m ,F 的单位:N)的作用下沿坐标平面内x 轴的正方向由x =8处运动到x =18处,求力F (x )在这一过程中所做的功.解:由题意得力F (x )在这一过程中所做的功为F (x )在上的定积分,从而W =⎠⎛818F (x )d x =-36x -1188=(-36×18-1)-(-36×8-1)=(-2)-⎝ ⎛⎭⎪⎫-92=52(J).从而可得力F (x )在这一过程中所做的功为52 J.一、选择题1.用S 表示下图中阴影部分的面积,则S 的值是( )A .⎠⎛a c f (x )d xB.⎪⎪⎪⎪⎠⎛acC.⎠⎛a b f(x)d x +⎠⎛bc f(x)d x D .⎠⎛b c f (x )d x -⎠⎛ab f (x )d x解析:选D 由图可知,x 轴上方阴影部分的面积为⎠⎛b c ,x 轴下方阴影部分的面积为-⎠⎛ab f (x )d x ,故D 正确. 2.曲线y =x 3与直线y =x 所围图形的面积等于( ) A.⎠⎛-11(x -x 3)d x B.⎠⎛-11(x 3-x )d x C .2⎠⎛01(x -x 3)d xD .2⎠⎛-10(x -x 3)d x解析:选C 由⎩⎪⎨⎪⎧y =x ,y =x3,求得直线y =x 与曲线y =x 3的交点分别为(-1,-1),(1,1),(0,0),由于两函数都是奇函数,根据对称性得S =2⎠⎛01(x -x 3)d x .3.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32D. 3 解析:选D 结合函数图象可得所求的面积是定积分∫π3-π3cos x d x =sin x π3-π3= 3. 4.一质点运动的速度与时间的关系为v (t )=t 2-t +2,质点做直线运动,则它在时间内的位移为( )A.176B.143C.136 D.116解析:选A 质点在时间内的位移为⎠⎛12(t 2-t +2)d t =⎝ ⎛⎭⎪⎫13t3-12t2+2t 21=176. 5.由抛物线y =x 2-x ,直线x =-1及x 轴围成的图形的面积为( ) A.23 B .1 C.43 D.53解析:选B S =⎠⎛0-1(x 2-x )d x +⎠⎛01(x -x 2)d x=⎝ ⎛⎭⎪⎫13x3-12x20-1+⎝ ⎛⎭⎪⎫12x2-13x310=1.二、填空题6.曲线y =sin x (0≤x ≤π)与直线y =12围成的封闭图形的面积为________.解析:由于曲线y =sin x (0≤x ≤π)与直线y =12的交点的横坐标分别为x =π6及x =5π6,因此所求图形的面积为∫5π6π6sin x -12d x =-cos x -12x 5π6π6=3-π3.答案:3-π37.物体A 以速度v =3t 2+1(t 的单位:s ;v 的单位:m/s)在一直线上运动,在此直线上,物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t 的速度与A 同向运动,则两物体相遇时物体A 运动的距离为________m.解析:设t =a 时两物体相遇,依题意有⎠⎛0a (3t 2+1)d t -⎠⎛0a 10t d t =(t 3+t )a 0-5t 2a 0=5,即a 3+a -5a 2=5,(a -5)(a 2+1)=0,解得a =5,所以⎠⎛05(3t 2+1)d t =53+5=130.答案:1308.有一横截面面积为4 cm 2的水管控制往外流水,打开水管后t s 末的流速为v (t )=6t -t 2(单位:cm/s)(0≤t ≤6),则t =0到t =6这段时间内流出的水量为________.解析:由题意可得t =0到t =6这段时间内流出的水量V =⎠⎛064(6t -t 2)d t =4⎠⎛6(6t -t 2)d t =4⎝⎛⎭⎪⎫3t2-13t360=144(cm 3).故t =0到t =6这段时间内流出的水量为144 cm 3. 答案:144 cm 3三、解答题9.求由曲线y =x 2和直线y =x 及y =2x 所围图形的面积S .解:由⎩⎪⎨⎪⎧y =x2,y =x 得A (1,1),由⎩⎪⎨⎪⎧y =x2,y =2x 得B (2,4).如图所示,所求面积(即图中阴影部分的面积)为S =⎠⎛01(2x -x )d x +⎠⎛12-x 2)d x =⎠⎛01x d x +⎠⎛12-x 2)d x =12x 210+⎝⎛⎭⎪⎫x2-13x321=76.10.有一动点P 沿x 轴运动,在时间t 时的速度为v (t )=8t -2t 2(速度的正方向与x 轴正方向一致).(1)点P 从原点出发,当t =6时,求点P 离开原点的路程和位移; (2)求点P 从原点出发,经过时间t 后又返回原点时的t 值. 解:(1)由v (t )=8t -2t 2≥0,得0≤t ≤4, 即当0≤t ≤4时,P 点向x 轴正方向运动; 当t >4时,P 点向x 轴负方向运动.最新中小学教案、试题、试卷故t =6时,点P 离开原点的路程为s 1=⎠⎛04(8t -2t 2)d t -⎠⎛46(8t -2t 2)d t=⎝⎛⎭⎪⎫4t2-23t340-⎝ ⎛⎭⎪⎫4t2-23t364=1283. 当t =6时,点P 的位移为⎠⎛06(8t -2t 2)d t =⎝ ⎛⎭⎪⎫4t2-23t360=0. (2)依题意⎠⎛0t (8t -2t 2)d t =0,即4t 2-23t 3=0,解得t =0或t =6,而t =0对应于P 点刚开始从原点出发的情况, ∴t =6是所求的值.。
