2019高三一轮总复习文科数学课时检测:3-3三角函数的图象与性质含解析
- 格式:doc
- 大小:106.50 KB
- 文档页数:7
[课 时 跟 踪 检 测][基 础 达 标]1.y =|cos x |的一个单调增区间是( ) A.⎣⎢⎡⎦⎥⎤-π2,π2 B .[0,π] C.⎣⎢⎡⎦⎥⎤π,3π2 D.⎣⎢⎡⎦⎥⎤3π2,2π 解析:将y =cos x 的图象位于x 轴下方的图象做关于x 轴的对称,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.答案:D2.设偶函数f (x )的部分图象如图所示,△KML 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝ ⎛⎭⎪⎫16的值为( )A .-34B .-14C .-12 D.34解析:由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cosπx ,故f⎝ ⎛⎭⎪⎫16=12cos π6=34. 答案:D3.关于函数y =tan ⎝ ⎛⎭⎪⎫2x -π3,下列说法正确的是( )A .是奇函数B .在区间⎝ ⎛⎭⎪⎫0,π3上单调递减C.⎝ ⎛⎭⎪⎫π6,0为其图象的一个对称中心 D .最小正周期为π解析:函数y =tan ⎝ ⎛⎭⎪⎫2x -π3是非奇非偶函数,A 错;在区间⎝ ⎛⎭⎪⎫0,π3上单调递增,B 错;最小正周期为π2,D 错;由2x -π3=k π2,k ∈Z ,得x =k π4+π6,当k =0时,x =π6,所以它的图象关于⎝ ⎛⎭⎪⎫π6,0对称,故选C.答案:C4.(2017届河南中原名校模拟)已知函数f (x )=sin(2x +φ),其中0<φ<2π,若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则φ等于( )A.π6B.5π6C.7π6D.11π6解析:若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,则f ⎝ ⎛⎭⎪⎫π6等于函数的最大值或最小值,即2×π6+φ=k π+π2,k ∈Z ,则φ=k π+π6,k ∈Z ,又f ⎝ ⎛⎭⎪⎫π2>f (π),即sin φ<0,又0<φ<2π,所以π<φ<2π.所以当k =1时,此时φ=7π6,满足条件.答案:C5.已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54 B.⎣⎢⎡⎦⎥⎤12,34 C.⎣⎢⎡⎦⎥⎤0,12 D .(0,2]解析:由π2<x <π,ω>0得π2ω+π4<ωx +π4<πω+π4,由题意结合选项知⎝ ⎛⎭⎪⎫π2ω+π4,πω+π4⊆⎣⎢⎡⎦⎥⎤π2,3π2,所以⎩⎪⎨⎪⎧π2ω+π4≥π2,πω+π4≤3π2,所以12≤ω≤54.答案:A6.函数f (x )=2sin(ωx +φ)(ω>0)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6的值为( )A .2或0B .-2或2C .0D .-2或0解析:因为函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,所以该函数图象关于直线x =π6对称,因为在对称轴处对应的函数值为最大值或最小值,所以选B.答案:B7.如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0对称,那么|φ|的最小值为( )A.π6 B.π4 C.π3D.π2解析:由题意得3cos ⎝ ⎛⎭⎪⎫2×4π3+φ=3cos ⎝ ⎛⎭⎪⎫2π3+φ+2π=3cos 2π3+φ=0,∴2π3+φ=k π+π2,k ∈Z ,∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.答案:A8.函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3解析:因为0≤x ≤9,所以-π3≤π6x -π3≤7π6, 所以sin ⎝ ⎛⎭⎪⎫π6x -π3∈⎣⎢⎡⎦⎥⎤-32,1,所以y ∈[-3,2],所以y max +y min =2- 3. 答案:A9.函数y =(4-3sin x )(4-3cos x )的最小值为________. 解析:y =16-12(sin x +cos x )+9sin x cos x ,令t =sin x +cos x ,则t ∈[-2, 2 ],且sin x cos x =t 2-12, 所以y =16-12t +9×t 2-12=12(9t 2-24t +23). 故当t =43时,y min =72. 答案:7210.(2017届唐山统考)已知函数f (x )=sin ωx +3cos ωx (ω>0),f ⎝ ⎛⎭⎪⎫π6+f ⎝ ⎛⎭⎪⎫π2=0,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π2上递减,则ω=________.解析:因为f (x )在⎝ ⎛⎭⎪⎫π6,π2上单调递减,且f ⎝ ⎛⎭⎪⎫π6+f ⎝ ⎛⎭⎪⎫π2=0,所以f π6+π22=0,即f ⎝ ⎛⎭⎪⎫π3=0. 因为f (x )=sin ωx +3cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3,所以f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫π3ω+π3=0,所以π3ω+π3=k π(k ∈Z ),ω=3k -1,k ∈Z ,又12·2πω≥π2-π6,ω>0,所以ω=2.答案:211.已知函数f (x )=(sin x +cos x )2+2cos 2x -2. (1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值,最小值.解:(1)f (x )=sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π4,令2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 得k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,(k ∈Z ).(2)∵x ∈⎣⎢⎡⎦⎥⎤π4,3π4,∴3π4≤2x +π4≤7π4,∴-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤22,∴-2≤f (x )≤1,∴当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.12.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0<φ<2π3的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32,求f (x )的单调递增区间.解:∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2. ∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,φ=π2+k π,k ∈Z , ∵0<φ<2π3,∴φ=π2.(2)f (x )图象过点⎝ ⎛⎭⎪⎫π6,32时,sin ⎝ ⎛⎭⎪⎫2×π6+φ=32,即sin ⎝ ⎛⎭⎪⎫π3+φ=32.又∵0<φ<2π3,∴π3<π3+φ<π.∴π3+φ=2π3,∴φ=π3.∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3.令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z .∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ).[能 力 提 升]1.(2018届山西长治二中等第一次联考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),且在⎝ ⎛⎭⎪⎫0,π2上有且仅有三个零点,若f (0)=-f ⎝ ⎛⎭⎪⎫π2,则ω=( ) A.23B .2C.263D.143解析:∵函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f (0)=-f ⎝ ⎛⎭⎪⎫π2,即f (0)+f ⎝ ⎛⎭⎪⎫π2=0,∴f (x )的图象关于点⎝ ⎛⎭⎪⎫π4,0对称,故sin ⎝ ⎛⎭⎪⎫π4ω-π6=0,故有π4ω-π6=k π,k ∈Z ,即ω=4k +23,k ∈Z .①∵f (x )在⎝ ⎛⎭⎪⎫0,π2上有且仅有三个零点,故有2πω<π2<32·2πω, ∴6>ω>4.②综合①②,结合所给的选项,可得ω=143,故选D. 