浙江高考数列经典例题汇总
- 格式:pdf
- 大小:171.21 KB
- 文档页数:15
浙江省历年高考数列大题总汇(题目及答案)1已知二次函数y?f(x)的图像经过坐标原点,其导函数为f?(x)?6x?2。
数列项和为Sn,点(n,Sn)(n?N 求数列*?an?的前n)均在函数y?f(x)的图像上。
?an?的通项公式;m3*,Tn是数列?bn?的前n项和,求使得Tn?对所有n?N都成立的最小20anan?1设bn正整数m。
?2. 己知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.求数列{an}的通项公式;设Tn为数列?小值. 3. 设数列?an?的前n项和为Sn,已知a1?1,a2?6,a3?11,且?1?*对?n?N恒成立,求实数?的最?的前n项和,若Tn≤?an?1¨?anan?1?(5n?8)Sn?1?(5n?2)Sn?An?B,n?1,2,3,?,其中A、B 为常数.(Ⅰ) 求A与B的值;(Ⅱ)证明数列?an?为等差数列;(Ⅲ) 证明不等式5amn?aman?1对任何正整数m、n都成立. 4. 已知数列?an?,?bn?满足a1?3,anbn?2,bn?1?an(bn?求证:数列{2),n?N*.1?an1}是等差数列,并求数列?bn?的通项公式;bn111,,成等差数列?若存在,试用p 表示q,r;若不crcqcp设数列?cn?满足cn?2an?5,对于任意给定的正整数p,是否存在正整数q,r(p?q?r),使得存在,说明理. 5. 已知函数f(x)?x?a?lnx (a?0). (1)若a?1,求f(x)的单调区间及f(x)的最小值;(2)若a?0,求f(x)的单调区间;ln22ln32lnn2(n?1)(2n?1)*?2???2与(3)试比较的大小(n?N且n?2),并证明22(n?1)23n你的结论.6已知f(x)?(x?1)2,g(x)?10(x?1),数列{an}满足(an?1?an)g(an)?f(an)?0,9(n?2)(an?1) 10a1?2,bn?求数列{an}的通项公式;(Ⅱ)求数列{bn}中最大项.7. 设k?R,函数f(x)?ex?(1?x?kx2)(x?0).若k?1,试求函数f(x)的导函数f?(x)的极小值;若对任意的t?0,存在s?0,使得当x?(0,s)时,都有取值范围. f(x)?tx2,求实数k的8. 已知等差数列{an}的公差不为零,且a3 =5, a1 , 成等比数列(I)求数列{an}的通项公式:(II)若数列{bn}满足b1+2b2+4b3+…+2nbn=an且数列{bn}的前n项和Tn 试比较Tn与-1 3n?1的大小n?19. 已知函数f(x)?12x?(2a?2)x?(2a?1)lnx 2(I )求f(x)的单调区间;(II)对任意的a?[,],x1,x2?[1,2],恒有|f(x1)|?f(x2)??|数?的取值范围. 352211?|,求正实x1x2 1. 解:依题意可设f(x)?ax2?bx(a?0),则f`(x)?2ax?b f`(x)?6x?2 得a?3,b??2,所以f(x)?3x2?2x. 又点(n,Sn)(n?N*) 均在函数y?f(x)的图像上得Sn22?3n2?2n 当n?2时an?Sn?Sn?1?3n?2n???3(n?1)?2(n?1)???6n ?5 当n?1时a1所以an?S1?3?12?2?1?6?1?5 ?6n?5(n?N*)?33111??(?), anan?1(6n?5)?6(n?1)?5?26n?56n?1得bn 故,Tn?111?11111??(1?). =(1?)?(?)?????(?)??26n?12?77136n?56n?1 ?1m11m,即m?10 (1?)?(n?N*)成立的m必须且必须满足?22026n?120因此使得故满足最小的正整数m为10 ?4a1?6d?142. 设公差为d.已知得?....................................3分2?(a1?2d)?a1(a1?6d)解得d?1或d?0(舍去),所以a1?2,故an?n?1 (6)分?1111???,anan?1(n?1)(n?2)n?1n?211n1111?? (9)分?Tn?????…?n?1n?22(n?2)2334n≤?(n+ 2)对?n?N?恒成立?Tn≤?an?1对?n?N?恒成立,即2(n?2)n111?≤?又242(n?2)2(n??4)2(4?4)16n1∴?的最小值为……………………………………………………………12分163. 解:(Ⅰ)a1?1,a2?6,a3?11,得S1?1,S2?2,S3?18.把n?1,2分别代入(5n?8)Sn?1?(5n?2)Sn?An?B,得?解得,A??20,B??8.(Ⅱ)(Ⅰ)知,5n(Sn?1?Sn)?8Sn?1?2Sn??20n?8,即?A?B??28, 2A?B??48?5nan?1?8Sn?1?2Sn??20n?8,①又5(n?1)an?2?8Sn?2?2Sn?1??20(n?1)?8.②②-①得,5(n?1)an?2?5nan?1?8an?2?2an?1??20,即(5n?3)an?2?(5n?2)an?1??20.又(5n?2)an?3?(5n?7)an?2??20.③④④-③得,(5n?2)(an?3?2an?2?an?1)?0,∴an?3?2an?2?an?1?0,∴an?3?an?2?an?2?an?1???a3?a2?5,又a2?a1?5,因此,数列?an?是首项为1,公差为5的等差数列.(Ⅲ)(Ⅱ)知,an?5n?4,(n?N?).考虑5amn?5(5mn?4)?25mn?20.