人教新课标A版选修2-2数学1.7定积分的简单应用同步练习A卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)求由抛物线与直线所围成的曲边梯形的面积时,将区间[ 等分成个小区间,则第个区间为()A .B .C .D .2. (2分)直线y=x与抛物线y=x(x+2)所围成的封闭图形的面积等于()A .B .C .D .3. (2分) (2016高二上·吉林期中) 由直线x= ,x=2,曲线y= 及x轴所围图形的面积是()A . 2ln2B .C .4. (2分)设集合P={x|∫0x(3t2﹣10t+6)dt=0,x>0},则集合P的非空子集个数是()A . 2B . 3C . 7D . 85. (2分)边界在直线及曲线上的封闭的图形的面积为()A . 1B .C . 2D .6. (2分) (2017高二下·黄山期末) 直线y=﹣x与函数f(x)=﹣x3围成封闭图形的面积为()A . 1B .C .D . 07. (2分) (2016高三上·成都期中) 若f(x)=x2+2 f(x)dx,则 f(x)dx=()A . ﹣1B . ﹣D . 18. (2分) (2017高一下·伊春期末) 从如图所示的长方形区域内任取一个点,则点取自阴影部分的概率为()A .B .C .D .9. (2分) (2017高二下·桂林期末) 由曲线xy=1,直线y=x,y=3所围成的平面图形的面积为()A .B . 2﹣ln3C . 4+ln3D . 4﹣ln310. (2分)由曲线f(x)=与y轴及直线y=m(m>0)围成的图形面积为,则m=()A . 2B . 3C . 1D . 811. (2分)已知二次函数y=f(x)=-x2+1,则它与x轴所围图形的面积为()A .B .C .D .12. (2分)(2017·临汾模拟) 一物体A以速度v(t)=t2﹣t+6沿直线运动,则当时间由t=1变化到t=4时,物体A运动的路程是()A . 26.5B . 53C . 31.5D . 6313. (2分) (2015高一上·腾冲期末) 已知积分,则实数()A . 2B .C . 1D .14. (2分)(2017·葫芦岛模拟) 已知随机变量X﹣N(1,1),其正态分布密度曲线如图所示,若向正方形OABC中随机投掷10000个点,则落入阴影部分的点个数的估计值为()附:若随机变量ξ﹣N(μ,σ2),则P(μ﹣σ<ξ≤μ+σ)=0.6826,P(μ﹣2σ<ξ≤μ+2σ)=0.9544.A . 6038B . 6587C . 7028D . 753915. (2分) (2018高二下·中山月考) 设,则()A .B .C .D . 不存在二、填空题 (共5题;共5分)16. (1分) (2017高三上·漳州开学考) 如图所示,直线y=kx分抛物线y=x2﹣x与x轴所围成图形为面积相等的两部分,则实数k的值为________.17. (1分) (2017高二下·桃江期末) (3x2+k)dx=10,则k=________.18. (1分) (2018高三上·双鸭山月考) =________19. (1分) (2015高二下·福州期中) 曲线y= 和直线y=x围成的图形面积是________.20. (1分) (2017高二下·邢台期末) 曲线f(x)=sin(﹣x)与直线x=﹣,x= ,y=0所围成的平面图形的面积为________.三、解答题 (共5题;共35分)21. (5分)求曲线y=2x﹣x2 , y=2x2﹣4x所围成图形的面积.22. (5分)已知作用于某一质点的力F(x)=(单位:N),试求力F(x)从x=0处运动到x=2处(单位:m)所做的功23. (10分) (2017高二下·宜春期中) 如图,设A(2,4)是抛物线C:y=x2上的一点.(1)求该抛物线在点A处的切线l的方程;(2)求曲线C、直线l和x轴所围成的图形的面积.24. (5分) (2016高二下·三亚期末) 计算 f(x)dx,其中,f(x)= .25. (10分)设f(a)=|x2-a2|dx(1)当0≤a≤1与a>1时,分别求f(a);(2)当a≥0时,求f(a)的最小值.参考答案一、选择题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分) 16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共35分)21-1、22-1、23-1、23-2、24-1、25-1、25-2、。
教材习题点拨教材问题解答 (思考)本题还有其他解法吗?如果有,请写出你的解法,并比较一下这些解法. 答:解法一:所求阴影部分的面积为38828244140(4)d (4)23x x x x x --=--=⎰⎰. 解法二:以y 为积分变量所求面积为∫40(4+y )d y -∫4y 22d y =⎝⎛⎭⎫4y +y 22|40-16y 3|40=403. 练习1解:(1)323;(2)1.练习21.解:s =∫53(2t +3)d t =(t 2+3t )|53=22(m).2.解:W =∫40(3x +4)d x =⎝⎛⎭⎫32x 2+4x |40=40(J). 习题1.7A 组1.解:(1)2;(2)92.2.解:W =∫b a k q r 2d r =⎝⎛⎭⎫-k q r |b a =k q a -k q b. 3.解:令v (t )=0,即40-10t =0,解得t =4.即第4 s 时物体达到最大高度.最大高度为h =∫40(40-10t )d t =(40t -5t 2)|40=80(m).4.解:设t s 后两物体相遇,则∫t 0(3t 2+1)d t =∫t 010t d t +5,解之,得t =5.即A ,B 两物体5 s 后相遇.此时,物体A 离出发地的距离为∫50(3t 2+1)d t =(t 3+t )|50=130(m).5.解:由F =kl ,得10=0.01 k .解之,得k =1 000.所做的功为W =∫0.101 000l d l =5 00l 2|0.10=5(J). 6.解:(1)令v (t )=5-t +551+t=0,解之,得t =10. 因此,火车经过10 s 后完全停止.