答案:D2.(2017届河北邯郸一模)已知函数f (x )=2sin 2⎝ ⎛⎭⎪⎫ωx +π6(ω>0)在区间⎣⎢⎡⎦⎥⎤π6,2π3内单调递增,则ω的最大值是( )A.34 B.35 C.12D.14解析:函数f (x )=1-cos ⎝ ⎛⎭⎪⎫2ωx +π3(ω>0)在⎣⎢⎡⎦⎥⎤π6,2π3内单调递增,则2ωx +π3∈π3ω+π3,4π3ω+π3⊆[0,π],则⎩⎪⎨⎪⎧4π3ω+π3≤π,π3ω+π3≥0,解得0<ω≤12,故ω的最大值是12.答案:C3.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最大值为4,求a 的值;(3)在(2)的条件下,求满足f (x )=1且x ∈[-π,π]的x 的取值集合. 解:(1)f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1, 由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 可得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).(2)当x =π6时,f (x )取得最大值4,即f ⎝ ⎛⎭⎪⎫π6=2sin π2+a +1=a +3=4,所以a =1.(3)由f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+2=1, 可得sin ⎝ ⎛⎭⎪⎫2x +π6=-12,则2x +π6=7π6+2k π,k ∈Z 或2x +π6=116π+2k π,k ∈Z , 即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z ,又x ∈[-π,π],可解得x =-π2,-π6,π2,5π6, 所以x的取值集合为⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π6. 4.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝ ⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解:(1)因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6. 所以sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,所以-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ].所以f (x )∈[b,3a +b ],又因为-5≤f (x )≤1,所以b =-5,3a +b =1,因此a =2,b =-5.(2)由(1)得,f (x )=-4sin ⎝ ⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝ ⎛⎭⎪⎫2x +7π6-1=4sin2x +π6-1,又由lg g (x )>0,得g (x )>1,所以4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,所以sin ⎝ ⎛⎭⎪⎫2x +π6>12,所以2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,所以g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,(k ∈Z ).又因为当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时, g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .所以g (x )的单调减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3,(k ∈Z ).。
§4.2三角函数的图象与性质考纲解读分析解读三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.五年高考考点一三角函数的图象及其变换1.(2017课标全国Ⅰ,9,5分)已知曲线C1:y=cos x,C2:y=sin,则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2答案D2.(2016北京,7,5分)将函数y=sin图象上的点P向左平移s(s>0)个单位长度得到点P'.若P'位于函数y=sin2x的图象上,则( )A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为答案A3.(2015湖南,9,5分)将函数f(x)=sin2x的图象向右平移φ个单位后得到函数g(x)的图象.若对满足|f(x1)-g(x2)|=2的x1,x2,有|x1-x2|min=,则φ=( )A. B. C. D.答案D4.(2016课标全国Ⅲ,14,5分)函数y=sin x-cos x的图象可由函数y=sin x+cos x的图象至少向右平移个单位长度得到.答案5.(2017山东,16,12分)设函数f(x)=sin+sin,其中0<ω<3.已知f=0.(1)求ω;(2)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在上的最小值.解析本题考查了y=Asin(ωx+φ)的图象和性质.(1)因为f(x)=sin+sin,所以f(x)=sinωx-cosωx-cosωx=sinωx-cosωx==sin.由题设知f=0,所以-=kπ,k∈Z.故ω=6k+2,k∈Z,又0<ω<3,所以ω=2.(2)由(1)得f(x)=sin,所以g(x)=sin=sin.因为x∈,所以x-∈,当x-=-,即x=-时,g(x)取得最小值-.教师用书专用(6—15)6.(2016四川,3,5分)为了得到函数y=sin的图象,只需把函数y=sin2x的图象上所有的点( )A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度答案D7.(2015四川,4,5分)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A.y=cosB.y=sinC.y=sin2x+cos2xD.y=sin x+cos x答案A8.(2015山东,3,5分)要得到函数y=sin的图象,只需将函数y=sin4x的图象( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位答案B9.(2014浙江,4,5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象( )A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位答案C10.(2014辽宁,9,5分)将函数y=3sin的图象向右平移个单位长度,所得图象对应的函数( )A.在区间上单调递减B.在区间上单调递增C.在区间上单调递减D.在区间上单调递增答案B11.(2013湖北,4,5分)将函数y=cos x+sin x(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是( )A. B. C. D.答案B12.(2013山东,5,5分)将函数y=sin(2x+φ)的图象沿x轴向左平移个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A. B. C.0D.-答案B13.(2013四川,5,5分)函数f(x)=2sin(ωx+φ)的部分图象如图所示,则ω,φ的值分别是( )A.2,-B.2,-C.4,-D.4,答案A14.(2016江苏,9,5分)定义在区间[0,3π]上的函数y=sin2x的图象与y=cos x的图象的交点个数是.答案715.(2015湖北,17,11分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为,求θ的最小值.解析(1)根据表中已知数据,解得A=5,ω=2,φ=-.且函数表达式为f(x)=5sin.(2)由(1)知f(x)=5sin,得g(x)=5sin.因为y=sin x的对称中心为(kπ,0),k∈Z.令2x+2θ-=kπ,解得x=+-θ,k∈Z.由于函数y=g(x)的图象关于点成中心对称,令+-θ=,解得θ=-,k∈Z.由θ>0可知,当k=1时,θ取得最小值.考点二三角函数的性质及其应用1.(2017课标全国Ⅲ,6,5分)设函数f(x)=cos,则下列结论错误的是( )A.f(x)的一个周期为-2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在单调递减答案D2.