高三数列知识点与题型总结(文科)
- 格式:doc
- 大小:165.51 KB
- 文档页数:10
高考文科数列知识点总结数列是数学中的一个重要概念,在高考文科数学中也是一项必考内容。
数列是由一系列按照某个规律排列的数字或数学表达式组成的,它有着广泛的应用。
本文将对高考文科数列知识点进行总结,包括数列的基本概念、常见类型的数列及其性质、数列的求和公式等。
一、数列的基本概念数列是指按照一定的规律将一系列数字或数学表达式排列在一起形成的序列。
其中,每一项被称为数列的项,用$a_n$表示。
数列还具有首项($a_1$)、公差($d$)和项数($n$)等重要概念。
首项是数列中的第一项,公差是指相邻两项之间的差值,项数是数列中项的个数。
二、等差数列及其性质等差数列是指数列中相邻两项之间的差值恒定的数列。
其通项公式为$a_n=a_1+(n-1)d$,其中$a_n$为数列的第$n$项,$a_1$为首项,$d$为公差。
等差数列有一系列重要的性质,例如,相邻两项之间的差值是常数,任意三项的中项等于前后两项的平均值等。
三、等比数列及其性质等比数列是指数列中相邻两项之间的比值恒定的数列。
其通项公式为$a_n=a_1\cdot r^{n-1}$,其中$a_n$为数列的第$n$项,$a_1$为首项,$r$为公比。
等比数列也具有一些重要的性质,例如,相邻两项之间的比值是常数,任意三项之间的比值等于公比的平方等。
四、斐波那契数列及其性质斐波那契数列是一个特殊的数列,其前两项都为1,从第三项开始,每一项都是前两项之和。
斐波那契数列的通项公式为$a_n=\frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^n-(\frac{1-\sqrt{5}}{2})^n]$。
斐波那契数列有着许多有趣的性质,例如,相邻两项之间的比值越来越接近黄金分割比例。
五、数列的求和公式数列的求和是数列研究中的一个重要内容。
对于等差数列和等比数列来说,我们可以通过求和公式得到数列的和。
等差数列的求和公式为$S_n=\frac{n}{2}(a_1+a_n)$,其中$S_n$为数列的前$n$项和。
数列知识点二.知识点(一)数列的该概念和表示法、(1)数列定义: 按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项记作, 在数列第一个位置的项叫第1项(或首项), 在第二个位置的叫第2项, ……, 序号为的项叫第项(也叫通项)记作;数列的一般形式: , , , ……, , ……, 简记作。
(2)通项公式的定义: 如果数列的第n项与n之间的关系可以用一个公式表示, 则这个公式就叫这个数列的通项公式说明:①表示数列, 表示数列中的第项, = 表示数列的通项公式;②同一个数列的通项公式的形式不一定唯一。
③不是每个数列都有通项公式。
例如, 1, 1.4, 1.41, 1.414, ……(3)数列的函数特征与图象表示:序号: 1 2 3 4 5 6项: 4 5 6 7 8 9(4)上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看, 数列实质上是定义域为正整数集(或它的有限子集)的函数当自变量从1开始依次取值时对应的一系列函数值……, , …….通常用来代替, 其图象是一群孤立的点数列分类:①按数列项数是有限还是无限分: 有穷数列和无穷数列;(5)②按数列项与项之间的大小关系分: 单调数列(递增数列、递减数列)、常数列和摆动数列(二)递推公式定义:如果已知数列的第1项(或前几项), 且任一项与它的前一项(或前几项)间的关系可以用一个公式来表示, 则这个公式就叫做这个数列的递推公式(三)等差数列1.等差数列的定义: (d为常数)();2. 等差数列通项公式:, 首项: , 公差:d, 末项:推广:. 从而;3. 等差中项(1)如果, , 成等差数列, 则叫做与的等差中项.即:或(2)等差中项: 数列是等差数列4. 等差数列的前n项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A.B 是常数, 所以当d ≠0时, Sn 是关于n 的二次式且常数项为0)特别地, 当项数为奇数 时, 是项数为2n+1的等差数列的中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数 乘以中间项)5. 等差数列的判定方法(1) 定义法: 若 或 (常数 ) 是等差数列. (2) 等差中项:数列 是等差数列 .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
2024高考数学数列知识点总结与题型分析数列是高中数学中的重要内容,作为数学的一个分支,数列的掌握对于高考数学的考试非常关键。
在本文中,我们将对2024年高考数学数列的知识点进行总结,并分析可能出现的相关题型。
一、等差数列与等差数列的通项公式等差数列是数学中最常见的数列类型之一。
对于等差数列,首先要了解等差数列的概念:如果一个数列中任意两个相邻的项之差都相等,则称该数列为等差数列。