(2)s =∫100⎝⎛⎭⎫5-t +551+t d t =[5t -12t 2+55ln(1+t )]|100=55ln 11(m). B 组1.解:(1)∫a -a a 2-x 2d x 表示圆x 2+y 2=a 2与x 轴所围成的上半圆的面积,因此∫a -a a 2-x 2d x =πa 22. (2)∫10(1-(x -1)2-x )d x 表示圆(x -1)2+y 2=1与直线y =x 所围成的图形(如图所示)的面积,因此∫10(1-(x -1)2-x )d x =π×124-12×1×1=π4-12. 2.证明:建立如图所示的平面直角坐标系,可设抛物线的方程为y =ax 2,则h =a ×⎝⎛⎭⎫ b22,所以a =4hb 2.从而抛物线的方程为y =4hb2x 2.于是,抛物线的拱形面积23220224422d 233bbh h S h x x hx x bh b b ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭⎰. 3.解:如图所示.解方程组⎩⎪⎨⎪⎧y =x 2+2,y =3x 得曲线y =x 2+2与曲线y =3x 交点的横坐标x 1=1,x 2=2.于是所求面积为∫10[(x 2+2)-3x ]d x -∫21[3x -(x 2+2)]d x =23.4.证明:W =∫R +h R G Mmr2d r =⎝⎛⎭⎫-G Mm r |R +h R =G MmhR (R +h ).。
高考数学 选修2-2 1.7 定积分的简单应用一、选择题1.如图所示,阴影部分的面积为( )A.⎠⎛a b f (x )d xB.⎠⎛a b g (x )d xC.⎠⎛ab [f (x )-g (x )]d xD.⎠⎛ab [g (x )-f (x )]d x[答案] C[解析] 由题图易知,当x ∈[a ,b ]时,f (x )>g (x ),所以阴影部分的面积为⎠⎛ab [f (x )-g (x )]d x .2.如图所示,阴影部分的面积是( )A .2 3B .2- 3 C.323D.353[答案] C[解析] S =⎠⎛1-3(3-x 2-2x )d x即F (x )=3x -13x 3-x 2,则F (1)=3-1-13=53,F (-3)=-9-9+9=-9.∴S =F (1)-F (-3)=53+9=323.故应选C.3.由曲线y =x 2-1、直线x =0、x =2和x 轴围成的封闭图形的面积(如图)是( ) A.⎠⎛02(x 2-1)d xB .|⎠⎛02(x 2-1)d x |C.⎠⎛02|x 2-1|d xD.⎠⎛01(x 2-1)d x +⎠⎛12(x 2-1)d x[答案] C[解析] y =|x 2-1|将x 轴下方阴影反折到x 轴上方,其定积分为正,故应选C. 4.设f (x )在[a ,b ]上连续,则曲线f (x )与直线x =a ,x =b ,y =0围成图形的面积为( ) A.⎠⎛a b f (x )d xB .|⎠⎛ab f (x )d x |C.⎠⎛ab |f (x )|d xD .以上都不对[答案] C[解析] 当f (x )在[a ,b ]上满足f (x )<0时,⎠⎛ab f (x )d x <0,排除A ;当阴影有在x 轴上方也有在x 轴下方时,⎠⎛ab f (x )d x 是两面积之差,排除B ;无论什么情况C 对,故应选C.5.曲线y =1-1681x 2与x 轴所围图形的面积是( )A .4B .3C .2D.52[答案] B[解析] 曲线与x 轴的交点为⎝ ⎛⎭⎪⎫-94,0,⎝ ⎛⎭⎪⎫94,0故应选B.6.一物体以速度v =(3t 2+2t )m/s 做直线运动,则它在t =0s 到t =3s 时间段内的位移是( )A .31mB .36mC .38mD .40m[答案] B[解析] S =⎠⎛03(3t 2+2t )d t =(t 3+t 2)| 30=33+32=36(m),故应选B.7.(2010·山东理,7)由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.112B.14 C.13D.712[答案] A[解析] 由⎩⎪⎨⎪⎧y =x 2y =x3得交点为(0,0),(1,1).∴S =⎠⎛01(x 2-x 3)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-14x 410=112.8.一物体在力F (x )=4x -1(单位:N)的作用下,沿着与力F 相同的方向,从x =1运动到x =3处(单位:m),则力F (x )所做的功为( )A .8JB .10JC .12JD .14J[答案] D[解析] 由变力做功公式有:W =⎠⎛13(4x -1)d x =(2x 2-x )| 31=14(J),故应选D.9.若某产品一天内的产量(单位:百件)是时间t 的函数,若已知产量的变化率为a =36t,那么从3小时到6小时期间内的产量为( )A.12B .3-32 2C .6+3 2D .6-3 2[答案] D [解析] ⎠⎛3636tdt =66t | 63=6-32,故应选D.10.过原点的直线l 与抛物线y =x 2-2ax (a >0)所围成的图形面积为92a 3,则直线l 的方程为( )A .y =±axB .y =axC .y =-axD .y =-5ax[答案] B[解析] 设直线l 的方程为y =kx ,由⎩⎪⎨⎪⎧y =kx y =x 2-2ax 得交点坐标为(0,0),(2a +k,2ak +k 2) 图形面积S =∫2a +k[kx -(x 2-2ax )]d x=⎝ ⎛⎭⎪⎫k +2a 2x 2-x 33| 2a +k 0 =(k +2a )32-(2a +k )33=(2a +k )36=92a 3∴k =a ,∴l 的方程为y =ax ,故应选B. 二、填空题11.