(2016课标全国Ⅱ,7,5分)若将函数y=2sin2x的图象向左平移个单位长度,则平移后图象的对称轴为( )A.x=-(k∈Z)B.x=+(k∈Z)C.x=-(k∈Z)D.x=+(k∈Z)答案B3.(2016浙江,5,5分)设函数f(x)=sin2x+bsin x+c,则f(x)的最小正周期( )A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关答案B4.(2015课标Ⅰ,8,5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( )A.,k∈ZB.,k∈ZC.,k∈ZD.,k∈Z答案D5.(2014北京,14,5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0).若f(x)在区间上具有单调性,且f=f=-f,则f(x)的最小正周期为.答案π6.(2017浙江,18,14分)已知函数f(x)=sin2x-cos2x-2·sin xcos x(x∈R).(1)求f的值;(2)求f(x)的最小正周期及单调递增区间.解析本题主要考查三角函数的性质及其变换等基础知识,同时考查运算求解能力.(1)由sin=,cos=-,f=--2××,得f=2.(2)由cos2x=cos2x-sin2x与sin2x=2sin xcos x得f(x)=-cos2x-sin2x=-2sin.所以f(x)的最小正周期是π.由正弦函数的性质得+2kπ≤2x+≤+2kπ,k∈Z,解得+kπ≤x≤+kπ,k∈Z.所以,f(x)的单调递增区间是(k∈Z).教师用书专用(7—16)7.(2016山东,7,5分)函数f(x)=(sin x+cos x)(cos x-sin x)的最小正周期是( )A. B.π C. D.2π答案B8.(2014陕西,2,5分)函数f(x)=cos的最小正周期是( )A. B.π C.2π D.4π答案B9.(2013北京,3,5分)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案A10.(2013浙江,4,5分)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案B11.(2015浙江,11,6分)函数f(x)=sin2x+sin xcos x+1的最小正周期是,单调递减区间是.答案π;(k∈Z)12.(2014上海,1,4分)函数y=1-2cos2(2x)的最小正周期是.答案13.(2016天津,15,13分)已知函数f(x)=4tan xsincos-.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间上的单调性.解析(1)f(x)的定义域为.f(x)=4tan xcos xcos-=4sin xcos-=4sin x-=2sin xcos x+2sin2x-=sin2x+(1-cos2x)-=sin2x-cos2x=2sin.所以,f(x)的最小正周期T==π.(2)令z=2x-,易知函数y=2sin z的单调递增区间是,k∈Z.由-+2kπ≤2x-≤+2kπ,得-+kπ≤x≤+kπ,k∈Z.设A=,B=,易知A∩B=.所以,当x∈时,f(x)在区间上单调递增,在区间上单调递减.14.(2015重庆,18,12分)已知函数f(x)=sinsin x-cos2x.(1)求f(x)的最小正周期和最大值;(2)讨论f(x)在上的单调性.解析(1)f(x)=sinsin x-cos2x=cos xsin x-(1+cos2x)=sin2x-cos2x-=sin-,因此f(x)的最小正周期为π,最大值为.(2)当x∈时,0≤2x-≤π,从而当0≤2x-≤,即≤x≤时,f(x)单调递增,当≤2x-≤π,即≤x≤时,f(x)单调递减.综上可知,f(x)在上单调递增;在上单调递减.15.(2015山东,16,12分)设f(x)=sin xcos x-cos2.(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f=0,a=1,求△ABC面积的最大值.解析(1)由题意知f(x)=-=-=sin2x-.由-+2kπ≤2x≤+2kπ,k∈Z,可得-+kπ≤x≤+kπ,k∈Z;由+2kπ≤2x≤+2kπ,k∈Z,可得+kπ≤x≤+kπ,k∈Z.所以f(x)的单调递增区间是(k∈Z);单调递减区间是(k∈Z).(2)由f=sin A-=0,得sin A=,由题意知A为锐角,所以cos A=.由余弦定理a2=b2+c2-2bccos A,可得1+bc=b2+c2≥2bc,即bc≤2+,且当b=c时等号成立.因此bcsin A≤.所以△ABC面积的最大值为.16.(2013安徽,16,12分)已知函数f(x)=4cosωx·sin(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间上的单调性.解析(1)f(x)=4cosωx·sin=2sinωx·cosωx+2cos2ωx=(sin2ωx+cos2ωx)+=2sin+.因为f(x)的最小正周期为π,且ω>0,从而有=π,故ω=1.(2)由(1)知,f(x)=2sin+.若0≤x≤,则≤2x+≤.当≤2x+≤,即0≤x≤时,f(x)单调递增;当≤2x+≤,即≤x≤时,f(x)单调递减.综上可知,f(x)在区间上单调递增,在区间上单调递减.三年模拟A组2016—2018年模拟·基础题组考点一三角函数的图象及其变换1.(2018四川德阳三校联考,5)将函数f(x)=sin2x图象上的点保持纵坐标不变,将横坐标缩短为原来的,再将图象向右平移个单位长度后得到g(x)的图象,则g(x)的解析式为( )A.g(x)=sinB.g(x)=sinC.g(x)=sinD.g(x)=sin答案C2.(2017河南百校联考,6)已知将函数f(x)=tan(2<ω<10)的图象向右平移个单位后与f(x)的图象重合,则ω=( )A.9B.6C.4D.8答案B3.(2016福建福州一中1月模拟,6)已知函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<的部分图象如图所示,为了得到函数g(x)=Asinωx的图象,只需要将y=f(x)的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度答案D考点二三角函数的性质及其应用4.(2018辽宁鞍山一中一模,4)函数f(x)=2sin xcos x+cos2x图象的对称轴为( )A.x=-(k∈Z)B.x=+(k∈Z)C.x=-(k∈Z)D.x=+(k∈Z)答案D5.(2017豫南九校2月联考,7)已知函数f(x)=sin2x-2cos2x,下列结论错误的是( )A.函数f(x)的最小正周期是πB.函数f(x)的图象关于直线x=对称C.函数f(x)在区间上是增函数D.函数f(x)的图象可由g(x)=2sin2x-1的图象向右平移个单位长度得到答案D6.(2017河北武邑第三次调研,4)已知函数f(x)=sin x+λcos x的图象的一个对称中心是点,则函数g(x)=λsin xcos x+sin2x的图象的一条对称轴是直线( )A.x=B.x=C.x=D.x=-答案D7.(人教A必4,一,1-4A,3,变式)函数f(x)=sin+cos2x的振幅和最小正周期分别是( )A.,B.,πC.,D.,π答案BB组2016—2018年模拟·提升题组(满分:45分时间:40分钟)一、选择题(每小题5分,共25分)1.(2018河北衡水模拟,9)设函数f(x)=2cos(ωx+φ)对任意的x∈R,都有f=f,若函数g(x)=sin(ωx+φ)+cos(ωx+φ)+2,则g的值是( )A.2B.0C.2或4D.1或3答案D2.(2018广东广雅中学、华东中学、河南名校第一次联考,12)已知函数f(x)=(1-2cos2x)sin-2sin xcos xcos,f(x)在上单调递增,若f≤m恒成立,则实数m的取值范围为( )A. B. C.[1,+∞) D.答案C3.(2017山西五校3月联考,8)设k∈R,则函数f(x)=sin+k的部分图象不可能为( )答案D4.(2017河北名校二模,8)函数f(x)=sinωx(ω>0)的图象向右平移个单位得到函数y=g(x)的图象,并且函数g(x)在区间上单调递增,在区间上单调递减,则实数ω的值为( )A. B. C.2D.答案C5.(2016福建龙岩一模,11)已知函数f(x)=Asin(A>0,ω>0)的部分图象如图所示,△EFG是边长为2的等边三角形,为了得到g(x)=Asinωx的图象,只需将f(x)的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度答案A二、解答题(共20分)6.(2018江苏常州武进期中,15)如图为函数y=f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)图象的一部分,其中点P是图象上的一个最高点,点Q是与点P相邻的与x轴的一个交点.