2019-2020学年漳州市高二上数学期末试卷
- 格式:pdf
- 大小:536.83 KB
- 文档页数:5
秘密★启用前2019-2020年高二上学期期末考试数学文试卷含答案数学试题共4页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
试卷Ⅰ(共60 分)一、选择题:(本大题共12小题,每小题5分,共60分)1. 设集合, , 则=()A.B.C.D.2. 已知命题:,,则是()A. B.C. D.3. 下列三句话按“三段论”模式排列顺序正确的是( )①y=cosx(x∈R)是三角函数;②三角函数是周期函数;③y=cosx(x∈R)是周期函数.A.①②③ B.②①③ C.②③① D.③②①4. 已知等比数列的公比为2,则=()A. B. C. D.5. 在中,为的中点,设,则()A. B. C. D.6.已知函数,则函数的增区间为()A. B. C. D.7. “”是“”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 8. 已知的值如表所示,若呈线性相关,且回归直线方程为,则( ) A . B . C . D .9.在中,,则边的长为( )A .B .3C .D .710.动点满足,点为,为原点,,则的最大值是( ) A. B. C. D.11.过抛物线的焦点作直线交抛物线于,若线段与的长度分别为,则的最小值为( ) A . B . C . D .12.已知函数的定义域内任意的自变量都有,且对任意的,都有(其中是函数的导函数),设,则的大小关系为( ) A . B. C. D.第II 卷(非选择题,共90分)二、填空题:(本大题共4小题,每小题5分,共20分). 13. 若抛物线的准线经过双曲线的一个焦点,则 . 14.曲线在点处的切线方程为15. 某高校“统计初步”课程的教师为了检验主修统计专业是否与性别有关系,随机调查了选该课的学生人数情况,具体数据如右表, 则大约有 %的把握认为主修统计专业与性别有关系.参考公式:16.已知函数,若,是从集合中任取两个不同的数,则使函数有极值点的概率为 .三、解答题: (本大题共6小题,共70分.) 17.(本题满分10分)已知等差数列的前项和为,且. (1)求数列的通项公式; (2)记,的前项和为,求 .18.(本题满分12分)已知圆经过点,且直线:与圆相交于(1)求圆的方程.(2)若的周长为18,求的值.19.(本小题满分12分)在中,角的对边分别为,且.(1)求角的大小;(2)求函数的值域.20.(本题满分12分)某校学生依次进行身体体能和外语两个项目的训练及考核。
(1)(2)(3)(4)(5)2019-2020年高二上学期期末考试数学(文)含答案一、选择题:(每题5分)1.若复数满足,则等于A.2+4i B.2-4i C.4-2i D.4+2i2. 用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a、b、c中至少有一个是偶数.用反证法证明时,下列假设正确的是( )A.假设a、b、c都是偶数B.假设a、b、c都不是偶数C.假设a、b、c至多有一个偶数D.假设a、b、c至多有两个偶数3.直线:3x-4y-9=0与圆:,(θ为参数)的位置关系是( )A.相切B.相交但直线不过圆心 C.直线过圆心D.相离4.曲线的极坐标方程ρ=4sinθ化成直角坐标方程为( )A.x2+(y-2)2=4 B.x2+(y+2)2=4C.(x-2)2+y2=4 D.(x+2)2+y2=45.点M的直角坐标为化为极坐标为()A.B.C.D.6. 参数方程表示什么曲线( )A.一个圆B.一个半圆C.一条射线D.一条直线7.将曲线C按伸缩变换公式变换得曲线方程为,则曲线C的方程为()A. B . c. D. 4x=18.已知函数在上为减函数,则实数的取值范围是()A.B.C.D.9. 如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,……,依此类推,根据图案中点的排列规律,第100个图形由多少个点组成()A. 9901B. 9902C. 9903D. 990010. 设,若函数,,有大于零的极值点,则()A.B.C.D.11. 已知,是区间上任意两个值,恒成立,则M的最小值是()A. 0.B. 2C. 4D. -212.已知定义在R上的奇函数为f(x),导函数为,当时,恒有,令F(x)=x f(x),则满足F(3)>F(2x-1)的实数x的取值范围是( ) A.(-1,2) B. (-1,) C. (-2,) D. (-2,1)二、填空题:(每题5分)13.函数在区间上的最小值是____.14.设n为正整数,f(n)=1+12+13+…+1n,计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,观察上述结果,可推测一般的结论为_________________.15.直线(t为参数)被圆x2+y2=4所截得的弦长是_____16.已知二次函数的导数为,,对于任意实数都有,则的最小值为__________.三、解答题:17.(本小题满分10分)已知直线经过点P(1,1),倾斜角。
2019-2020学年高二年级上学期期末考试数学试卷一、填空题(每小题 3分,共36 分)1.关于,x y 的二元一次方程的增广矩阵为123015-⎛⎫⎪⎝⎭,则x y += 。
【答案】8-2.已知(5,1),(3,2)OA OB =-=,则AB 对应的坐标是 。
【答案】)(3,23.已知直线420ax y +-=与直线10x ay ++=重合,则a = 。
【答案】2-4.在正方体1111ABCD A B C D -中,E 是AB 中点,F 为BC 中点,则直线1A E 与1C F 的位置关系是 。
【答案】相交5.圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于 。
【答案】26.已知复数22iz i+=,则z 的虚部为 。
【答案】1- 7..经过动直线20kx y k -+=上的定点,方向向量为(1,1)的直线方程是 。
【答案】02=+-y x8.复数34i +平方根是 。