由曲线y 2=2x ,y =x -4所围图形的面积是________. [答案] 18[解析] 如图,为了确定图形的范围,先求出这两条曲线交点的坐标,解方程组⎩⎪⎨⎪⎧y 2=2xy =x -4得交点坐标为(2,-2),(8,4).因此所求图形的面积S =⎠⎛4-2(y +4-y 22)d y取F (y )=12y 2+4y -y 36,则F ′(y )=y +4-y22,从而S =F (4)-F (-2)=18.12.一物体沿直线以v =1+t m/s 的速度运动,该物体运动开始后10s 内所经过的路程是________.13.由两条曲线y =x 2,y =14x 2与直线y =1围成平面区域的面积是________.[答案] 43[解析] 如图,y =1与y =x 2交点A (1,1),y =1与y =x 24交点B (2,1),由对称性可知面积S =2(⎠⎛01x 2d x +⎠⎛12d x -⎠⎛0214x 2d x )=43.14.一变速运动物体的运动速度v (t )=⎩⎪⎨⎪⎧2t (0≤t ≤1)a t(1≤t ≤2)b t (2≤t ≤e )则该物体在0≤t ≤e 时间段内运动的路程为(速度单位:m/s ,时间单位:s)______________________.[答案] 9-8ln2+2ln2[解析] ∵0≤t ≤1时,v (t )=2t ,∴v (1)=2; 又1≤t ≤2时,v (t )=a t, ∴v (1)=a =2,v (2)=a 2=22=4; 又2≤t ≤e 时,v (t )=bt, ∴v (2)=b2=4,∴b =8.∴路程为S =⎠⎛012t d t +⎠⎛122td t +⎠⎛2e 8td t =9-8ln2+2ln2 .三、解答题15.计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积. [解析] 由⎩⎪⎨⎪⎧y =x +3y =x 2-2x +3解得x =0及x =3.从而所求图形的面积S =⎠⎛03(x +3)d x -⎠⎛03(x 2-2x +3)d x=⎠⎛03[(x +3)-(x 2-2x +3)]d x=⎠⎛03(-x 2+3x )d x=⎝ ⎛⎭⎪⎫-13x 3+32x 2| 30=92.16.设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2. (1)求y =f (x )的表达式;(2)若直线x =-t (0<t <1)把y =f (x )的图象与两坐标轴所围成图形的面积二等分,求t 的值.[解析] (1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b , 又已知f ′(x )=2x +2,∴a =1,b =2, ∴f (x )=x 2+2x +c .又方程f (x )=0有两个相等实根. ∴判别式Δ=4-4c =0,即c =1. 故f (x )=x 2+2x +1.(2)依题意有⎠⎛-1-t (x 2+2x +1)d x =⎠⎛0-t (x 2+2x +1)d x ,∴⎝ ⎛⎭⎪⎫13x 3+x 2+x | -t -1=⎝ ⎛⎭⎪⎫13x 3+x 2+x | 0-t 即-13t 3+t 2-t +13=13t 3-t 2+t .∴2t 3-6t 2+6t -1=0, ∴2(t -1)3=-1,∴t =1-132.17.A 、B 两站相距7.2km ,一辆电车从A 站开往B 站,电车开出t s 后到达途中C 点,这一段速度为1.2t (m/s),到C 点的速度达24m/s ,从C 点到B 站前的D 点以等速行驶,从D 点开始刹车,经t s 后,速度为(24-1.2t )m/s ,在B 点恰好停车,试求:(1)A 、C 间的距离; (2)B 、D 间的距离;(3)电车从A 站到B 站所需的时间. [解析] (1)设A 到C 经过t 1s , 由1.2t =24得t 1=20(s),所以AC =∫2001.2t d t =0.6t 2| 200=240(m).(2)设从D →B 经过t 2s , 由24-1.2t 2=0得t 2=20(s), 所以DB =∫200(24-1.2t )d t =240(m). (3)CD =7200-2×240=6720(m). 从C 到D 的时间为t 3=672024=280(s).于是所求时间为20+280+20=320(s).18.在曲线y =x 2(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴所围成的面积为112,试求:(1)切点A 的坐标; (2)过切点A 的切线方程.[解析] 如图所示,设切点A (x 0,y 0),由y ′=2x ,过A 点的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x -x 20.令y =0得x =x 02,即C ⎝ ⎛⎭⎪⎫x 02,0.设由曲线和过A 点的切线及x 轴所围成图形的面积为S ,S =S 曲边△AOB -S △ABC . S 曲边△AOB =∫x 00x 2d x =13x 30, S △ABC =12|BC |·|AB | =12⎝ ⎛⎭⎪⎫x 0-x 02·x 20=14x 30,即S =13x 30-14x 30=112x 30=112.所以x 0=1,从而切点A (1,1),切线方程为y =2x -1.。