(1)求函数f(x)的解析式;(2)若将函数f(x)的图象沿x轴向右平移个单位,再把所得图象上每一点的横坐标都缩短为原来的(纵坐标不变),得到函数y=g(x)的图象,求函数y=g(x)的单调递增区间.解析(1)由题图可知A=2,T=4×=4π,∴ω==,故f(x)=2sin.又∵点P在函数图象上,∴2sin=2,即+φ=+2kπ(k∈Z),∴φ=-+2kπ(k∈Z),又∵|φ|<π,∴φ=-,故f(x)=2sin.(2)由(1)得,f(x)=2sin,把函数f(x)的图象沿x轴向右平移个单位,得到y=2sin的图象,再把所得图象上每一点的横坐标都缩短为原来的(纵坐标不变),得到g(x)=2sin的图象,由2kπ-≤2x-≤2kπ+(k∈Z),得kπ-≤x≤kπ+(k∈Z),故g(x)的单调递增区间是(k∈Z).7.(2017山西临汾一中等五校第二次联考,17)已知函数f(x)=2sin xcos x-cos2x(x∈R).(1)若f(α)=且α∈,求cos2α;(2)求曲线y=f(x)在点(0,f(0))处的切线方程;(3)记函数f(x)在x∈上的最大值为b,且函数f(x)在[aπ,bπ](a<b)上单调递增,求实数a的最小值.解析(1)f(x)=sin2x-cos2x=2sin.∵f(α)=,∴sin=,又α∈,∴2α-∈,∴cos=-.∴cos2α=cos=-×-×=-.(2)∵f'(x)=4cos,∴f'(0)=2,又f(0)=-,∴所求切线方程为y=2x-.(3)当x∈时,2x-∈,f(x)∈[1,2],∴b=2.由-+2kπ≤2x-≤+2kπ(k∈Z),得-+kπ≤x≤+kπ(k∈Z).又函数f(x)在[aπ,2π](a<2)上单调递增,∴[aπ,2π]⊆,∴-+2π≤aπ<2π,∴a min=.C组2016—2018年模拟·方法题组方法1 根据图象确定函数解析式1.(2018广东茂名化州二模,9)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,且f(α)=1,α∈,则cos=( )A.±B.C.-D.答案C2.(2017湖北七市3月联考,6)函数f(x)=Asin(ωx+φ)的部分图象如图所示,若x1,x2∈,x1≠x2且f(x1)=f(x2),则f(x1+x2)=( )A.1B.C.D.答案D方法2 三角函数的单调性问题的常见类型及解题策略3.(2017河北衡水中学三调考试,7)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=a(0<a<A)的三个相邻交点的横坐标分别是2,4,8,则f(x)的单调递减区间是( )A.[6kπ,6kπ+3],k∈ZB.[6kπ-3,6kπ],k∈ZC.[6k,6k+3],k∈ZD.[6k-3,6k],k∈Z答案D方法3 三角函数的奇偶性、周期性、对称性的求解方法4.(2018广东东莞二调,10)已知函数f(x)=sin x+λcos x(λ∈R)的图象关于x=-对称,若把函数f(x)的图象上每个点的横坐标扩大到原来的2倍,再向右平移个单位,得到函数g(x)的图象,则函数g(x)图象的一条对称轴方程为( )A.x=B.x=C.x=D.x=答案D5.(2017广东清远清城期末,9)已知函数f(x)=sin(ωx+φ)ω>0,|φ|<,其图象相邻两条对称轴之间的距离为,且函数f是偶函数,下列判断正确的是( )A.函数f(x)的最小正周期为2πB.函数f(x)的图象关于点对称C.函数f(x)的图象关于直线x=-对称D.函数f(x)在上单调递增答案D。
3. 3三角函数的图象与性质E 课后作业孕谀[基础送分提速狂刷练]一、选择题1. 如果函数y=3cos(2/+0)的图象关于点(丄「,0)成中心对称,那么丨如的最小值为 ()JIJIJIJIA •—B •—C •— D.—O4oZ答案A解析 依题意得3cos&厂+町=0,= «兀+*, 0 =斤兀一¥皿(&GZ),因此I 如的最小值是石•故选A.71712. 已知函数尸=$注5在|_-y,节上是增函数,则实数g 的取值范围是() A. ~|, 0) B. [-3,0) C.(0, |D. (0,3]答案CJI JI71解析 由于y=sinx 在一京,包■上是增函数,为保证y=sin3/在一〒 函数,所以小0,ji JI 3且丁 3 ^―,则0< 3 W ㊁.故选C.(JI JI \3. (2017・成都调研)函数y=2sin 「尹一勺(0W 丸W9)的最大值与最小值之和为() A. 2—yj^ B. 0 C. —1 D. —1—答案A解析 因为0W/W9,所以一— 所以 sin^-x 一"-平,1 .所以yU [—寸5, 2],所以畑+ /nin = 2—寸5,选A.4. (2017 •长沙模拟)设函数f(x) =£sin(ex+ 0+*)(Q 〉O,丨的最小正周期为兀,且是偶函数,贝9()JI〒上是增A. /tv )在(0,内单调递减(n 3 兀、B. f (x )在(了,一厂丿内单调递减C. fd )在(0,内单调递增(ji 3 兀、D. /tv )在斤,一内单调递增 答案A解析由条件,知G = 2.因为f3是偶函数,且丨如导,所以 妇+因为当 xW (0, 时,2xW (0, 所以fd )在(0,旬内单调递减.故选A.5. 将函数y=sinx 的图象向左平移*个单位,得到函数y=f (M 的图象,则下列说法正 确的是()A. y= f (x )是奇函数B. y=f{x )的周期为兀C. 尸代力的图象关于直线/=守对称D. y=f (x )的图象关于点(一2~’ 0)对称答案D解析 由题意知,A%)=cos%,所以它是偶函数,A 错误;它的周期为2兀,B 错误;它 的对称轴是直线x=k^,胆Z, C 错误;它的对称中心是点(加+*,0), AEZ, D 正确.故 选D.6. (2017 •广州综合测试)己知函数f 、3=sin (2;v+0)(0〈以閱的图象的一个对称中 心为(¥,0)则函数代力的单调递减区间是()■ 3兀 兀 A. 2&n —千厂,2A JI +— JI5 开 、B.+—, 2斤兀+~^~ (WWZ )3兀 n TC. kTi , kTi +—Uk^Z )兀5 JI这时 f3 =^sin (2x+*)=^cos2x.gZ)D.+—,乃+可(加Z)答案D_ , /3 nA ( 3 n A 3n , 解析由题息得twJ = sin(2X-^~+。
解析:将y = cos <的图象位于x 轴下方的图象做关于x 轴的对称,x 轴上方(或 x 轴上)的图象不变,即得y = |cos (|的图象(如图).故选D.1厂110 JLJt 3JI2n X2T答案:D2. 设偶函数f (x )的部分图象如图所示,△ KML 为等腰直角三角形,/ KML KL = 1,则f 1的值为解析:一 一 1 一 1由题意知,点M 到x 轴的距离是2,根据题意可设f (x )= qcos ^x 又2n^ 1,所以 3= 3n 所以 f(x) = 2cos x ,故 fg '\= *c°s討斗3答案:D3.关于函数y =tan 2x —扌,下列说法正确的是()A .是奇函数B .在区间i O ,才上单调递减 D .最小正周期为n[课时跟踪检测][基础达标]1. y = |cos (|的一个单调增区间是( )A.B . [0, n]解析:函数 尸tan 2x -3是非奇非偶函数,A 错;在区间0,才上单调递增, B 错;最小正周期为2 D 错;由2x -許2, k € Z ,得x = ¥+ 6当k = 0时,答案:C4. (2017届河南中原名校模拟)已知函数f(x) = sin(2x + ©,其中0<杯2冗,若 f(x)< f g)对x € R 恒成立,且f 牙》f(冗,)J 则©等于()11n "6"解析:若f(x)< f 6对x € R 恒成立,则ff 等于函数的最大值或最小值, 冗 k € Z,则 ©= k n+ 6‘k € Z,又 f 7冗所以冗<<2冗所以当k = 1时,此时片石,满足条件.答案:C5.已知3>0,函数f(x) = sin 3x+才在2,冗上单调递减,则3的取值范围C. 0, 21D • (0,2]"Tn "Tn "Tn "Tn "Tn解析:由2<x< n, 3>0得2 3 + 4<3X + 4 < nw+ 4 ,由题意结合选项知C 7t 7t 7t23+4>2,!o3冗 "3+ 4^2, 答案:A6. 函数f(x) = 2sin (3汁©)( 3>0)对任意x 都有f x = f 6-x ,则f g 的值x =6,所以它的图象关于6 0对称,故选C.ttrt 亠 冗 TC即 2X 6+ ©= k n+ 2, 1-2_B(TC 7t23+4,1 5所以2< 3< 4.冗5冗 D.冗,)即 sin ©<0,又 0<©<2冗,5- 41- 2_代A . 2 或 0B .— 2 或 2C . 0D . — 2 或 0解析:因为函数f(x) = 2sin(^X ©)对任意x 都有fg + x \=帝一x ,所以该函 数图象关于直线x =n 寸称,因为在对称轴处对应的函数值为最大值或最小值, 所以选B.