1.1 等差数列的通项公式等差数列的通项公式是等差数列中非常重要的一个公式,它可以用来求解等差数列中任意一项。
设等差数列的首项为$a_1$,公差为$d$,第$n$项为$a_n$,则等差数列的通项公式为:$a_n = a_1 + (n-1)d$1.2 等差数列的性质与常用公式等差数列有一些重要的性质与常用的公式,掌握这些性质与公式可以帮助我们更好地解决与等差数列相关的题目。
(1)等差数列中,任意三项可以构成一个等差数列。
(2)等差数列的前$n$项和公式为:$S_n = \frac{n}{2}(a_1 + a_n)$(3)等差数列的前$n$项和的差为:$S_n - S_m = (n-m+1)\frac{a_1 + a_{n+m}}{2}$二、等比数列与等比数列的通项公式等比数列也是数学中常见的数列类型之一。
与等差数列不同的是,等比数列中的任意两项的比值都相等。
2.1 等比数列的通项公式等比数列的通项公式可以用来求解等比数列中的任意一项。
设等比数列的首项为$a_1$,公比为$q$,第$n$项为$a_n$,则等比数列的通项公式为:$a_n = a_1 \cdot q^{(n-1)}$2.2 等比数列的性质与常用公式等比数列也有一些重要的性质与常用的公式,下面我们来了解一下:(1)等比数列中,任意三项可以构成一个等比数列。
(2)等比数列的前$n$项和公式为($q\neq1$):$S_n = \frac{a_1(1-q^n)}{1-q}$(3)当公比$q \neq 1$时,等比数列的前$n$项和与第$n$项的关系为:$S_n = \frac{a_nq - a_1}{q - 1}$三、数列题型分析与解题技巧在高考数学中,对于数列的考察主要包括以下几个方面:3.1 数列的递推关系与通项公式的应用常见的数列题目往往要求我们根据已知的递推关系或者通项公式来求解数列中的某一项或者求解前$n$项的和。
高中文科数列知识点归纳总结数列是数学中一个重要的概念,广泛应用于各个领域。
在高中文科中,数列是一个重要的知识点,它涉及到数列的定义、性质和应用。
下面对高中文科数列的知识进行归纳总结。
一、数列的定义数列是由一系列按照特定规律排列的数所组成的集合。
常用的表示数列的方法有两种:通项公式和递推公式。
1. 通项公式通项公式表示数列第 n 项与 n 的函数关系,通常用公式 aₙ 表示第n 项。
2. 递推公式递推公式表示数列中每一项与前一项的关系,常用公式 aₙ = aₙ₋₁+ d 或 aₙ = a₁q^(n-1) 表示。
二、数列的性质对于数列的性质,我们主要关心数列的公差、首项、末项和项数等。
下面我们来分别介绍这几个重要的性质。
1. 公差对于等差数列,公差(d)表示相邻两项之间的差值,可以是正数、负数或零。
公差可以用来求出数列中任意一项的值。
2. 首项首项(a₁)表示数列中的第一项。
对于等差数列,可以通过给定的公差和首项来确定数列的通项公式。
3. 末项末项(aₙ)表示数列中的最后一项。
对于等差数列,可以通过给定的公差、项数和首项来确定数列的末项。
4. 项数项数(n)表示数列中共有多少项。
对于等差数列,可以通过给定的公差、首项和末项来确定数列的项数。
三、数列的常见类型文科中常见的数列主要有等差数列和等比数列。
下面我们来介绍这两种常见的数列类型及其应用。
1. 等差数列等差数列是指数列中相邻两项之差保持恒定的数列。
它的通项公式为 aₙ = a₁ + (n-1)d,其中 a₁表示首项,d 表示公差。
等差数列的应用非常广泛,例如在金融领域中,我们常常用等差数列来计算投资的收益率或者负债的增长率。
2. 等比数列等比数列是指数列中相邻两项之比保持恒定的数列。
它的通项公式为 aₙ = a₁q^(n-1),其中 a₁表示首项,q 表示公比。
等比数列也有许多应用场景,比如在自然科学中常常用等比数列来描述指数增长或者衰减的现象。
数列考点总结第一部分求数列的通项公式一、数列的相关概念与表示方法见辅导书 二、求数列的通项公式四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式;等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法;求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列;求数列通项的基本方法是:累加法和累乘法; 一、累加法1.适用于:1()n n a a f n +=+----------这是广义的等差数列累加法是最基本的二个方法之一;若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式; 例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式;练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中fn 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若fn 是关于n 的一次函数,累加后可转化为等差数列求和; ②若fn 是关于n 的二次函数,累加后可分组求和;③若fn 是关于n 的指数函数,累加后可转化为等比数列求和; ④若fn 是关于n 的分式函数,累加后可裂项求和;例3.