(aman?1)2?aman?2aman?1?aman?am?an?1?25mn?15(m?n)?9.∴5amn?(aman?1)2厖15(m?n)?2915?2?29?1?0.即5amn?(aman?1)2,∴5amn?aman?1.因此,5amn?aman?1. 4. 因为anbn?2,所以an?2,bn42anb2bn4则bn?1?anbn?, (2)分?2?n?2??21?anbn?2bn?21?bn所以111??,bn?1bn2又a1?3,所以b1?即?1?231,故??是首项为,公差为的等差数列,……4分322?bn?131n?22??(n?1)??,所以bn?.………………………6分bn222n?2知an?n?2,所以cn?2an?5?2n?1,①当p?1时,cp?c1?1,cq?2q?1,cr?2r?1,若12111?1?,,成等差数列,则,2q?12r?1crcqcp21?1,1??1,2q?12r?1因为p?q?r,所以q≥2,r≥3,所以不成立.………………………...9分②当p≥2时,若则111,,成等差数列,crcqcp2111214p?2q?1?????,所以,2q?12p?12r?12r?12q?12p?1(2p?1)(2q?1)( 2p?1)(2q?1)2pq?p?2q,所以r?,...........................12分4p?2q?14p?2q?1222即2r?1?欲满足题设条件,只需q?2p?1,此时r?4p?5p?2,..................14分因为p≥2,所以q?2p?1?p,r?q?4p?7p?3?4(p?1)?p?1?0,即r?q...............................15分综上所述,当p?1时,不存在q,r满足题设条件;当p≥2时,存在q?2p?1,r?4p?5p?2,满足题设条件. (16)分 5. (1) 当x?1时,f(x)?x?1?lnx ,f(x)?1?,,21?(x)在?1,???上是递增. x1?(x)在?0,1?上是递减. x故a?1时, f(x)的增区间为?1,???,减区间为?0,1?,f(x)min?f(1)?0. ………4分当0?x?1时,f(x)?x?1?lnx,f(x)??1?(2)○1若a?1, 当x?a时,f(x)?x?a?lnx,f(x)?1?是递增的; 当0?x?a时,f(x)?a?x?lnx, f(x)??1?,, 1x?1??0,则f(x)在区间?a,???上xx1?0,则f(x)在区间?0,a?上是递x减的 (6)分2若0?a?1, ○当x?a时, f(x)?x?a?lnx, f(x)?1?,1x?1,?,x?1,f(x)?0 ; xxa?x?1,f,(x)?0. 则f(x)在?1,???上是递增的, f(x)在?a,1?上是递减的; 当0?x?a时,f(x)?a?x?lnx, f(x)??1?,f(x)在区间?0,a?上是递减的,而f(x)在x?a处有意义;则1?0 x f?x?在区间1,???上是递增的,在区间?0,1?上是递减的 (8)分??a,???,递减区间是?0,a?; 当0?a?1,f(x)的递增区间是?1,???,递减区间是?0,1?综上: 当a?1时, f(x)的递增区间是………9分lnx1?1? (3)(1)可知,当a?1,x?1时,有x?1?lnx?0,即xxln22ln32lnn2?2???2 则有223n?1?111111?1????1??n?1?(????)…………12分22222223n23n ?n?1?(111????2?33?4n(n?1)111111?n?1?(???????)2334nn?111(n?1)(2n?1)?n?1?(?)=2n?12(n?1)ln22ln32lnn2(n?1)(2n?1)?2??? 2?故:.............15分2(n?1)223n 6. 题意:(an?1?an)?10(an?1)?(an?1)2?0 ?1)(1 0an?1?9an?1)?0.........3分经化简变形得:(an?an?1,?10an?1变形得:?9an?1?0 (5)分an?1?19? an?1109为公比的等比数列。
数列真题演练一、选择题1、【2017年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8 2、【2017年高考全国I 卷理数】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440 B .330 C .220 D .110 3、【2017年高考全国II 卷理数】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏 C .5盏 D .9盏 4、【2017年高考全国III 卷理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .24-B .3-C .3D .8 5、【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6、【2018年高考全国I 卷理数】设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A .12- B .10- C .10D .127、【2018年高考浙江卷】已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>8、【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =- 9、【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =A .16B .8C .4D .210、【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则 A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->二、填空题1、【2017年高考全国II 卷理数】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑___________. 