答案:B7. 如果函数尸3cos(2x +妨的图象关于点乍占0对称,那么呻的最小值为 ()nD.2解析:r] n n nn n片k n+ 2, k € Z ,「.片k n —6,k € Z ,取k = 0,得|咁的最小值为 答案:A8. 函数 尸2sin 肯—n (0< x < 9)的最大值与最小值之和为( )A . 2— 3B . 0C .— 1D . — 1— .3解析:因为0< x < 9,所以—n n —n 7n, 所以 sin 6x -3 6 -今,1 , 所以 y 6 [ — 3, 2],所以 y max + y min — 2-"』3. 答案:A9. __________________________________________ 函数 y — (4 — 3sinx)(4 — 3cosx)的最小值为 _____________________ . 解析:y — 16— 12(sinx + cosx) + 9sinxcosx ,冗亠 | 4 n 由题意得3cos 2 X § +3coS2n+ 片0,二争t 2— i令 t = sinx +cosx ,贝U t € [—2, 2 ], 且 sinxcosx =— ,n n+ _o ,所以f 6= o ,即因为 f(x) = sin 3x+ 3cos 3x 2sin 3x+ 所以f 3 二2sin 討+3 二o ,n n1 2 n n n所以3宀+乔kgZ ),尸3k -1, k €z ,又1 丁2—6, 3>°,所以尸 2.答案:211. 已知函数 f(x) = (sinx + cosx)2 + 2cos ^x — 2. (1) 求 f(x)的单调递增区间;(2) 当 x € In 苧时,求函数f(x)的最大值,最小值. 解:(1)f(x) = sin2x + cos2x = 2sin 2x +^ ,nn n令 2k n_ 2三 2x + 4W 2k n+ Q , k € Z ,得 k n —x < k n+ g, k € Z .故f(x)的单调递增区间为Ikn — 3n ,k n+ n ,(k € Z ).所以 y = 16— 12t + 9XF-24t + 23).故当t = _7 ,y min =^.答案:710. (2017届唐山统考)已知函数 f(x)= sin wx+ . 3cos w )Xw >0),且f(x)在区间 £扌上递减,则 3=解析:因为f(x)在6,2上单调递减,且f 6+f 2=二0,n 3 n 3冗小 n 7 n(2): x € 14,4:'••盲三2x+ 犷玄‘ — 1w sin 2x +4 w 2,二—叮2 w f(x) w 1,二当x € n 彗时,函数f (x )的最大值为i ,最小值为—012. 已知函数f(x) = sin (3x+©) 3>0, 0<杯甘 的最小正周期为 n (1) 求当f(x)为偶函数时©的值;(2) 若 f(x)的图象过点n, -2,求f (x )的单调递增区间. 2冗解:T f(x)的最小正周期为 n 则T =:= n — 3=2. f(x) = sin( 2x +(|).n(1)当f(x)为偶函数时, 片2+ kn, k € Z , 2 n n :0<杯亍,•-片2.即sin「亠2冗 n n n 2 n又••• o< ^<-3 , • 3<3+护冗「3+©=~3 , • nn n ■厂—/口 . 5 n n2k n — 2w 2x + 3W 2k n+ 2 , k € Z ,得 kn-^^w x w k n+ ,k € Z .5 n n I• f(x)的单调递增区间为Ik n —12 , k n+12 (k € Z ).[能力提升]1. (2018届山西长治二中等第一次联考)已知函数f(x) = sin ”x—之(3>0),且 在0 , n 上有且仅有三个零点,若f(0)=—f n ,则3=()A.2B . 2(2)f(x )图象过点n 于时, sin ;n2X6+_^32 ,••• f(x) = sin 2x +C*262即3= 4k+ 3, k€乙①••• f(x)在0, n上有且仅有三个零点,2 n n3 2 n故有3<2<2 3,答案:C3 .已知f(x) = 2sin 玄+ n+ a+ 1.(1)求f(x)的单调递增区间; ‘ 14 DP解析:•••函数f(x) = sin3x—§ (3>0),f(0)=- f 即f(0)+ f 0,• f(x)的图象关于点f, 0对称,故sin 右—6 = 0,故有43—6= k n k€ Z,综合①②,结合所给的选项,可得143=~3,故选D.答案:D2. (2017届河北邯郸一模)已知函数f(x)= 2sin23汁单调递增,则3的最大值是()B.3c.2D.4解析:函数f(x) = 1 —cos?3 汁n)(3>0)在n2n内单调递增,则23汁nn 4 n n …3+ 3, 3 3+ 3? [0, n]则「4n n 亍3+3= n 1 1解得0< 3<^,故3的最大值是2. n n 小 2 2 .3 3+ 3> 0,n6,备内⑵当x€ 0, ,f(x)的最大值为4,求a的值;(3) 在⑵的条件下,求满足f(x) = 1且x € [ — n 冗的x 的取值集合.fn n n由 2k n — q W 2x + 2k n+ 2,k € Z ,n n可得 k n — 3W x < k n+ 6, k € Z , 所以f(x)的单调递增区间为Ik ⑵当x =n 时f (x )取得最大值4, 即 f g = 2sin n + a + 1 = a + 3 = 4,所以 a = 1.⑶由 f(x) = 2sin 2x + g + 2= 1, 可得 sin?x + n i= — 2 ,… n 7 n 「、 n 11则 2x +6=6 + 2k n k € Z 或 2x + 6=百 n+ 2k n k € Z ,n 5 n即 x = 2+ k n k € Z 或 x = "6 + k n k € Z ,又x € [ — n n]可解得( n一 n4.已知 a>0 ,函数 f(x) — — 2asin 2x +6 + 2a + b ,当 x € 0 , 2 时,—5< f(x)< 1.(1)求常数a , b 的值;⑵设g(x)= f x +扌且lg g(x)>0 ,求g(x)的单调区间. 解: (1)因为x € p , n ,所以2x + n 辰 所以 sin?x + 訂€ — 2, 1 ,所以一2asingx + 之€ [ — 2a , a].所以 f(x) € [b,3a + b], 又因为一5<f(x)w 1,所以 b = — 5,3a + b = 1,因此 a =2, b = — 5.(2)由 (1)得,f(x) = — 4sin?x + f)— 1, g(x) = f x + 2 = — 4sin 2x +” — 1 = 4sin2x +1, 又由 Ig g(x)>0,得 g(x)>1,所以x 的取值集合为‘― n n n 5 n2, — 6 , 2 ,石.所以4sin?x+ 訂一1>1,所以sin?x+ £>舟,所以2k n+ 6<2x + 6<2k n+ 孥k€ Z ,其中当2k n+ n<2x+詐2k n+扌,k€ Z时,g(x)单调递增,即k n<w k n+g, k€ Z,所以g(x)的单调增区间为Jk n k n+ n,(k€ Z). 又因为当2k n+未2x+去2k n+警,k€ Z时,2 6 6n ng(x)单调递减,即k n+ 6<x<k n+ 3, k€ Z. 所以g(x)的单调减区间为Jkn+ ^, k n+寸,(k€ Z).。
[课 时 跟 踪 检 测][基 础 达 标]1.y =|cos x |的一个单调增区间是( ) A.⎣⎢⎡⎦⎥⎤-π2,π2 B .[0,π] C.⎣⎢⎡⎦⎥⎤π,3π2 D.⎣⎢⎡⎦⎥⎤3π2,2π 解析:将y =cos x 的图象位于x 轴下方的图象做关于x 轴的对称,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.答案:D2.设偶函数f (x )的部分图象如图所示,△KML 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝ ⎛⎭⎪⎫16的值为( )A .-34B .-14C .-12 D.34解析:由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cosπx ,故f⎝ ⎛⎭⎪⎫16=12cos π6=34. 答案:D3.关于函数y =tan ⎝ ⎛⎭⎪⎫2x -π3,下列说法正确的是( )A .是奇函数B .在区间⎝ ⎛⎭⎪⎫0,π3上单调递减C.⎝ ⎛⎭⎪⎫π6,0为其图象的一个对称中心 D .最小正周期为π解析:函数y =tan ⎝ ⎛⎭⎪⎫2x -π3是非奇非偶函数,A 错;在区间⎝ ⎛⎭⎪⎫0,π3上单调递增,B 错;最小正周期为π2,D 错;由2x -π3=k π2,k ∈Z ,得x =k π4+π6,当k =0时,x =π6,所以它的图象关于⎝ ⎛⎭⎪⎫π6,0对称,故选C.答案:C4.