已知数列}{n a 中,0>n a 且)(21n n n a n a S +=,求数列}{n a 的通项公式.练习3已知数列{}n a 满足112,12nn n a a a a +==+,求数列{}n a 的通项公式;二、累乘法 1、适用于:1()n na f n a +=累乘法是最基本的二个方法之二;若1()n n a f n a +=,则31212(1)(2)()n na aa f f f n a a a +===,,,两边分别相乘得,1111()nn k a a f k a +==⋅∏例4已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式;例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n n=1,2,3,…,则它的通项公式是n a =________. 三、待定系数法适用于1()n n a qa f n +=+基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数; 1.形如(,1≠+=+c d ca a n n ,其中a a =1型1若c=1时,数列{n a }为等差数列; 2若d=0时,数列{na }为等比数列;3若01≠≠且d c 时,数列{na }为线性递推数列,其通项可通过待定系数法构造辅助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c cd λ所以有:)1(11-+=-+-c d a c c d a n n 因此数列⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c da 为首项,以c 为公比的等比数列,所以11)1(1-⋅-+=-+n n c c d a c d a 即:1)1(11--⋅-+=-c d c c d a a n n . 规律:将递推关系dca a n n +=+1化为)1(11-+=-++c da c c d a n n ,构造成公比为c 的等比数列}1{-+c d a n 从而求得通项公式)1(1111-++-=-+c da c c d a n n逐项相减法阶差法:有时我们从递推关系dca a n n +=+1中把n 换成n-1有dca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数列}{1n n a a -+,进而求得通项公式.)(121a a c a a n n n -=-+,再利用类型1即可求得通项公式.我们看到此方法比较复杂.例6、已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a的通项公式;2.形如:nn n q a p a +⋅=+1其中q 是常数,且n ≠0,1①若p=1时,即:nn n q a a +=+1,累加即可.②若1≠p 时,即:n n n q a p a +⋅=+1,求通项方法有以下三种方向:i.两边同除以1+n p .目的是把所求数列构造成等差数列即:nnn n n qp p q a p a )(111⋅+=++,令n n n p a b =,则n n n q p p b b )(11⋅=-+,然后类型1,累加求通项.ii.两边同除以1+n q .目的是把所求数列构造成等差数列;即:qq a q p q a n n n n 111+⋅=++,令n nn q a b =,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解,iii.待定系数法:目的是把所求数列构造成等差数列设)(11n n n n p a p q a ⋅+=⋅+++λλ.通过比较系数,求出λ,转化为等比数列求通项.注意:应用待定系数法时,要求p ≠q,否则待定系数法会失效; 例7、已知数列{}n a 满足1112431n n n a a a -+=+⋅=,,求数列{}n a的通项公式;练习3.2009陕西卷文已知数列{}n a 满足,*11212,,2n n n a a a a a n N ++=∈’+2==.()I 令1n n n b a a +=-,证明:{}n b 是等比数列;Ⅱ求{}n a 的通项公式;答案:1{}n b 是以1为首项,12-为公比的等比数列;21*521()()332n n a n N -=--∈;总结:四种基本数列 1.形如)(1n f a a n n =-+型等差数列的广义形式,见累加法;2.形如)(1n f a a n n =+型等比数列的广义形式,见累乘法;3.形如)(1n f a a n n =++型1若da a n n =++1d 为常数,则数列{na }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;2若fn 为n 的函数非常数时,可通过构造转化为)(1n f a a n n =-+型,通过累加来求出通项;或用逐差法两式相减得)1()(11--=--+n f n f a a n n ,,分奇偶项来分求通项.4.