1.7 定积分的简单应用—高二数学人教A 版2-2同步课时训练1.如图,由曲线21y x =-,直线0x =,2x =和x 轴围成的封闭图形的面积是( )A.1B.23C.43D.22.如图所示,在边长为1的正方形OABC 内任取一点,则该点恰好取自阴影部分的概率为( )A.114π2-B.16C.14D.112π-3.已知曲线2y x =和曲线y x =围成一个叶形图(如图中阴影部分),则其面积为( )A.1B.13C.22D.124.如图,矩形OABC 内的阴影部分由曲线()sin 0,π(())f x x x ∈=及直线((0,))πx a a =∈与x 轴围成,向矩形OABC 内随机投掷一点,若该点落在阴影部分的概率为316,则a 的值为( )A.7π12B.2π3C.34πD.5π65.如图由曲线21y x =+,直线3x y +=以及两坐标轴的正半轴围成的图形的面积S =( )A.73B.83C.3D.1036.有曲线2y x =,直线2y x =-所围成的图形的面积为( ) A.43B.196C.236D.927.已知曲线2y x =和曲线y x =围成一个叶形图(如图中阴影部分),则其面积为( )A. 1B. 122 D. 138.已知函数2cos y x =,[]0,2x π∈和2y =的图像围成的一个封闭的平面图形的面积是( ) A .4πB .2πC .4D .29.曲线e x y =,e x y -= 和直线1x =围成的图形面积是( ) A .1e e --B .1e e -+C .1e e 2---D .1e e 2-+-10.求曲线2y x =与y x =所围成图形的面积,其中正确的是( ) A .120()s x x dx =-⎰ B .120()s x x dx =-⎰C .10() s y y dy =-⎰ D . 1() s y y dy =-⎰11.由曲线2y x =,直线y x =及y 轴所围成的图形的面积为___________. 12.已知曲线2y x =与直线(0)y kx k =>所围成的曲边图形的面积为43,则k =_________13.由曲线y x =,直线2y x =-及y 轴所围成的图形的面积为______ 14.已知函数()f x 为一次函数,若函数()f x 的图象过点(1,3),且3021()2f x dx =⎰. (1)求函数()f x 的表达式;(2)若函数2()g x x =,求函数()f x 与()g x 的图象围成图形的面积15.已知函数32()1f x x x x =-++,求其在点(1,2)处的切线与函数2()g x x =围成的图形的面积.答案以及解析1.答案:D解析:由曲线21y x =-,直线0x =,2x =和x 轴围成的封闭图形的面积为:12223131000111281(1)d (1)d ()|()|21233333S x x x x x x x x =-+-=-+-=+--+=⎰⎰,故选D. 2.答案:B解析:阴影面积12231100111()()236s x x dx x x =-=-=⎰,正方形面积1s =, ∴所求的概率116s p s==,故选:B 3.答案:B解析:1323120211()()|333S x x dx x x ==-=⎰,故选B 4.答案:B解析:由题意知,阴影部分的面积为00sin ?d (cos )cos cos01cos aax x x a a =-=-+=-⎰,根据几何概型的概率计算公式知1cos 3816a a a-=⋅,即1cos 2a =-,而(0,π)a ∈,故2π3a =,故选B. 5.答案:D解析:如图所示,解方程组213y x x y ⎧=+⎨+=⎩,得12x y =⎧⎨=⎩或25x y =-⎧⎨=⎩.30()S f x dx ∴=⎰,其中21(01)()3(13)x x f x x x ⎧+≤≤=⎨-<≤⎩.()133213201011(3)332x x S x dx x dx x x ⎛⎫⎛⎫∴=++-=++- ⎪ ⎪⎝⎭⎝⎭⎰⎰ 191110193332233⎛⎫⎛⎫=++---=+= ⎪ ⎪⎝⎭⎝⎭.故选D. 6.答案:D解析:联立方程组得22y x y x ⎧=⎪⎨=-⎪⎩,解得曲线2y x =与直线2y x =-的交点坐标为:()()1,1,4,2-, 选择y 为积分变量,∴曲线2y x =和直线2y x =-所围成的图形的面积为()222321111811922242233232S y y dy y y y --⎛⎫⎛⎫⎛⎫=+-=+-=+---+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰.7.答案:D解析:1323120211()()|333S x x dx x x ==-=⎰,故选D. 8.答案:A解析:画出函数[]2cos ,0,2πy x x =∈的图象与直线2y =围成的一个封闭的平面图形,如图所示,根据定积分的几何意义,可得封闭图形的面积为:22π00(22cos )(22sin )|(4π2sin 2π)(202sin 0)4πS x dx x x π=-=-=--⨯-=⎰.9.答案:D解析:曲线e ,e x x y y -==和直线1x =围成的图形面积, 就是()10e e x x dx --⎰()1102x xe e e e --=+=+-.故选:D 。
一、选择题(本大题共7小题,每小题5分,共35分)1.用表示图中阴影部分的面积,则的值是()A. B.C. D.【答案】D【解析】试题分析:先将阴影部分的面积用定积分表示∫b c f(x)dx﹣∫a b f(x)dx,然后根据定积分的意义进行选择即可.详解:由定积分的几何意义知区域内的曲线与X轴的面积代数和.即∫b c f(x)dx﹣∫a b f(x)dx选项D正确.故选:D.点睛:本题考查定积分在求面积中的应用,解题是要注意分割,关键是要注意在x轴下方的部分积分为负(积分的几何意义强调代数和),属于基础题.注意积分并不等于面积,当被积函数为正时积分和面积相等,当被积函数为负时积分等于面积的相反数.2.一物体以速度v=3t2+2t(v的单位:m/s)做直线运动,则它在t=0 s到t=3 s时间段内的位移是()A. 31 mB. 36 mC. 38 mD. 40 m【答案】B【解析】【分析】利用定积分的物理意义解答即可.【详解】由题意物体在t=0s到t=3s时间段内的位移是:.故选:B.