(2017届河南中原名校模拟)已知函数f (x )=sin(2x +φ),其中0<φ<2π,若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则φ等于( )A.π6B.5π6C.7π6D.11π6解析:若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,则f ⎝ ⎛⎭⎪⎫π6等于函数的最大值或最小值,即2×π6+φ=k π+π2,k ∈Z ,则φ=k π+π6,k ∈Z ,又f ⎝ ⎛⎭⎪⎫π2>f (π),即sin φ<0,又0<φ<2π,所以π<φ<2π.所以当k =1时,此时φ=7π6,满足条件.答案:C5.已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54 B.⎣⎢⎡⎦⎥⎤12,34 C.⎣⎢⎡⎦⎥⎤0,12 D .(0,2]解析:由π2<x <π,ω>0得π2ω+π4<ωx +π4<πω+π4,由题意结合选项知⎝ ⎛⎭⎪⎫π2ω+π4,πω+π4⊆⎣⎢⎡⎦⎥⎤π2,3π2,所以⎩⎪⎨⎪⎧π2ω+π4≥π2,πω+π4≤3π2,所以12≤ω≤54.答案:A6.函数f (x )=2sin(ωx +φ)(ω>0)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6的值为( )A .2或0B .-2或2C .0D .-2或0解析:因为函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,所以该函数图象关于直线x =π6对称,因为在对称轴处对应的函数值为最大值或最小值,所以选B.答案:B7.如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0对称,那么|φ|的最小值为( )A.π6 B.π4 C.π3D.π2解析:由题意得3cos ⎝ ⎛⎭⎪⎫2×4π3+φ=3cos ⎝ ⎛⎭⎪⎫2π3+φ+2π=3cos 2π3+φ=0,∴2π3+φ=k π+π2,k ∈Z ,∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.答案:A8.函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3解析:因为0≤x ≤9,所以-π3≤π6x -π3≤7π6, 所以sin ⎝ ⎛⎭⎪⎫π6x -π3∈⎣⎢⎡⎦⎥⎤-32,1,所以y ∈[-3,2],所以y max +y min =2- 3. 答案:A9.函数y =(4-3sin x )(4-3cos x )的最小值为________. 解析:y =16-12(sin x +cos x )+9sin x cos x ,令t =sin x +cos x ,则t ∈[-2, 2 ],且sin x cos x =t 2-12, 所以y =16-12t +9×t 2-12=12(9t 2-24t +23). 故当t =43时,y min =72. 答案:7210.(2017届唐山统考)已知函数f (x )=sin ωx +3cos ωx (ω>0),f ⎝ ⎛⎭⎪⎫π6+f ⎝ ⎛⎭⎪⎫π2=0,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π2上递减,则ω=________.解析:因为f (x )在⎝ ⎛⎭⎪⎫π6,π2上单调递减,且f ⎝ ⎛⎭⎪⎫π6+f ⎝ ⎛⎭⎪⎫π2=0,所以f π6+π22=0,即f ⎝ ⎛⎭⎪⎫π3=0. 因为f (x )=sin ωx +3cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3,所以f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫π3ω+π3=0,所以π3ω+π3=k π(k ∈Z ),ω=3k -1,k ∈Z ,又12·2πω≥π2-π6,ω>0,所以ω=2.答案:211.已知函数f (x )=(sin x +cos x )2+2cos 2x -2. (1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值,最小值.解:(1)f (x )=sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π4,令2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 得k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,(k ∈Z ).(2)∵x ∈⎣⎢⎡⎦⎥⎤π4,3π4,∴3π4≤2x +π4≤7π4,∴-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤22,∴-2≤f (x )≤1,∴当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.12.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0<φ<2π3的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32,求f (x )的单调递增区间.解:∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2. ∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,φ=π2+k π,k ∈Z , ∵0<φ<2π3,∴φ=π2.(2)f (x )图象过点⎝ ⎛⎭⎪⎫π6,32时,sin ⎝ ⎛⎭⎪⎫2×π6+φ=32,即sin ⎝ ⎛⎭⎪⎫π3+φ=32.又∵0<φ<2π3,∴π3<π3+φ<π.∴π3+φ=2π3,∴φ=π3.∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3.令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z .∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ).[能 力 提 升]1.(2018届山西长治二中等第一次联考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),且在⎝ ⎛⎭⎪⎫0,π2上有且仅有三个零点,若f (0)=-f ⎝ ⎛⎭⎪⎫π2,则ω=( ) A.23B .2C.263D.143解析:∵函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f (0)=-f ⎝ ⎛⎭⎪⎫π2,即f (0)+f ⎝ ⎛⎭⎪⎫π2=0,∴f (x )的图象关于点⎝ ⎛⎭⎪⎫π4,0对称,故sin ⎝ ⎛⎭⎪⎫π4ω-π6=0,故有π4ω-π6=k π,k ∈Z ,即ω=4k +23,k ∈Z .①∵f (x )在⎝ ⎛⎭⎪⎫0,π2上有且仅有三个零点,故有2πω<π2<32·2πω, ∴6>ω>4.②综合①②,结合所给的选项,可得ω=143,故选D. 答案:D2.(2017届河北邯郸一模)已知函数f (x )=2sin 2⎝ ⎛⎭⎪⎫ωx +π6(ω>0)在区间⎣⎢⎡⎦⎥⎤π6,2π3内单调递增,则ω的最大值是( )A.34 B.35 C.12D.14解析:函数f (x )=1-cos ⎝ ⎛⎭⎪⎫2ωx +π3(ω>0)在⎣⎢⎡⎦⎥⎤π6,2π3内单调递增,则2ωx +π3∈π3ω+π3,4π3ω+π3⊆[0,π],则⎩⎪⎨⎪⎧4π3ω+π3≤π,π3ω+π3≥0,解得0<ω≤12,故ω的最大值是12.答案:C3.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最大值为4,求a 的值;(3)在(2)的条件下,求满足f (x )=1且x ∈[-π,π]的x 的取值集合. 解:(1)f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1, 由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 可得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).(2)当x =π6时,f (x )取得最大值4,即f ⎝ ⎛⎭⎪⎫π6=2sin π2+a +1=a +3=4,所以a =1.