形如)(1n f a a n n =⋅+型1若pa a n n =⋅+1p 为常数,则数列{na }为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;2若fn 为n 的函数非常数时,可通过逐差法得)1(1-=⋅-n f a a n n ,两式相除后,分奇偶项来分求通项. 例8.数列{na }满足01=a ,na a n n 21=++,求数列{an}的通项公式.例9.已知数列满足}{n a )(,)21(,3*11N n a a a n n n ∈=⋅=+,求此数列的通项公式.第二部分数列求和一、公式法1.如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n 项和公式,注意等比数列公比q 的取值情况要分q =1或q ≠1.2.一些常见数列的前n 项和公式: 11+2+3+4+…+n =; 21+3+5+7+…+2n -1=n 2;32+4+6+8+…+2n=n2+n.二、非等差、等比数列求和的常用方法1.倒序相加法如果一个数列{a n},首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n项和即可用倒序相加法,等差数列的前n项和即是用此法推导的.2.分组转化求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,等比数列的前n项和就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.小题能否全取1.2012·沈阳六校联考设数列{-1n}的前n项和为S n,则对任意正整数n,S n=2.等差数列{a n}的通项公式为a n=2n+1,其前n项的和为S n,则数列的前10项的和为A.120 B.70C.75 D.1003.数列a1+2,…,a k+2k,…,a10+20共有十项,且其和为240,则a1+…+a k+…+a10的值为A.31 B.120C.130 D.1854.若数列{a n}的通项公式为a n=2n+2n-1,则数列{a n}的前n项和为________.5.数列,,,…,,…的前n项和为________.例1等比数列{a n}中,a123,且a1,a2,a3中的任何两个数不在下表的同一列.1求数列{a n}2若数列{b n}满足:b n=a n+-1n ln a n,求数列{b n}的前2n项和S2n...例2 已知数列{a n}n2a6=8a3.1求a n;2求数列{na n}的前n项和T n.2.已知等比数列{a n}的前n项和为S n,且满足S n=3n+k.1求k的值及数列{a n}的通项公式;2若数列{b n}满足=4+ka n b n,求数列{b n}的前n项和T n.T n=.例3 已知数列{a n}n1n n1求数列{a n}的通项公式;2设b n=,求数列{b n}的前n项和T n.3.在等比数列{a n}中,a1>0,n∈N,且a3-a2=8,又a1、a5的等比中项为16.1求数列{a n}的通项公式;2设b n=log4a n,数列{b n}的前n项和为S n,是否存在正整数k,使得+++…+<k对任意n∈N恒成立.若存在,求出正整数k的最小值;不存在,请说明理由.课后练习题1.已知数列{a n}的前n项和S n=n2-6n,则{|a n|}的前n项和T n=A.6n-n2B.n2-6n+182.若数列{a n}满足a1=2且a n+a n-1=2n+2n-1,S n为数列{a n}的前n项和,则log2S2012+2=________.3.已知递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.1求数列{a n}的通项公式;2若b n=a n log a n,S n=b1+b2+…+b n,求S n.4.已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.1求数列{a n}的通项;2求数列{2a n}的前n项和S n.S n=2n+1-2.2.设函数fx=x3,在等差数列{a n}中,a3=7,a1+a2+a3=12,记S n=f,令b n=a n S n,数列的前n项和为T n.1求{a n}的通项公式和S n;2求证:T n<.3.已知二次函数fx=x2-5x+10,当x∈n,n+1n∈N时,把fx在此区间内的整数值的个数表示为a n.1求a1和a2的值;2求n≥3时a n的表达式;3令b n=,求数列{b n}的前n项和S n n≥3.5-.。
一、数列的概念(1) 数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。
记作a n ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作 a n ; 数列的一般形式:a 1, a 2, a 3,……,a n ,……,简记作a n 。