【点睛】本题考查了定积分的物理意义;变速直线运动的物体在时间段内的位移可以利用定积分计算,属于基础题.3.以初速度40m/s竖直向上抛一物体,t秒时刻的速度v=40-10t2,则此物体达到最高时的高度为( ).A. mB. mC. mD. m【答案】A【解析】试题分析:物体达到最高时速度为0,令,则,则所求高度应该为.考点:积分的意义.4.如图阴影部分的面积是( )A. e+B. e+-1C. e+-2D. e-【答案】C【解析】试题分析:阴影部分的面积为.考点:定积分的应用.5.做直线运动的质点在任意位置x处,所受的力F(x)=1+e x,则质点沿着与F(x)相同的方向,从点x1=0处运动到点x2=1处,力F(x)所做的功是( )A. 1+eB. eC. D. e-1【答案】B【解析】W=ʃF(x)d x=ʃ(1+e x)d x=(x+e x)|=(1+e)-1=e.选B.6.由曲线y=x2和直线y=x+2围成的封闭图形的面积是 ()A. B. C. D.【答案】C【解析】【分析】首先求出曲线与直线的交点,然后利用定积分表示围成封闭图形的面积,最后计算定积分.【详解】由题意,曲线y=x2和直线y=x+2的交点为(﹣1,1),(2,4),如图所以围成封闭图形的面积为:.故选:C.【点睛】利用定积分求平面图形面积的步骤(1)根据题意画出图形;(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;(3)把平面图形的面积表示成若干个定积分的和或差;(4)计算定积分得出答案.7.直线过抛物线的焦点且与轴垂直,则与所围成的图形的面积等于().A. B. C. D.【答案】C【解析】试题分析:抛物线的焦点为,直线与抛物线的交点为,因此.考点:积分的几何意义.视频二、填空题(本大题共4小题,每小题5分,共20分)8.如图所示,f(x)=1+sin x,则阴影部分的面积是____.【答案】π+2【解析】【分析】由图象可得S=,再根据定积分的计算法则计算即可.【详解】由图象可得S= =(x﹣cosx) =π﹣cosπ﹣(0﹣cos0)=π+2,故答案为:π+2.【点睛】利用定积分求平面图形面积的步骤(1)根据题意画出图形;(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;(3)把平面图形的面积表示成若干个定积分的和或差;(4)计算定积分得出答案.9.汽车以每小时32 km的速度行驶,到某处需要减速停车,设汽车以加速度a=-1.8 m/s2刹车,则从开始刹车到停车,汽车所走的路程约为________.(保留小数点后两位)【答案】21.95 m【解析】t=0时,v0=32 km/h=m/s=m/s,刹车后减速行驶,v(t)=v0+at=-1.8t.停止时,v(t)=0,则-1.8 t=0,得t=s,所以从刹车到停车,汽车所走过的路程为.故答案为为:.10.设a>1,若曲线y=与直线y=0,x=1,x=a所围成的封闭图形的面积为2,则a=____.【答案】e2【解析】【分析】根据定积分的几何意义表示出区域的面积,根据定积分公式解之即可.【详解】∵a>1.若曲线与直线y=0,x=1,x=a,所围成封闭图形的面积为2,∴,∴(lnx)=2,lna=2,∴a=e2.故答案为:e2.【点睛】利用定积分求平面图形面积的步骤(1)根据题意画出图形;(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;(3)把平面图形的面积表示成若干个定积分的和或差;(4)计算定积分得出答案.11.如图所示,则阴影部分的面积是 .【答案】【解析】试题分析:由题意得,直线与抛物线,解得交点分别为和,抛物线与轴负半轴交点,设阴影部分的面积为,则.考点:定积分在求面积中的应用.【方法点晴】本题主要考查了定积分求解曲边形的面积中的应用,其中解答中根据直线方程与曲线方程的交点坐标,确定积分的上、下限,确定被积函数是解答此类问题的关键,同时解答中注意图形的分割,在轴下方的部分积分为负(积分的几何意义强调代数和),着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题(本大题共2小题,共25分)12.已知曲线C1:y2=2x与C2:y=x2在第一象限内的交点为P.(1)求过点P且与曲线C2相切的直线方程;(2)求两条曲线所围图形(如图所示的阴影部分)的面积S.【答案】(1)2x-y-2=0.(2)【解析】【分析】(1)先通过解方程组求交点P的坐标,再根据导数的几何意义求出函数在x=2处的导数,从而得到切线的斜率,再利用点斜式方程写出切线方程即可.(2)先确定积分区间,再确定被积函数,从而可求由两条曲线曲线C 1:y 2=2x 与C 2:y=所围图形的面积.【详解】解:(1)曲线C 1:y 2=2x 与C 2:y=x 2在第一象限内的交点为P (2,2),y=x 2的导数为y'=x ,则y'x=2=2,而切点的坐标为(2,2),∴曲线C 2:y=x 2在x=2处的切线方程为y-2=2(x-2),即2x-y-2=0.(2)由曲线C 1:y 2=2x 与C 2:y=x 2可得,两曲线的交点坐标为(0,0),(2,2),∴两条曲线所围图形的面积S=d x==.【点睛】利用定积分求平面图形面积的步骤(1)根据题意画出图形;(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;(3)把平面图形的面积表示成若干个定积分的和或差;(4)计算定积分得出答案.13.有一动点P 沿x 轴运动,在时刻t 的速度为v (t )=8t-2t 2(速度的正方向与x 轴正方向一致). (1)P 从原点出发,当t=6时,求点P 运动的路程; (2)P 从原点出发,经过时间t 后又返回原点,求t 的值. 【答案】(1)(2)6【解析】 【分析】(1)利用定积分的物理意义解答即可; (2)由定积分的值为0可得解.