(3)由f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+2=1, 可得sin ⎝ ⎛⎭⎪⎫2x +π6=-12,则2x +π6=7π6+2k π,k ∈Z 或2x +π6=116π+2k π,k ∈Z , 即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z ,又x ∈[-π,π],可解得x =-π2,-π6,π2,5π6, 所以x的取值集合为⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π6. 4.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝ ⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解:(1)因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6. 所以sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,所以-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ].所以f (x )∈[b,3a +b ],又因为-5≤f (x )≤1,所以b =-5,3a +b =1,因此a =2,b =-5.(2)由(1)得,f (x )=-4sin ⎝ ⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝ ⎛⎭⎪⎫2x +7π6-1=4sin2x +π6-1,又由lg g (x )>0,得g (x )>1,所以4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,所以sin ⎝ ⎛⎭⎪⎫2x +π6>12,所以2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,所以g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,(k ∈Z ).又因为当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时, g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .所以g (x )的单调减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3,(k ∈Z ).。
§4.3 三角函数的图象与性质1.用五点法作正弦函数和余弦函数的简图(1)在正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).(2)在余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )知识拓展 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则:(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)由sin ⎝⎛⎭⎫π6+2π3=sin π6知,2π3是正弦函数y =sin x (x ∈R )的一个周期.( × ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin|x |是偶函数.( √ ) 题组二 教材改编2.[P35例2]函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是________. 答案 π3.[P46A 组T2]y =3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域是________. 答案 ⎣⎡⎦⎤-32,3 解析 当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3, 即y =3sin ⎝⎛⎭⎫2x -π6的值域为⎣⎡⎦⎤-32,3. 4.[P45T3]y =tan 2x 的定义域是________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∈Z 解析 由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x 的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∈Z . 题组三 易错自纠5.下列函数中最小正周期为π且图象关于直线x =π3对称的是( )A .y =2sin ⎝⎛⎭⎫2x +π3B .y =2sin ⎝⎛⎭⎫2x -π6 C .y =2sin ⎝⎛⎭⎫x 2+π3 D .y =2sin ⎝⎛⎭⎫2x -π3 答案 B解析 函数y =2sin ⎝⎛⎭⎫2x -π6的周期T =2π2=π, 又sin ⎝⎛⎭⎫2×π3-π6=1, ∴函数y =2sin ⎝⎛⎭⎫2x -π6的图象关于直线x =π3对称. 6.函数f (x )=4sin ⎝⎛⎭⎫π3-2x 的单调递减区间是______________________. 答案 ⎣⎡⎦⎤k π-π12,k π+512π(k ∈Z ) 解析 f (x )=4sin ⎝⎛⎭⎫π3-2x =-4sin ⎝⎛⎭⎫2x -π3. 所以要求f (x )的单调递减区间,只需求y =4sin ⎝⎛⎭⎫2x -π3的单调递增区间. 由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤512π+k π(k ∈Z ).所以函数f (x )的单调递减区间是⎣⎡⎦⎤-π12+k π,512π+k π(k ∈Z ). 7.cos 23°,sin 68°,cos 97°的大小关系是________. 答案 sin 68°>cos 23°>cos 97° 解析 sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数, ∴sin 68°>cos 23°>cos 97°.题型一 三角函数的定义域和值域1.函数f (x )=-2tan ⎝⎛⎭⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠π6 B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-π12 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π6(k ∈Z ) D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π6(k ∈Z ) 答案 D解析 由正切函数的定义域,得2x +π6≠k π+π2,k ∈Z ,即x ≠k π2+π6(k ∈Z ),故选D.2.函数y =sin x -cos x 的定义域为________. 答案 ⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z ) 解析 方法一 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z . 方法二 利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).所以定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z . 3.已知函数f (x )=sin ⎝⎛⎭⎫x +π6,其中x ∈⎣⎡⎦⎤-π3,a ,若f (x )的值域是⎣⎡⎦⎤-12,1,则实数a 的取值范围是________. 答案 ⎣⎡⎦⎤π3,π解析 ∵x ∈⎣⎡⎦⎤-π3,a ,∴x +π6∈⎣⎡⎦⎤-π6,a +π6, ∵当x +π6∈⎣⎡⎦⎤-π6,π2时,f (x )的值域为⎣⎡⎦⎤-12,1, ∴由函数的图象(图略)知π2≤a +π6≤7π6,∴π3≤a ≤π.4.(2018·长沙质检)函数y =sin x -cos x +sin x cos x 的值域为__________. 答案 ⎣⎡⎦⎤-12-2,1 解析 设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x ·cos x ,sin x cos x =1-t 22,且-2≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1,t ∈[-2,2].当t =1时,y max =1; 当t =-2时,y min =-12- 2.∴函数的值域为⎣⎡⎦⎤-12-2,1. 思维升华 (1)三角函数定义域的求法求三角函数的定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法 ①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)(A ,ω≠0)的形式求值域;③通过换元,转换成二次函数求值域.