【答案】)(i +±29.过点(),0M 且和双曲线2222x y -=有相同的焦点的椭圆方程为 。
【答案】13622=+y x 10.已知双曲线22:1916x y C -=的左、右焦点分别为12,F F P ,为双曲线C 的右支上一点,且212PF F F =,则12PF F ∆的面积等于 。
【答案】4811.平面上一机器人在行进中始终保持与点(1,0)F 的距离和到直线1x =-的距离相等。
若机器人接触不到过点(1,0)P -且斜率为k 的直线,则k 的取值范围是 。
【答案】)()(+∞∞,11-,-【解析】由抛物线定义可知,机器人的轨迹方程为x y 42=,过点)0,1(-P 且斜率为k 的直线方程为)1(+=x k y 代入x y 42=,可得0)42(2222=+-+k x k x k , 机器人接触不到过点)0,1(-P 且斜率为k 的直线,04)42422<--=∆∴k k (,1-<∴k 或1>k . 12.已知圆M :22(1)1x y +-=,圆N :22(1)1x y ++=.直线1l 、2l 分别过圆心M 、N ,且1l 与圆M 相交于,A B 两点,2l 与圆N 相交于,C D 两点。
2019学年福建省漳州市高二上学期期末文科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 命题:“ ∀ x>0,都有x 2 ﹣x≥0”的否定是()A.∀ x≤0,都有x 2 ﹣x>0 ________ B.∀ x>0,都有x 2 ﹣x≤0C.∃ x>0,使得x 2 ﹣x<0 D.∃ x≤0,使得x 2 ﹣x>02. 有20位同学,编号从1至20,现在从中抽取4人作问卷调查,若用系统抽样方法,则所抽取的编号可能是()A.2,4,6,8 ___________ B.2,6,10,14C.2,7,12,17 ________ D.5,8,9,143. 甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如表所示:从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是()A.甲 B.乙 C.丙 D.丁4. 抛物线y=4x 2 的焦点坐标是()A.(0,1) B.(1,0) C. D.5. 函数f(x)=x 2 ﹣2lnx的单调减区间是()A.(0,1 ]___________________________________________ B.[1,+∞)C.(﹣∞,﹣1 ] ∪ (0,1 ] D.[﹣1,0)∪ (0,1 ]6. 已知命题p:5≥3;q:若x 2 =4则x=2,则下列判断正确的是()A.p ∨ q 为真,p ∧ q为真,¬p为假B.p ∨ q 为真,p ∧ q为假,¬p为真C.p ∨ q 为假,p ∧ q为假,¬p为假D.p ∨ q 为真,p ∧ q为假,¬p为假7. 如果执行如图的程序框图,那么输出的S=()A.22 B.46 C.94 D.1908. “1<m<2”是“方程 + =1表示的曲线是焦点在y轴上的椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 ___________ D.既不充分也不必要条件9. 有下列四个命题:①“若a 2 +b 2 =0,则a,b全为0”的逆否命题;②“全等三角形的面积相等”的否命题;③“若“q≤1”,则x 2 +2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题.其中真命题为()A.①② B.①③ C.②③ D.③④10. 如果双曲线的离心率等于2,则实数m等于()A.6 B.14 C.4 D.811. 函数f(x)=x 2 ﹣x﹣2,x ∈ [﹣5,5 ] ,在定义域内任取一点x 0 ,使f(x 0 )≤0的概率是()A.________________ B. C. ________ D.12. 对于R上可导的任意函数f(x),若满足f(x)+xf′(x)>0且f(﹣1)=0,则f(x)>0解集是()A.(﹣∞,﹣1) ______________________________ B.(0,+∞)C.(﹣∞,﹣1)∪ (0,+∞) D.(﹣1,0)二、填空题13. 同时掷两枚质地均匀的骰子,所得的点数之和为5的概率是_________ .14. 对具有线性相关关系的变量x和y,由测得的一组数据已求得回归直线的斜率为6.5,且恒过(2,3)点,则这条回归直线的方程为___________ .15. 抛物线的焦点恰巧是椭圆 + =1的右焦点,则抛物线的标准方程为___________ .16. 已知方程﹣ =0有两个不等的非零根,则a的取值范围是____________________________ .三、解答题17. 为了调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(Ⅰ )完成以上2×2列联表,并估计该地区老年人中需要志愿者提供帮助的老年人的比例;(Ⅱ )能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.附:.18. 已知函数f(x)=2x 3 +3x 2 ﹣12x+5.(Ⅰ )求曲线y=f(x)在点(0,5)处的切线方程;(Ⅱ )求函数f(x)的极值.19. (Ⅰ )抛物线的顶点在原点,准线方程为y=﹣1,求抛物线的标准方程;(Ⅱ )已知双曲线的一条渐近线方程是x+2y=0,并经过点(2,2),求此双曲线的标准方程.20. 某校从高二年级学生中随机抽取40名学生,将他们的单元测试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…[90,100 ] 后得到如图所示的频率分布直方图.(1)若该校高二年级共有学生640人,试估计该校高二年级本次单元测试数学成绩不低于60分的人数;(2)若从数学成绩在[40,50)和[90,100 ] 两个分数段内的学生中随机选取2名学生,求这2名学生数学成绩之差的绝对值不大于10的概率.21. 如图,中心在原点的椭圆的焦点在x轴上,长轴长为4,焦距为2 ,O为坐标原点.(Ⅰ )求椭圆的标准方程;(Ⅱ )是否存在过M(0,2)的直线与椭圆交于A,B两个不同点,使以AB为直径的圆过原点?若存在,求出直线方程,若不存在,请说明理由.22. 已知函数f(x)=x 3 ﹣ x 2 +bx+c.(1)若f(x)在(﹣∞,+∞)是增函数,求b的取值范围;(2)若f(x)在x=1时取得极值,且x ∈ [﹣1,2 ] 时,f(x)<c 2 恒成立,求c 的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】。