例:判断下列各组元素能否构成数列 (1) a, -3, -1, 1, b, 5, 7, 9; (2) 2010年各省参加高考的考生人数。
(2) 通项公式的定义:如果数列 叫这个数列的通项公式。
例如:①:1 , 2 , 3 , 4, 511111 _ _ _ _ , ? ? ?2 3 4 5a n = n ( n 7, n N ),1 a n =(n N)。
n说明:1 n 2k 1② 同一个数列的通项公式的形式不一定唯一。
例如,a n = ( 1)n =(k Z);1,n 2k③ 不是每个数列都有通项公式。
例如, 1 , 1.4 , 1.41 , 1.414 ,…… (3) 数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项:456 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集N (或它的有限子集)的函数 f(n)当自变量n 从1开始依次取值时对应的一系列函数值f(1),f(2), f(3),……,f(n),……•通常用a n 来代替f n ,其图象是一群孤立点。
例:画出数列a n 2n 1的图像•(4) 数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关 系分:单调数列(递增数列、递减数列) 、常数列和摆动数列。
例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1) 1 , 2, 3, 4, 5, 6,… (2)10, 9, 8, 7, 6, 5, …(3) 1,0, 1,0, 1,0, … (4)a, a, a, a, a,…例:已知数列{a n }的前n 项和s n 2n 2 3,求数列{a n }的通项公式高三总复习 数列{a n }的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就②:数列①的通项公式是 数列②的通项公式是①a n 表示数列,a n 表示数列中的第n 项,a n = n 表示数列的通项公式;(5)数列{ a n }的前n 项和S n 与通项a n 的关系:a nS 1(n 1)S n A n > 2)练习:1 •根据数列前4项,写出它的通项公式:(1) 1, 3, 5, 7……;22 132 1 42 1 52 1(2)234 5 (3)1 1 1 1---1*2*3*44*5(4) 9, 99, 999, 9999 …(5) 7, 77, 777, 7777,(6)8, 88, 888, 8888 2 •数列a n 中,已知a n(1)与出a i, , a 2, a 3, a n 1, a n 2 ;2(2) 79 2是否是数列中的项?若是,是第几项?33• (2003京春理14,文15)在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表 观察表中数据的特点,用适当的数填入表中空白(_____ )内。
高三数列知识点文科版数列是数学中常见的一种数学对象,是由一系列按照一定规律排列的数字所构成的序列。
在文科学科中,数列的概念及其相关知识点也是不可忽视的一部分。
本文将介绍高三数列知识点的相关内容。
一、数列的概念与性质数列是由一系列按照一定规律排列的数字所构成的序列。
其中,每个数字称为数列的项,用an表示。
数列的通项公式表示了数列中各项之间的关系,常用的有等差数列和等比数列。
1. 等差数列等差数列是一种公差为常数的数列,即数列中每一项与它的前一项之差都相等。
通项公式为an = a1 + (n - 1)d,其中,a1为首项,d为公差,n为项数。
2. 等比数列等比数列是一种比值为常数的数列,即数列中每一项与它的前一项之比都相等。
通项公式为an = a1 × r^(n - 1),其中,a1为首项,r为公比,n为项数。
数列的性质包括有限数列和无限数列、单调性、有界性和极限等。
二、数列的应用数列作为一种基本的数学工具,在文科学科中有着广泛的应用。
下面列举几个常见的数列应用场景。
1. 金融领域在金融领域中,数列常用于计算复利增长问题。
例如,银行的定期存款利率为6%,每年计算一次利息,那么每一年的本息总量可以用等比数列来表示。
2. 人口统计在人口统计工作中,数列可以用来描述人口的增长或减少情况。
通过分析数列的特征,可以预测未来的人口发展趋势。
3. 历史研究在历史研究领域,数列可以用来揭示历史事件发展的规律。
通过构建适当的数列模型,可以将历史事件与时间、地点等因素联系起来,帮助研究人员深入了解历史的发展过程。
三、数列的解题方法解题是数列学习中的重要环节,只有掌握了解题方法,才能在高考中灵活运用数列知识。
1. 数列的推导数列的推导是指根据已知的数列条件,推导出数列的通项公式。
对于等差数列,通过观察数列中相邻项的关系,可以得出公差;对于等比数列,通过观察数列中相邻项的比值,可以得出公比。