题型二 三角函数的单调性命题点1 求三角函数的单调性典例 (1)函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) 答案 B解析 由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为 ⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ),故选B.(2)(2017·哈尔滨、长春、沈阳、大连四市联考)函数y =12sin x +32cos x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的单调递增区间是____________. 答案 ⎣⎡⎦⎤0,π6 解析 ∵y =12sin x +32cos x =sin ⎝⎛⎭⎫x +π3, 由2k π-π2≤x +π3≤2k π+π2(k ∈Z ),解得2k π-5π6≤x ≤2k π+π6(k ∈Z ).∴函数的单调递增区间为⎣⎡⎦⎤2k π-5π6,2k π+π6(k ∈Z ), 又x ∈⎣⎡⎦⎤0,π2,∴单调递增区间为⎣⎡⎦⎤0,π6.命题点2 根据单调性求参数典例 已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________. 答案 ⎣⎡⎦⎤12,54解析 由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4, 又y =sin x 的单调递减区间为⎣⎡⎦⎤2k π+π2,2k π+3π2,k ∈Z , 所以⎩⎨⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k πk ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-⎝⎛⎭⎫2k +54≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈⎣⎡⎦⎤12,54. 引申探究本例中,若已知ω>0,函数f (x )=cos ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递增,则ω的取值范围是____. 答案 ⎣⎡⎦⎤32,74解析 函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z ,则⎩⎨⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k πk ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝⎛⎭⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z , 得k =1,所以ω∈⎣⎡⎦⎤32,74.思维升华 (1)已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解. 跟踪训练 (2017·济南模拟)若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( ) A.23 B.32 C .2 D .3答案 B解析 由已知得T 4=π3,∴T =4π3,∴ω=2πT =32.题型三 三角函数的周期性、奇偶性、对称性命题点1 三角函数的周期性典例 (1)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( ) A .①②③ B .①③④ C .②④ D .①③ 答案 A解析 ①y =cos|2x |=cos 2x ,最小正周期为π; ②由图象知y =|cos x |的最小正周期为π; ③y =cos ⎝⎛⎭⎫2x +π6的最小正周期T =2π2=π; ④y =tan ⎝⎛⎭⎫2x -π4的最小正周期T =π2,故选A. (2)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________. 答案 2或3解析 由题意得,1<πk <2,∴k <π<2k ,即π2<k <π,又k ∈Z ,∴k =2或3. 命题点2 三角函数的奇偶性典例 (2017·银川模拟)函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ,φ∈(0,π)满足f (|x |)=f (x ),则φ的值为______. 答案5π6解析 由题意知f (x )为偶函数,关于y 轴对称, ∴f (0)=3sin ⎝⎛⎭⎫φ-π3=±3,∴φ-π3=k π+π2,k ∈Z ,又0<φ<π,∴φ=5π6.命题点3 三角函数图象的对称性典例 (1)(2018·武汉模拟)若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为________. 答案 2解析 由题意知ω6π+π6=k π+π2(k ∈Z ),∴ω=6k +2(k ∈Z ),又ω∈N *,∴ωmin =2.(2)(2016·全国Ⅰ改编)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎫π18,5π36上单调,则ω的最大值为________. 答案 9解析 因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝⎛⎭⎫-π4=T 4+kT 2,即π2=2k +14T =2k +14·2πω,所以ω=2k +1(k ∈N ),又因为f (x )在⎝⎛⎭⎫π18,5π36上单调,所以5π36-π18=π12≤T2=2π2ω,即ω≤12, 若ω=11,又|φ|≤π2,则φ=-π4,此时,f (x )=sin ⎝⎛⎭⎫11x -π4,f (x )在⎝⎛⎭⎫π18,3π44上单调递增,在⎝⎛⎭⎫3π44,5π36上单调递减,不满足条件. 若ω=9,又|φ|≤π2,则φ=π4,此时,f (x )=sin ⎝⎛⎭⎫9x +π4,满足f (x )在⎝⎛⎭⎫π18,5π36上单调的条件.由此得ω的最大值为9.思维升华 (1)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点. (2)求三角函数周期的方法 ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.跟踪训练 (1)(2017·安徽江南十校联考)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为4π,且∀x ∈R ,有f (x )≤f ⎝⎛⎭⎫π3成立,则f (x )图象的一个对称中心坐标是( ) A.⎝⎛⎭⎫-2π3,0 B.⎝⎛⎭⎫-π3,0 C.⎝⎛⎭⎫2π3,0 D.⎝⎛⎭⎫5π3,0答案 A解析 由f (x )=sin(ωx +φ)的最小正周期为4π, 得ω=12.因为f (x )≤f ⎝⎛⎭⎫π3恒成立, 所以f (x )max =f ⎝⎛⎭⎫π3, 即12×π3+φ=π2+2k π(k ∈Z ), 由|φ|<π2,得φ=π3,故f (x )=sin ⎝⎛⎭⎫12x +π3. 令12x +π3=k π(k ∈Z ),得x =2k π-2π3(k ∈Z ), 故f (x )图象的对称中心为⎝⎛⎭⎫2k π-2π3,0(k ∈Z ), 当k =0时,f (x )图象的对称中心为⎝⎛⎭⎫-2π3,0. (2)若将函数f (x )=sin ⎝⎛⎭⎫ωx +π3的图象向右平移π3个单位长度后与原函数的图象关于x 轴对称,。
[课 时 跟 踪 检 测]
[基 础 达 标]
1.y =|cos x |的一个单调增区间是( )
A.⎣⎢⎡⎦
⎥⎤-π2,π2 B .[0,π] C.⎣⎢⎡⎦⎥⎤π,3π2 D.⎣⎢⎡⎦
⎥⎤3π2,2π 解析:将y =cos x 的图象位于x 轴下方的图象做关于x 轴的对称,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.
答案:D
2.设偶函数f (x )的部分图象如图所示,△KML 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝ ⎛⎭
⎪⎫16的值为( )
A .-34
B .-14
C .-12 D.34
解析:由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,
所以ω=π,所以f (x )=12cosπx ,故f ⎝ ⎛⎭
⎪⎫16=12cos π6=34. 答案:D
3.关于函数y =tan ⎝ ⎛⎭
⎪⎫2x -π3,下列说法正确的是( ) A .是奇函数
B .在区间⎝ ⎛⎭
⎪⎫0,π3上单调递减 C.⎝ ⎛⎭
⎪⎫π6,0为其图象的一个对称中心 D .最小正周期为π
解析:函数y =tan ⎝ ⎛⎭⎪⎫2x -π3是非奇非偶函数,A 错;在区间⎝ ⎛⎭⎪⎫0,π3上单调递增,B 错;最小正。