2019-2020年高二上学期期末考试 数学文 含答案本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分第Ⅰ卷(选择题,共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每题给出的四个选项中,只有一个是符合题目要求的.) 1.若a 、b 为正实数,则a b >是22a b >的 A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分也非必要条件2.抛物线2x y =的焦点坐标是 A .)0,41(-B. )41,0(-C. )41,0(D . )0,41(3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和11S =A. 58B. 88C. 143D. 1764. 已知下列四个命题:①“若xy=0,则x=0且y=0”的逆否命题;②“正方形是菱形”的否命题;③“若ac 2>bc 2,则a >b”的逆命题;④若“m >2,则不等式x 2﹣2x+m >0的解集为R”.其中真命题的个数为 A. 0个 B. 1个 C. 2个 D. 3个 5.曲线324y x x =-+在点(13),处的切线的倾斜角为A .120°B .30°C .60°D .45°6. 设n S 为等比数列{}n a 的前n 项和,525280S a a S +==,则 A .11-B .8-C .5D .117. 已知ABC ∆的顶点B 、C 在椭圆1322=+y x 上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是A.32B.6C. 34D. 128.在△ABC 中,角A ,B 所对的边长为a ,b ,则“a=b”是“acosA=bcosB”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分又不必要条件9. 设函数f (x )在定义域内可导,y=f (x则导函数y=f '(x )可能为A BC D10设变量x ,y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩.则目标函数z=2x+3y 的最小值为A . 6B. 7C. 8D. 2311.如图,某船在海上航行中遇险发出呼救信号,我海上救生艇在A 处获悉后,立即测出该船在方位角45°方向,相距10海里的C 处,还 测得该船正沿方位角105°的方向以每小时9海里的 速度行驶,救生艇立即以每小时21海里的速度前往 营救,则救生艇与呼救船在B 处相遇所需的时间为A.15小时 B.13小时 C. 25小时D. 23小时12. 已知双曲线(>0)mx y m -=221的右顶点为A ,若该双曲线右支上存在两点,B C 使得ABC ∆为等腰直角三角形,则该双曲线的离心率e 的取值范围是A.B .(1,2)C. D .(1,3)第Ⅱ卷(非选择题,共90分)二、填空题: (本大题4小题,每小题5分,共20分)13.已知32()32f x ax x =++且(1)4f '-=,则实数a 的值等于_________ 14.在ABC ∆中,角A,B,C 成等差数列且3=b ,则ABC ∆的外接圆面积为______15. 下列函数中,最小值为2的是①y =② 21x y x +=③(),(02)y x x x =-<④2y =16.已知F 是抛物线C :x y 42=的焦点,A 、B 是C 上的两个点,线段AB 的中点为M(2,2),则△ABF 的面积等于 ____.三、解答题(本大题共6小题,共70分,解答题应根据要求写出必要的文字说明,证明过程或演算步骤) 17.(本题满分10分).在ABC ∆中,A B C 、、是三角形的三内角,a b c 、、是三内角对应的三边,已知222b c a bc +-=.(Ⅰ)求角A 的大小;(Ⅱ)若222sin sin sin A B C +=,求角B 的大小.18.(本题满分12分).已知双曲线与椭圆1244922=+y x 有共同的焦点,且以x y 34±=为渐近线. (1)求双曲线方程.(2)求双曲线的实轴长.虚轴长.焦点坐标及离心率.19.(本题满分12分).已知等差数列{}n a 满足818163a a 34a a 31a a >-=-=+且,(1)求数列{}n a 的通项公式;(2)把数列{}n a 的第1项、第4项、第7项、……、第3n -2项、……分别作为数列{}n b 的第1项、第2项、第3项、……、第n 项、……,求数列{}2nb 的前n 项和;20.(本题满分12分).函数f (x )= 4x 3+ax 2+bx+5的图像在x=1处的切线方程为y=-12x ; (1)求函数f (x )的解析式;(2)求函数f (x )在 [—3,1]上的最值。
)x 2019—2020学年度第一学期期末统一考试高二数学试卷(理科)本试卷分第I 卷(选择题)、第II 卷(非选择题)两部分。
共150分,考试时间120分钟。
第I 卷(选择题 共40分) 注意事项:1、答第I 卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上。
2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上。
3、不可以使用计算器。
4、考试结束,将答题卡交回,试卷不用上交。