2. 数列的和求解求解数列的和是数列学习中的常见问题。
高三文科数学数列知识点一、等差数列等差数列是指一个数列中,每一项与其前一项之差都相同的数列。
常用的表示方法为:a1,a2,a3,...,an。
1. 公式:通项公式:an = a1 + (n - 1)d其中,an表示第n项,a1表示首项,d表示公差。
2. 求和公式:部分和公式:Sn = (n/2)(a1 + an)其中,Sn表示前n项和,a1表示首项,an表示第n项。
3. 性质:a) 第n项:an = a1 + (n - 1)db) 公差:d = an - an-1c) 前n项和:Sn = (n/2)(a1 + an)二、等比数列等比数列是指一个数列中,每一项与其前一项之比都相同的数列。
常用的表示方法为:a1,a2,a3,...,an。
1. 公式:通项公式:an = a1 * r^(n - 1)其中,an表示第n项,a1表示首项,r表示公比。
2. 求和公式:部分和公式:Sn = (a1 * (r^n - 1))/(r - 1)其中,Sn表示前n项和,a1表示首项,r表示公比。
3. 性质:a) 第n项:an = a1 * r^(n - 1)b) 公比:r = an/an-1c) 前n项和:Sn = (a1 * (r^n - 1))/(r - 1)三、数列的性质与应用1. 数列的有界性如果数列的所有项都有一个共同的上界M或下界m,即对于所有的n,有an≤M或an≥m,则称数列是有界的。
2. 数列的极限当数列的通项公式在n趋于无穷大时,极限存在且有限,记作an→a。
其中,a为常数。
3. 数列数列的收敛与发散当数列满足an→a(a为常数),则称该数列是收敛的;反之,称该数列是发散的。
4. 数列的应用数列在不同领域有广泛的应用,如金融领域中的复利计算、物理领域中的运动学问题等。
通过数列的性质与公式,可以对各种实际问题进行建模与求解。
总结:高三文科数学中的数列知识点包括等差数列和等比数列。
对于等差数列,我们需要掌握通项公式、求和公式以及相关的性质。
高中数列知识点总结1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ⇔=+ 前n 项和()()11122n n a a n n n S nad +-==+性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --= (6)项数为偶数n 2的等差数列{}n a ,有nd S S =-奇偶,1+=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有 n a S S =-偶奇,1-=n nS S 偶奇. 2. 等比数列的定义与性质定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=.等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩(要注意!)性质:{}n a 是等比数列(1)若m n p q +=+,则mn p q a a a a =·· (2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q . 3、数列通项公式的求法(1)公式法等差数列:a n =a 1+(n-1)d=a m +(n-m)d 等比数列:a n =a 1q n-1=a m q n-ma 1 ,n=1 通用:a n =S n -S-1 ,n>1例、已知数列{a n }的前n 项和S n =n 2-6n ,求数列{}n a 的通项公式。
文科数列高考知识点总结一、数列的基本概念数列是一列按照一定顺序排列的数,这些数之间有着确定的规律。
数列中的每一个数都是这个规律的具体表现。
数列通常用a1, a2, a3, ... , an表示。
其中n表示这个数列中的项数。
数列常见的分类:1. 等差数列2. 等比数列3. 指数数列4. 对数数列5. 斐波那契数列6. 等差中项数列7. 等比中项数列二、等差数列等差数列是指数列中任意相邻两项的差都相等的数列。
其中,差值称为公差,通常用d表示。
等差数列的通项公式为:an = a1 + (n-1)d。
常见的等差数列的性质和公式:1. 第n项:an = a1 + (n-1)d2. 第n项和:Sn = (a1 + an) * n / 23. 前n项和:Sn = n*(a1 + an) / 24. 前n项的公差和:S'd = (n-1)*d等差数列的常见题型:1. 求等差数列的通项公式2. 求等差数列的前n项和3. 等差数列的应用题(如等差数列的求和应用)三、等比数列等比数列是指数列中任意相邻两项的比值都相等的数列。
其中,比值称为公比,通常用q 表示。
等比数列的通项公式为:an = a1 * q^(n-1)。
常见的等比数列的性质和公式:1. 第n项:an = a1 * q^(n-1)2. 第n项和:Sn = (a1 * (1 - q^n)) / (1 - q)3. 前n项和:Sn = (a1 * (1 - q^n)) / (1 - q)等比数列的常见题型:1. 求等比数列的通项公式2. 求等比数列的前n项和3. 等比数列的应用题(如等比数列的求和应用)四、数列的推导数列的推导是指通过已知数列的一些特定项的值,寻找数列的通项公式。