2、【2017年高考全国III 卷理数】设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4=___________.3、【2018年高考全国I 卷理数】记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =___________.4、【2019年高考全国I 卷理数】记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=___________.5、【2019年高考全国III 卷理数】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________.三、解答题1、【2017年高考浙江卷】已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n *∈N ).证明:当n *∈N 时, (1)0<x n +1<x n ;(2)2x n +1− x n ≤12n n x x +; (3)112n -≤x n ≤212n -.2、【2018年高考全国II 卷理数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.3、【2018年高考全国III 卷理数】等比数列{}n a 中,15314a a a ==,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .4、【2018年高考浙江卷】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (1)求q 的值;(2)求数列{b n }的通项公式.5、【2019年高考全国II 卷理数】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.6、【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n c n *=∈N证明:12+.n c c c n *++<∈N7、【2020年高考浙江卷】已知数列{a n },{b n },{c n }满足1111121,,,nn n n n n n b a b c c a a c c n b +++====-=∈*N . (Ⅰ)若{b n }为等比数列,公比0q >,且1236b b b +=,求q 的值及数列{a n }的通项公式; (Ⅱ)若{b n }为等差数列,公差0d >,证明:*12311,n c c c c n d++++<+∈N . 8、【2020年高考全国I 卷理数】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.数列真题演练答案一、选择题1、【答案】C【解析一】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C . 【解析二】因为166346()3()482a a S a a +==+=,即3416a a +=, 则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C . 【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+. 2、【答案】A【解析】由题意得,数列如下: 11,1,2,1,2,4,1,2,4,,2k-则该数列的前(1)122k k k ++++=项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭, 要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=-,所以2314t k =-≥,则5t ≥,此时52329k =-=,所以对应满足条件的最小整数293054402N ⨯=+=,故选A.【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 3、【答案】B【解析】设塔的顶层共有灯x 盏,则各层的灯数构成一个首项为x ,公比为2的等比数列,结合等比数列的求和公式有7(12)38112x -=-,解得3x =,即塔的顶层共有灯3盏,故选B . 4、【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A . 5、【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .6、【答案】B【解析】设等差数列的公差为d ,根据题中的条件可得3243332224222d d d ⨯⨯⎛⎫⨯+⋅=⨯++⨯+⋅ ⎪⎝⎭,整理解得3d =-,所以51421210a a d =+=-=-,故选B . 