一、选择题(本大题共8小题,每小题5分,共40分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.) 1.不等式25x x ≥的解集是A .[0,5]B .[5,)+∞C .(,0]-∞D .(,0][5,)-∞+∞2.已知一个数列的前四项为22221357,,,24816--,则它的一个通项公式为 A .221(1)(2)nn n -- B .1221(1)(2)n n n --- C .221(1)2nn n -- D .1221(1)2n nn --- 3.椭圆221625400x y +=的离心率为 A .35B .45C .34D .16254.函数f(x)的导函数'()f x 的图象如右图所示,则下列说法正确的是A .函数()f x 在(2,3)-内单调递增B .函数()f x 在(4,0)-内单调递减C .函数()f x 在3x =处取极大值D .函数()f x 在4x =处取极小值5.等差数列{}n a 的前n 项和12...n n S a a a =+++, 若1031S =,20122S =,则40S =A .182B .242C .273D .4846.长为3.5m 的木棒斜靠在石堤旁,木棒的一端在离堤足1.4m 的地面上,另一端在沿堤上2.8m 的地方,堤对地面的倾斜角为α,则坡度值tan α等于 A .2315 B .516 C .23116 D .1157.已知0,0a b >>,且1a b +=,则11ab a b++的最小值是A .2B .22C .174D .88.已知p :函数2()1f x x mx =++有两个零点, q :x R ∀∈,244(2)10x m x +-+>.若p q ∨为真,p q ∧为假,则实数m 的取值范围为A .(,2)[3,)-∞-+∞B .(,2)(1,2][3,)-∞-+∞C .(1,2][3,)+∞D .(,2)(1,2]-∞-第II 卷(非选择题共110分)二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中的横线上) 9.等差数列8,5,2,…的第30项是 .10.经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 .11.当x y 、满足不等式组11y xy x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2t x y =+的最小值是 .12.圆222()()x a y b r -+-=经过原点的一个充要条件是 .13.正三角形的一个顶点位于原点,另外两个顶点在抛物线24y x =上,则这个正三角形的边长为 .14.物体沿直线运动过程中,位移s 与时间t 的关系式是2()3s t t t =+. 我们计算在t时刻的附近区间[,]t t t +∆内的平均速度()()s t t s t v t+∆-==∆ ,当t ∆趋近于0时,平均速度v 趋近于确定的值,即瞬时速度,由此可得到t 时刻的瞬时速度为 .三、解答题(本大题共6小题,共80分,解答须写出文字说明、证明过程和演算步骤.)15.(13分)等比数列{}n a 的公比为q ,第8项是第2项与第5项的等差中项. (1)求公比q ;(2)若{}n a 的前n 项和为n S ,判断396,,S S S 是否成等差数列,并说明理由.16.(13分)已知某精密仪器生产总成本C (单位:万元)与月产量x (单位:台)的函数关系为1004C x =+,月最高产量为150台,出厂单价p (单位:万元)与月产量x 的函数关系为21125801800p x x =+-. (1)求月利润L 与产量x 的函数关系式()L x ;(2)求月产量x 为何值时,月利润()L x 最大?最大月利润是多少?17.(13分)第四届中国国际航空航天博览会于2010年11月在珠海举行,一次飞行表演中,一架直升飞机在海拔800m 的高度飞行,从空中A 处测出前下方海岛两侧海岸P 、Q 处的俯角分别是45°和30°(如右图所示). (1)试计算这个海岛的宽度PQ .(2)若两观测者甲、乙分别在海岛两侧海岸P 、Q 处同时测得飞机的仰角为45和30,他们估计P 、Q 两处距离大约为600m ,由此试估算出观测者甲(在P 处)到飞机的直线距离.18.(14分)如图,四棱锥P ABCD -的底面ABCD 为一直角梯形,其中,BA AD CD AD ⊥⊥,2,CD AD AB PA ==⊥底面ABCD ,E 是PC 的中点.(1)试用,,AD AP AB 表示BE ,并判断直线BE 与平面PAD 的位置关系; (2)若BE ⊥平面PCD ,求异面直线PD 与BC 所成角的余弦值.19.(14分)已知函数3221()(2)3f x x ax a a x =-++,a R ∈.(1)当2a =-时,求()f x 在闭区间[]1,1-上的最大值与最小值;(2)若线段AB :()2302y x x =+≤≤与导函数()y f x '=的图像只有一个交点,且交点在线段AB 的内部,试求a 的取值范围.20.(13分)过直角坐标平面xOy 中的抛物线()220y px p =>的焦点F 作一条倾斜角为4π的直线与抛物线相交于A 、B 两点.(1)求直线AB 的方程;(2)试用p 表示A 、B 之间的距离; (3)证明:AOB ∠的大小是与p 无关的定值.参考公式:()()()2222224A A B B A B A B A B x y x y x x x x p x x p ⎡⎤++=+++⎣⎦2019—2020学年度第一学期期末统一考试 数学试卷(理科)答案一、选择题:DDAB DA C B二、填空题:9. -79; 10. 22188y x -=; 11. -3; 12. 222a b r +=;13. 3 14. 613t t ++∆,61t +.三、解答题:15. 解:(1)由题可知,8252a a a =+, ……(1分) 即741112a q a q a q =+, ……(3分)由于10a q ≠,化简得6321q q =+,即63210q q --=, ……(4分)解得31q =或312q =-. 所以1q =或34q =. ……(6分)(2)当1q =时,3191613,9,6S a S a S a ===.