在高考中,通常会考察学生对数列的推导和归纳的能力。
数列的推导题型通常包括以下几类:1. 求等差数列的通项公式2. 求等比数列的通项公式3. 求满足条件的数列的通项公式数列的推导和归纳是数学中的重要思维能力,需要学生具有较强的逻辑推理和归纳总结能力。
数列考点总结
第一部分 求数列的通项公式
一、数列的相关概念与表示方法(见辅导书)
二、求数列的通项公式
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
求数列通项的基本方法是:累加法和累乘法。
一、累加法
1.适用于:
1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
若1()n n a a f n +-=(2)n ≥,
则 21321(1)
(2)
()n n a a f a a f a a f n +-=-=-=
两边分别相加得
111()
n n k a a f n +=-=∑ 例1 已知数列
{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
例2 已知数列
{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.
答案:12
+-n n 练习 2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.
答案:裂项求和 n a n 1
2-=
评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通
项n a .
①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和;
②若f(n)是关于n 的二次函数,累加后可分组求和;
③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;
④若f(n)是关于n 的分式函数,累加后可裂项求和。
例3.已知数列
}{n a 中, 0>n a 且)(21n n n a n a S +=,求数列}{n a 的通项公式.
练习3 已知数列
{}n a 满足112,12n n n a a a a +==+,求数列{}n a 的通项公式。
二、累乘法
1、适用于: 1()n n a f n a +=
累乘法是最基本的二个方法之二。
若1()n n a f n a +=,则3121
2(1)(2)()n n a a a f f f n a a a +===,,, 两边分别相乘得,
1111()n n k a a f k a +==⋅∏ 例4 已知数列
{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2, 3,…),则它的通项公式是n a =________.
三、待定系数法 适用于1()n n a qa f n +=+
基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。
1.形如0(,1≠+=+c d ca a n n ,其中a a =1)型
(1)若c=1时,数列{
n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;
(3)若01≠≠且d c 时,数列{
n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求.
待定系数法:设
)(1λλ+=++n n a c a , 得λ)1(1-+=+c ca a n n ,与题设,
1d ca a n n +=+比较系数得 d c =-λ)1(,所以)0(,1≠-=c c d λ所以有:)1(11-+=-+-c d a c c d a n n 因此数列⎭⎬⎫⎩
⎨⎧-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列, 所以 11)1(1-⋅-+=-+n n c c d a c d a 即:
1)1(11--⋅-+=-c d c c d a a n n . 规律:将递推关系d ca a n n +=+1化为)1(11-+=-++c d a c c d a n n ,构造成公比为c 的等比数列}1{-+c d a n 从而求得通项公式)1(1111-++-=-+c d a c c d a n n
逐项相减法(阶差法):有时我们从递推关系d ca a n n +=+1中把n 换成n-1有d ca a n n +=-1,两式相减有
)(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数列}{1n n a a -+,进而求得通项公式. )
(121a a c a a n n n -=-+,再利用类型(1)即可求得通项公式.我们看到此方法比较复杂.。