【详解】解:(1)由v (t )=8t-2t 2≥0,得0≤t ≤4, 即当0≤t ≤4时,P 点向x 轴正方向运动, 当t>4时,P 点向x 轴负方向运动.故t=6时,点P 运动的路程s=(8t-2t 2)d t-(8t-2t 2)d t=-=.(2)依题意知(8t-2t 2)d t=0,即4t 2-t 3=0,解得t=0或t=6,所以t 的值为6.【点睛】本题考查了定积分的物理意义;变速直线运动的物体在时间段内的位移可以利用定积分计算.14.一列车沿直线轨道前进,刹车后列车速度v(t)=27-0.9t,则列车刹车后前进多少米才能停车( )A. 405B. 540C. 810D. 945【答案】A【解析】停车时v(t)=0,由27-0.9t=0,得t=30,所以.故选A.15.已知抛物线y=x2-2x及直线x=0,x=a,y=0围成的平面图形的面积为,求a的值.【答案】a=-1,或a=2.【解析】【试题分析】先作出的图像,根据图像分析可知,要将分成三类讨论围成区域.当时,;当时,;当时,.三种情况分别求出的值,其中一个值舍去.【试题解析】作出y=x2-2x的图象如图.(1)当a<0时,S=ʃ (x2-2x)d x=(x3-x2)|=-+a2=,∴(a+1)(a-2)2=0.∵a<0,∴a=-1.(2)当a>0时,0<a≤2,S=-=(x2-2x)dx=-(x3-x2)=a2-a3=,∴(a+11)(a-2)2=0.∵a>0,∴a=2.即(a+1)(a-2)2=0.∵a>0,∴a=2.②当a>2时,S=-ʃ (x2-2x)d x+ʃ (x2-2x)d x=-(x3-x2)|+(x3-x2)|=-(-4)+(a3-a2-+4)=+(a3-a2-+4)=.∴a3-a2+=0∴a>2不合题意.综上a=-1,或a=2.【点睛】本题主要考查利用微积分基本定理计算定积分,考查分类讨论的数学思想,考查数形结合的数学思想方法.由于题目要求围成图形的面积,所以首先要画出图像,看清楚围成的图像是哪一个部分.本题中当的取值不同时,围成的图像不一样,故分成中情况分别求解的值.。
选修2-2 1.7 定积分的简单应用一、选择题1.如图所示,阴影部分的面积为( )A.⎠⎛a b f (x )d xB.⎠⎛a b g (x )d xC.⎠⎛ab [f (x )-g (x )]d xD.⎠⎛ab [g (x )-f (x )]d x[答案] C[解析] 由题图易知,当x ∈[a ,b ]时,f (x )>g (x ),所以阴影部分的面积为⎠⎛ab [f (x )-g (x )]d x .2.如图所示,阴影部分的面积是( )A .2 3B .2- 3 C.323D.353[答案] C[解析] S =⎠⎛1-3(3-x 2-2x )d x即F (x )=3x -13x 3-x 2,则F (1)=3-1-13=53,F (-3)=-9-9+9=-9.∴S =F (1)-F (-3)=53+9=323.故应选C.3.由曲线y =x 2-1、直线x =0、x =2和x 轴围成的封闭图形的面积(如图)是( ) A.⎠⎛02(x 2-1)d xB .|⎠⎛02(x 2-1)d x |C.⎠⎛02|x 2-1|d xD.⎠⎛01(x 2-1)d x +⎠⎛12(x 2-1)d x[答案] C[解析] y =|x 2-1|将x 轴下方阴影反折到x 轴上方,其定积分为正,故应选C. 4.设f (x )在[a ,b ]上连续,则曲线f (x )与直线x =a ,x =b ,y =0围成图形的面积为( ) A.⎠⎛a b f (x )d xB .|⎠⎛ab f (x )d x |C.⎠⎛ab |f (x )|d xD .以上都不对[答案] C[解析] 当f (x )在[a ,b ]上满足f (x )<0时,⎠⎛ab f (x )d x <0,排除A ;当阴影有在x 轴上方也有在x 轴下方时,⎠⎛ab f (x )d x 是两面积之差,排除B ;无论什么情况C 对,故应选C.5.曲线y =1-1681x 2与x 轴所围图形的面积是( )A .4B .3C .2D.52[答案] B[解析] 曲线与x 轴的交点为⎝ ⎛⎭⎪⎫-94,0,⎝ ⎛⎭⎪⎫94,0故应选B.6.一物体以速度v =(3t 2+2t )m/s 做直线运动,则它在t =0s 到t =3s 时间段内的位移是( )A .31mB .36mC .38mD .40m[答案] B[解析] S =⎠⎛03(3t 2+2t )d t =(t 3+t 2)| 30=33+32=36(m),故应选B.7.(2010·山东理,7)由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.112B.14 C.13D.712[答案] A[解析] 由⎩⎪⎨⎪⎧y =x 2y =x3得交点为(0,0),(1,1).∴S =⎠⎛01(x 2-x 3)d x =⎪⎪⎪⎝⎛⎭⎪⎫13x 3-14x 410=112.8.一物体在力F (x )=4x -1(单位:N)的作用下,沿着与力F 相同的方向,从x =1运动到x =3处(单位:m),则力F (x )所做的功为( )A .8JB .10JC .12JD .14J[答案] D[解析] 由变力做功公式有:W =⎠⎛13(4x -1)d x =(2x 2-x )| 31=14(J),故应选D.9.若某产品一天内的产量(单位:百件)是时间t 的函数,若已知产量的变化率为a =36t,那么从3小时到6小时期间内的产量为( )A.12B .3-32 2C .6+3 2D .6-3 2[答案] D [解析] ⎠⎛3636tdt =66t | 63=6-32,故应选D.10.