易知396,,S S S 不能构成等差数列. ……(8分)当34q =即312q =-时,31113(1)13(1)11221a q a a S q q q -==+=---, 931119(1)19[1()]11281a q a a S q q q -==--=---,621116(1)13[1()]11241a q a a S q q q-==--=---.(11分)zy易知3692S S S +=,所以396,,S S S 能构成等差数列. ……(13分)16.解:(1)2321111()(25)(1004)21100801800180080L x px C x x x x x x x =-=+--+=-++-, 其中0150x <≤. ……(4分) (2)221111'()21(1512600)(120)(105)60040600600L x x x x x x x =-++=---=--+.…(6分)令'()0L x =,解得120x = (105x =-舍). ……(7分)当(0,120)x ∈时,'()0L x >;当(120,150]x ∈时,'()0L x <. ……(9分) 因此,当120x =时,()L x 取最大值. …(10分)所以,月产量为120台时,月利润()L x 最大,最大月利润为(120)1640L =万元.…(13分)17. 解:(1)在Rt ACP ∆中,tan PCCAP AC=∠, 则800tan45800PC =⨯︒=. ……(3分) 在Rt ACQ ∆中,tan QCCAQ AC=∠, 则800tan 608003QC =⨯︒=……(5分) 所以,8003800PQ QC PC =-=(m ). ……(6分)(2)在APQ ∆中,600PQ =,30AQP ∠=︒,453015PAQ ∠=︒-︒=︒. ……(7分) 根据正弦定理,得600sin30sin15PA =︒︒, ……(9分) 则600sin30600sin30300(62)sin(4530)sin 45cos30cos45sin3062PA ︒︒====︒-︒︒︒-︒︒-.…(13分)18. 解:设,AB a PA b ==,建立如图所示空间直角坐标系,(0,0,0),(,0,0)A B a ,(0,0,)P b ,(2,2,0),(0,2,0)C a a D a ,(,,)2bE a a . ……(2分)(1)(0,,)2b BE a =,(0,2,0),(0,0,)AD a AP b ==, 所以1122BE AD AP =+, ……(5分)BE ⊄平面PAD ,//BE ∴平面PAD . ……(7分)(2)BE ⊥平面PCD ,BE PC ∴⊥,即0BE PC ⋅=.(2,2,)PC a a b =-,22202b BE PC a ∴⋅=-=,即2b a =. ……(10分)(0,2,2),(,2,0)PD a a BC a a =-=, ……(11分)2cos ,PD BC <=,所以异面直线PD 与BC . ……(14分)19. 解:(1)当2a =-时,321()23f x x x =+. ……(1分) 求导得2()4(4)f x x x x x '=+=+. ……(2分) 令()0f x '=,解得:4x =-或0x =. ……(3分)列表如下: ……(6分)所以,()f x 在闭区间[]1,1-上的最大值是73,最小值是0. ……(7分) (2)22()22y f x x ax a a '==-++. ……(8分)联立方程组2222,2 3.y x ax a a y x ⎧=-++⎨=+⎩ ……(9分)得()2221230.x a x a a -+++-= ……(10分)设22()2(1)23g x x a x a a =-+++-,则方程()0g x =在区间()0,2内只有一根, 相当于(0)(2)0g g ⋅<,即()()2223230,a a a a +-⋅--< ……(12分)解得 31a -<<-或13a <<. ……(14分)20.解:(1)焦点(,0)2pF ,过抛物线焦点且倾斜角为4π的直线方程是2p y x =-. …(3分)(2)由222y pxp y x ⎧=⎪⎨=-⎪⎩22304p x px ⇒-+=23,4A B A B p x x p x x ⇒+==4A B AB x x p p ⇒=++=. ……(8分) (3)222222222cos 2AO BO ABx y x y x x y y AOB AO BO+-+++----∠==()22A B A B p p x x x x -++===……(12分) ∴AOB ∠的大小是与p 无关的定值. ……(13分)1题:教材《必修⑤》 P76 预备题 改编,考查一元二次不等式求解. 2题:教材《必修⑤》 P67 2(2)改编,考查写数列通项公式. 3题:教材《选修1-1》 P40 例4 改编,考查椭圆几何性质.4题:教材《选修1-1》 P98 第4题改编,考查利用导数研究函数性质. 5题:教材《必修⑤》 P44 例2改编,考查等差数列性质及前n 项和 6题:教材《必修⑤》 P16 习题改编,考查利用余弦定理解三角形 9题:教材《必修⑤》 P38 例1(1)改编,考查等差数列通项公式 10题:教材《选修1-1》 P54 A 组第6题改编,考查双曲线方程与性质 11题:教材《必修⑤》 P91 第1(1)题改编,考查线性规划问题 12题:教材《选修1-1》 P12 第4题改编,考查充要条件.13题:教材《选修1-1》 P64 B 组第2题改编,考查抛物线方程及性质 14题:教材《选修1-1》 P74 导数概念的预备题 改编,考查导数概念15题:教材《必修⑤》 P61 第6题 改编,考查等差数列、等比数列的通项与前n项和.16题:教材《选修1-1》 P104 第6题改编,考查导数的应用. 17题:教材《必修⑤》 P19 第4题改编,考查解三角形.。
2019-2020年高二上学期期末考试数学试题含答案一、选择题1.如果函数的定义域为,那么函数的定义域为A. B.C. D.2.一个圆柱挖去一部分后,剩余部分的三视图如图所示,则剩余部分的表面积等于()A. B. C. D.3.下列说法错误的是()A.若直线平面,直线平面,则直线不一定平行于直线B.若平面不垂直于平面,则内一定不存在直线垂直于平面C.若平面平面,则内一定不存在直线平行于平面D.若平面平面,平面平面,,则一定垂直于平面4.若命题所有对数函数都是单调函数,则为()A.所有对数函数都不是单调函数 B.所有单调函数都不是对数函数C.存在一个对数函数不是单调函数 D.存在一个单调函数不是对数函数5.已知,且,则函数与函数的图像可能是()6.函数的定义域为()A. B. C. D.7.设若,则的值为()A. B. C. D.8.(xx秋•枣庄期末)直线x﹣y+1=0的倾斜角的大小为()A.30° B.60° C.120° D.150°9.若函数在区间上是减函数,则实数的取值范围是()A. B.C. D.10.若函数,则(其中为自然对数的底数)=()A.0 B.1 C.2 D.11.设奇函数在区间上是增函数,且.当时,函数,对一切恒成立,则实数的取值范围为()A. B.或C.或D.或或12.已知函数f(x)=(a>0,且a≠1)在上单调递减,且关于x的方程│f(x)│=2x恰有两个不相等的实数解,则a的取值范围是(A)(0,] (B)[,] (C)[,]{} (D)[,){}二、填空题13.点关于直线的对称点为,则点的坐标为.14.如图所示,程序框图的输出结果是 .15.已知集合,则从集合P到集合Q的映射共有种.16.设函数.若存在实数,使函数有两个零点,则实数的取值范围为 .三、解答题17.已知是偶函数,当时,.(1)求的解析式;(2)若不等式在时都成立,求的取值范围.18.某同学参加高校自主招生门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为,,且不同课程是否取得优秀成绩相互独立.记为该生取得优秀成绩的课程数,其分布列为(Ⅰ)求该生至少有门课程取得优秀成绩的概率及求p,q的值;(Ⅱ)求该生取得优秀成绩课程门数的数学期望.19.如图,在直三棱柱中,,,.(Ⅰ)求证:平面;(Ⅱ)求二面角的平面角的余弦值.参考答案ABCCB AABDC11.D12.C13.14.15.916.或17.(1);(2).(1)当x<0时,有﹣x>0,∵f(x)为偶函数,∴f(x)=f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x,∴.(2)由题意得x2﹣2x≥mx在1≤x≤2时都成立,即x﹣2≥m在1≤x≤2时都成立,即m≤x﹣2在1≤x≤2时都成立.而在1≤x≤2时,(x﹣2)min=﹣1,∴m≤﹣1.考点:函数的奇偶性,解不等式.18.(1),(2)见解析用表示“该生第门课程取得优秀成绩”, =1,2,3.由题意得,(Ⅰ)该生至少有一门课程取得优秀成绩的概率为及,解得,(Ⅱ)由题设知的可能取值为0,1,2,3,,,0123∴.∴该生取得优秀成绩的课程门数的期望为.19.(Ⅰ)见解析;(Ⅱ)(Ⅰ)证法一:由已知,又,∴平面,∴,又,∴,∴平面;证法二:由已知条件可得两两互相垂直,因此取以为原点,以所在的直线分别为轴,建立空间直角坐标系,则,,,,,∴,,,∵,且,∴,且,∴平面;(Ⅱ)∵,,设平面,则,取,∴;由(Ⅰ)知,为平面的法向量,设二面角的大小为,由题意可知为锐角,∴111cos cos ,105m AC m AC m AC θ⋅=<>===⨯⋅. 即二面角的余弦值为.。
2019-2020年高二上学期期末考试数学(文)试题含答案一、选择题:(本大题共10个小题,每题5分,共50分.每题只有一个正确答案)1、已知,则等于( )A. B. C. D.2、三视图如右图的几何体是( )A.三棱锥B.四棱锥C.四棱台D.三棱台3、下列说法中正确的是( )A.一个命题的逆命题为真,则它的逆否命题一定为真B. “a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a、b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真4、下列说法中正确的是( )A.平行于同一直线的两个平面平行 B.垂直于同一平面的两个平面平行C.平行于同一直线的两条直线平行 D.垂直于同一平面的两个平面垂直5、设,则“直线与直线平行”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6、设命题:方程的两根符号不同;命题:方程的两根之和为3,判断命题“非”、“非”、“或”、“且”为假命题的个数为( )A.0 B.1 C.2 D.37、如图,点P是球O的直径AB上的动点,PA=x,过点P且与AB垂直的截面面积记为y,则y=f(x)的大致图象是( )8、函数的最大值是( )A.1B.C. D.9、如图,在正方体中,分别为,,,的中点,则异面直线与所成的角等于( )G A.45°B.60°C.90° D.120°10、已知点在曲线上,为曲线在点处切线的倾斜角,则的取值范围是( )A.[0,)B.C.D.第II卷(非选择题)二、选择题:(本大题共5个小题,每题5分,共25分.请将答案填在横线上)11、_________..12、命题“存在R,0”的否定是_________________.13、函数在处的切线方程是 .14、直线与函数的图象有相异的三个公共点,则的取值范围是______.15、长方体ABCD—A1B1C1D1中,AB=2,BC=3,AA1=5,则一只小虫从A点沿长方体的表面爬到C1点的最短距离是 .三、解答题:(本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤)16、设和是函数的两个极值点.(1)求a,b的值(2)求的单调区间.17、命题实数满足(其中),命题实数满足若是的充分不必要条件,求实数的取值范围.18、如图,在直三棱柱中,,,且是中点.(I)求证:;(Ⅱ)求证:平面.19、已知函数,且在点处的切线垂直于轴.(1)求实数的值;(2)求在区间上的最大值和最小值。