过原点的直线l 与抛物线y =x 2-2ax (a >0)所围成的图形面积为92a 3,则直线l 的方程为( )A .y =±axB .y =axC .y =-axD .y =-5ax[答案] B[解析] 设直线l 的方程为y =kx ,由⎩⎪⎨⎪⎧y =kx y =x 2-2ax 得交点坐标为(0,0),(2a +k,2ak +k 2) 图形面积S =∫2a +k[kx -(x 2-2ax )]d x=⎝ ⎛⎭⎪⎫k +2a 2x 2-x 33| 2a +k 0 =(k +2a )32-(2a +k )33=(2a +k )36=92a 3∴k =a ,∴l 的方程为y =ax ,故应选B. 二、填空题11.由曲线y 2=2x ,y =x -4所围图形的面积是________. [答案] 18[解析] 如图,为了确定图形的范围,先求出这两条曲线交点的坐标,解方程组⎩⎪⎨⎪⎧y 2=2xy =x -4得交点坐标为(2,-2),(8,4).因此所求图形的面积S =⎠⎛4-2(y +4-y 22)d y取F (y )=12y 2+4y -y 36,则F ′(y )=y +4-y22,从而S =F (4)-F (-2)=18.12.一物体沿直线以v =1+t m/s 的速度运动,该物体运动开始后10s 内所经过的路程是________.13.由两条曲线y =x 2,y =14x 2与直线y =1围成平面区域的面积是________.[答案] 43[解析] 如图,y =1与y =x 2交点A (1,1),y =1与y =x 24交点B (2,1),由对称性可知面积S =2(⎠⎛01x 2d x +⎠⎛12d x -⎠⎛0214x 2d x )=43.14.一变速运动物体的运动速度v (t )=⎩⎪⎨⎪⎧2t (0≤t ≤1)a t(1≤t ≤2)b t (2≤t ≤e )则该物体在0≤t ≤e 时间段内运动的路程为(速度单位:m/s ,时间单位:s)______________________.[答案] 9-8ln2+2ln2[解析] ∵0≤t ≤1时,v (t )=2t ,∴v (1)=2; 又1≤t ≤2时,v (t )=a t, ∴v (1)=a =2,v (2)=a 2=22=4; 又2≤t ≤e 时,v (t )=bt, ∴v (2)=b2=4,∴b =8.∴路程为S =⎠⎛012t d t +⎠⎛122td t +⎠⎛2e 8td t =9-8ln2+2ln2 .三、解答题15.计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积. [解析] 由⎩⎪⎨⎪⎧y =x +3y =x 2-2x +3解得x =0及x =3.从而所求图形的面积S =⎠⎛03(x +3)d x -⎠⎛03(x 2-2x +3)d x=⎠⎛03[(x +3)-(x 2-2x +3)]d x=⎠⎛03(-x 2+3x )d x=⎝ ⎛⎭⎪⎫-13x 3+32x 2| 30=92.16.设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2. (1)求y =f (x )的表达式;(2)若直线x =-t (0<t <1)把y =f (x )的图象与两坐标轴所围成图形的面积二等分,求t 的值.[解析] (1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b , 又已知f ′(x )=2x +2,∴a =1,b =2, ∴f (x )=x 2+2x +c .又方程f (x )=0有两个相等实根. ∴判别式Δ=4-4c =0,即c =1. 故f (x )=x 2+2x +1.(2)依题意有⎠⎛-1-t (x 2+2x +1)d x =⎠⎛0-t (x 2+2x +1)d x ,∴⎝ ⎛⎭⎪⎫13x 3+x 2+x | -t -1=⎝ ⎛⎭⎪⎫13x 3+x 2+x | 0-t 即-13t 3+t 2-t +13=13t 3-t 2+t .∴2t 3-6t 2+6t -1=0, ∴2(t -1)3=-1,∴t =1-132.17.A 、B 两站相距7.2km ,一辆电车从A 站开往B 站,电车开出t s 后到达途中C 点,这一段速度为1.2t (m/s),到C 点的速度达24m/s ,从C 点到B 站前的D 点以等速行驶,从D 点开始刹车,经t s 后,速度为(24-1.2t )m/s ,在B 点恰好停车,试求:(1)A 、C 间的距离; (2)B 、D 间的距离;(3)电车从A 站到B 站所需的时间. [解析] (1)设A 到C 经过t 1s , 由1.2t =24得t 1=20(s),所以AC =∫2001.2t d t =0.6t 2| 200=240(m).(2)设从D →B 经过t 2s , 由24-1.2t 2=0得t 2=20(s), 所以DB =∫200(24-1.2t )d t =240(m). (3)CD =7200-2×240=6720(m). 从C 到D 的时间为t 3=672024=280(s).于是所求时间为20+280+20=320(s).18.在曲线y =x 2(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴所围成的面积为112,试求:(1)切点A 的坐标; (2)过切点A 的切线方程.[解析] 如图所示,设切点A (x 0,y 0),由y ′=2x ,过A 点的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x -x 20.令y =0得x =x 02,即C ⎝ ⎛⎭⎪⎫x 02,0.设由曲线和过A 点的切线及x 轴所围成图形的面积为S ,S =S曲边△AOB -S △ABC . S 曲边△AOB =∫x 00x 2d x =13x 30, S △ABC =12|BC |·|AB | =12⎝ ⎛⎭⎪⎫x 0-x 02·x 20=14x 30,即S =13x 30-14x 30=112x 30=112.所以x 0=1,从而切点A (1,1),切线方程为y =2x -1.。