2019-2020学年高二上学期期末考试数学试题一、选择题(本大题共12小题,共60.0分)1.已知等比数列中,,,则该数列的公比q为A. 2B. 1C.D.【答案】D【解析】解:等比数列中,,,该数列的公比.故选:D.根据等比数列的通项公式,利用,即可求出q的值.本题考查了等比数列的通项公式的应用问题,是基础题目.2.已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为A. B. C. D.【答案】B【解析】解:因为抛物线的准线方程为,则由题意知,点是双曲线的左焦点,所以,又双曲线的一条渐近线方程是,所以,解得,,所以双曲线的方程为.故选:B.由抛物线标准方程易得其准线方程为,而通过双曲线的标准方程可见其焦点在x 轴上,则双曲线的左焦点为,此时由双曲线的性质可得a、b的一个方程;再根据焦点在x轴上的双曲线的渐近线方程为,可得,则得a、b 的另一个方程那么只需解a、b的方程组,问题即可解决.本题主要考查双曲线和抛物线的标准方程与几何性质.3.在三棱柱中,D是的中点,F是的中点,且,则A. ,B. ,C. ,D. ,【答案】A【解析】解:根据向量加法的多边形法则以及已知可得,,,,故选:A.根据向量加法的多边形法则可得,,从而可求,.本题主要考查了平面向量加法的三角形法则及多边形法则的应用,解题的关键是要善于利用题目中正三棱柱的性质,把所求的向量用基本向量表示.4.已知点在函数的图象上,则数列的前n项和的最小值为A. 36B.C. 6D.【答案】B【解析】解:点在函数的图象上,则,,当时,取得最小值为.故选:B.点在函数的图象上,的,,由二次函数性质,求得的最小值本题考查了等差数列前n项和的最小值,属于基础题.5.“”是“方程表示的曲线是焦点在y轴上的椭圆”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】解:若方程表示的曲线是焦点在y轴上的椭圆,则,即,解得,即“”是“方程表示的曲线是焦点在y轴上的椭圆”的充要条件,故选:C.根据椭圆的性质,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,根据椭圆方程的性质是解决本题的关键.6.下列结论错误的是A. 命题p:“,使得”,则¬:“,”B. “”是“”的充分不必要条件C. 等比数列2,x,8,中的D. 已知a,,,则的最小值为8.【答案】D【解析】解:对于命题p:,,则¬:,使得,正确;对于B,“”“,或”,故“”是“”的充分不必要条件,故正确;对于C,等比数列2,x,8,中的,正确;对于D,由于a,,,则,当且仅当时,,取等号,所以D不正确.故选:D.对于A:利用命题的否定定义即可得出;根据充要条件的定义,可判断B;利用等比数列的通项公式求解即可判断C的正误;所求式子乘以1,而1用代换;判断D的正误;本题以命题的真假判断与应用为载体,考查了四种命题,命题的否定,充要条件等知识点,难度中档.7.若不等式对于一切恒成立,则a的最小值是A. 0B.C.D.【答案】C【解析】解:不等式对于一切恒成立,即有对于一切恒成立.由于的导数为,当时,,函数y递减.则当时,y取得最小值且为,则有,解得.则a的最小值为.故选:C.由题意可得对于一切恒成立运用函数的导数判断右边的单调性,求得最小值,令不大于最小值即可.本题考查不等式的恒成立问题,考查函数的单调性的运用,考查运算能力,属于中档题和易错题.8.设函数在R上可导,其导函数为,且函数的图象如图所示,则下列结论中一定成立的是A. 函数有极大值和极小值B. 函数有极大值和极小值C. 函数有极大值和极小值D. 函数有极大值和极小值【答案】D【解析】解:由函数的图象可知,,,并且当时,,当,,函数有极大值.又当时,,当时,,故函数有极小值.故选:D.利用函数的图象,判断导函数值为0时,左右两侧的导数的符号,即可判断极值.本题考查函数与导数的应用,考查分析问题解决问题的能力,函数的图象的应用.9.如图,长方体中,,点E,F,G分别是,AB,的中点,则异面直线与GF所成的角是A.B.C.D.【答案】A【解析】解:由题意:是长方体,E,F,G分别是,AB,的中点,连接,,为异面直线与GF所成的角.连接,在三角形中,,,,,.,即异面直线与GF所成的角为.故选:A.异面直线所成的角通过平移相交,找到平面角,转化为平面三角形的角求解,由题意:E,F,G分别是,AB,的中点,连接,,那么就是异面直线与GF 所成的角.本题考查两条异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.10.已知a,,且,则的取值范围是A. B. C. D.【答案】A【解析】解:a,,且,设,,则,即为,由a,b为二次方程的两根,可得,解得,则的取值范围是.故选:A.a,,设,,,由a,b为二次方程的两根,运用判别式法,解二次不等式即可得到所求范围.本题考查了换元法和构造法、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.11.已知函数的定义域为R,并且满足,且当时其导函数满足2f{{'}}(x)'/>,若则A. B.C. D.【答案】C【解析】解:函数对定义域R内的任意x都有,关于直线对称;又当时其导函数满足,当时,,在上的单调递增;同理可得,当时,在单调递减;,,,又,,在上的单调递增;故选:C.由,可知函数关于直线对称,由,可知在与上的单调性,从而可得答案.本题考查抽象函数及其应用,考查导数的性质,判断在与上的单调性是关键,属于中档题.12.已知点,分别是双曲线的左,右焦点,过且垂直于x轴的直线与双曲线交于M,N两点,若,则该双曲线的离心率e的取值范围是A. B. C. D.【答案】B【解析】解:当时,,得,则,则,则,,,若,则只要即可,则,即,即,则,即,则,得,,,故选:B.求出交点M,N的坐标,若,则只要即可,利用斜率公式进行求解即可.本题主要考查双曲线离心率的计算,根据向量数量积的关系转化为求是解决本题的关键考查学生的转化能力.二、填空题(本大题共4小题,共20.0分)13.已知向量,若,则k的值为______.【答案】【解析】解:;;;解得.故答案为:.可求出,根据即可得出,进行数量积的坐标运算即可求出k的值.考查向量垂直的充要条件,向量坐标的加法和数量积运算.14.若“”是“”的必要不充分条件,则a的取值范围是______.【答案】或【解析】解:若“”是“”表示,则,,则,即实数a的取值范围是,故答案为:根据必要不充分条件的定义转化为集合真子集关系进行求解即可.本题主要考查充分条件和必要条件的应用,结合子集关系是解决本题的关键.15.若数列的前n项和为,则数列的通项公式是______.【答案】【解析】解:当时,,解得当时,,整理可得,即,故数列从第二项开始是以为首项,为公比的等比数列,故当时,,经验证当时,上式也适合,故答案为:把代入已知式子可得数列的首项,由时,,可得数列为等比数列,且公比为,代入等比数列的通项公式分段可得答案.本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.16.设点和点分别是函数和图象上的点,且,,若直线轴,则M,N两点间的距离的最小值为______.【答案】2【解析】解:当时,0'/>,函数在上单调递增.点和点分别是函数和图象上的点,且,,若直线轴,则,即,则M,N两点间的距离为.令,,则,,故在上单调递增,故,故在上单调递增,故的最小值为,即M,N两点间的距离的最小值为2,故答案为2.求出导函数,根据题意可知,令,求出其导函数,进而求得的最小值即为M、N两点间的最短距离.本题主要考查了利用函数的导数求出函数的单调性以及函数的极值问题,考查学生分析解决问题的能力,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知是首项为1的等比数列的前n项的和,,,成等差数列,求的值;若,求.【答案】解:由题意,,显然,分,分解得分,分,分两式相减,得分分,分分【解析】利用已知条件,列出方程求解的值;化简数列的表达式,利用错位相减法求解数列的和即可.本题考查数列求和,等差数列以及等比数列的综合应用,考查转化思想以及计算能力.18.已知函数在点处的切线方程是.求实数a,b的值;求函数在上的最大值和最小值其中e是自然对数的底数.【答案】解:因为,,分则,,函数在点处的切线方程为:,分直线过点,则由题意得,即,分由得,函数的定义域为,分,,0⇒x > 2'/>,在上单调递减,在上单调递增分故在上单调递减,在上单调递增,分在上的最小值为分又,,且.在上的最大值为分综上,在上的最大值为,最小值为分【解析】求出函数的导数,通过切线方程棱长方程即可求实数a,b的值;求出函数的导数,判断函数的单调性,然后求解函数的极值,然后求函数在上的最大值和最小值.本题考查函数的导数的应用,切线方程以及函数的最值的求法,考查转化思想以及计算能力.19.如图所示,在底面为平行四边形的四棱锥中,,平面ABCD,且,,点E是PD的中点.求证:平面AEC;求二面角的大小.【答案】解:平面ABCD,AB,平面ABCD,,且.以A为坐标原点建立如图所示空间直角坐标系;分证明:,0,,,,设平面AEC的法向量为,则,取,得.又2,,所以,,又平面AEC,因此:平面分平面BAC的一个法向量为,由知:平面AEC的法向量为,设二面角的平面角为为钝角,则,得:所以二面角的大小为分【解析】由已知得,,且以A为坐标原点建立如图所示空间直角坐标系;设平面AEC的法向量为,由,得平面AEC 求出平面BAC的一个法向量为,由知:平面AEC的法向量为,设二面角的平面角为为钝角,,可得二面角的大小本题考查了空间线面平行的判定,及向量法求二面角,属于中档题.20.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知米,米.Ⅰ要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?Ⅱ当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.【答案】解:Ⅰ设DN的长为米,则米,由得又得解得:或即DN的长取值范围是Ⅱ矩形花坛的面积为当且仅当,即时,矩形花坛的面积最小为24平方米.【解析】Ⅰ设DN的长为米,则米,表示出矩形的面积,利用矩形AMPN的面积大于32平方米,即可求得DN的取值范围.化简矩形的面积,利用基本不等式,即可求得结论.本题考查根据题设关系列出函数关系式,并求出处变量的取值范围;考查利用基本不等式求最值,解题的关键是确定矩形的面积.21.已知椭圆的右焦点F与抛物线焦点重合,且椭圆的离心率为,过x轴正半轴一点且斜率为的直线l交椭圆于A,B两点.求椭圆的标准方程;是否存在实数m使以线段AB为直径的圆经过点F,若存在,求出实数m的值;若不存在说明理由.【答案】解:抛物线的焦点是,,,又椭圆的离心率为,即,,则故椭圆的方程为;分由题意得直线l的方程为,由,消去y得,由,解得.又,.设,,则,.分,,分分若存在m使以线段AB为直径的圆经过点F,则必有,即,分解得或又,.即存在使以线段AB为直径的圆经过点分【解析】由抛物线得焦点坐标,结合已知条件及椭圆的离心率可求出c,a 的值,由,求出b,则椭圆的方程可求;由题意得直线l的方程为,联立,消去y得,由,解得m的范围,设,,则,,求出,由,,求出,若存在m使以线段AB为直径的圆经过点F,则必有,求出实数m的值即可.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、数量积运算,考查了推理能力和计算能力,是中档题.22.已知函数,其中e为自然对数的底数,Ⅰ判断函数的单调性,并说明理由Ⅱ若,不等式恒成立,求a的取值范围.【答案】解:Ⅰ由,得,当时,,为R上的减函数;当时,令,得,若,则,此时为的单调减函数;若,则,此时为的单调增函数.综上所述,当时,为R上的减函数;当时,若,为的单调减函数;若,为的单调增函数.Ⅱ由题意,,不等式恒成立,等价于恒成立,即,恒成立.令,则问题等价于a不小于函数在上的最大值.由,函数在上单调递减,令,,.在上也是减函数,在上也是减函数,在上的最大值为.故,不等式恒成立的实数a的取值范围是.【解析】Ⅰ求出原函数的导函数,然后对a分类,当时,,为R上的减函数;当时,由导函数为0求得导函数的零点,再由导函数的零点对定义域分段,根据导函数在各区间段内的符号得到原函数的单调性;Ⅱ,不等式恒成立,等价于恒成立,分离参数a,可得恒成立令,则问题等价于a不小于函数在上的最大值,然后利用导数求得函数在上的最大值得答案.本题考查利用导数研究函数的单调性,考查函数最值的求法,训练了利用分离变量法求函数的最值,是中档题.。