7、【答案】B【解析】令()ln 1,f x x x =--则()11f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()()10,ln 1f x f x x ≥=∴≥+. 若公比0q >,则()1234123123ln a a a a a a a a a a +++>++>++,不合题意; 若公比1q ≤-,则()()212341110,a a a a a q q +++=++≤但()()212311ln ln 1ln 0a a a a q q a ⎡⎤++=++>>⎣⎦,即()12341230ln a a a a a a a +++≤<++,不合题意;因此()210,0,1q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,故选B. 8、【答案】A【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A .9、【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .10、【答案】A90b -时,总存在b ≥,()22bbb +二、填空题1、【答案】21nn + 【解析】设等差数列的首项为1a ,公差为d ,由题意有1123434102a d a d +=⎧⎪⎨⨯+=⎪⎩ ,解得111a d =⎧⎨=⎩ , 数列的前n 项和()()()111111222n n n n n n n S na d n --+=+=⨯+⨯=, 裂项可得12112()(1)1k S k k k k ==-++,所以1111111122[(1)()()]2(1)223111nk knS n n n n ==-+-++-=-=+++∑. 2、【答案】8-【解析】设等比数列{}n a 的公比为q ,很明显1q ≠-,结合等比数列的通项公式和题意可得方程组:1212131(1)1(1)3a a a q a a a q +=+=-⎧⎨-=-=-⎩①②,由②①可得:2q =-,代入①可得11a =,由等比数列的通项公式可得3418a a q ==-. 3、【答案】63-【解析】根据21n n S a =+,可得1121n n S a ++=+,两式相减得1122n n n a a a ++=-,即12n n a a +=,当1n =时,11121S a a ==+,解得11a =-,所以数列{}n a 是以−1为首项,以2为公比的等比数列,所以()66126312S --==--,故答案是63-.4、【答案】1213【解析】设等比数列的公比为q ,由已知21461,3a a a ==,所以32511(),33q q =又0q ≠,所以3,q =所以55151(13)(1)12131133a q S q --===--. 5、【答案】4【解析】设等差数列{a n }的公差为d ,因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d ⨯+==⨯+. 三、解答题1、【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)用数学归纳法证明:0n x >.当n =1时,x 1=1>0.假设n =k 时,x k >0,那么n =k +1时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>.因此0()n x n *>∈N .所以111ln(1)n n n n x x x x +++=++>, 因此10()n n x x n *+<<∈N . (2)由11ln(1)n n n x x x ++=++得,2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++.记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥,22()ln(1)0(0)1x x f'x x x x +=++>>+,函数f (x )在[0,+∞)上单调递增,所以()(0)f x f ≥=0,因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥,故112()2n n n n x x x x n *++-≤∈N . (3)因为11111ln(1)2n n n n n n x x x x x x +++++=++≤+=,所以112n n x -≥,由1122n n n n x x x x ++≥-,得111112()022n n x x +-≥->, 所以12111111112()2()2222n n n n x x x ----≥-≥⋅⋅⋅≥-=, 故212n n x -≤. 综上,1211()22n n n x n *--≤≤∈N .2、【答案】(1)a n =2n –9;(2)S n =n 2–8n ,最小值为–16. 【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15.由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9.(2)由(1)得S n =n 2–8n =(n –4)2–16.所以当n =4时,S n 取得最小值,最小值为–16. 3、【答案】(1)1(2)n n a -=-或12n n a -=;(2)6m =.【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.4、【答案】(1)2q =;(2)2115(43)()2n n b n -=-+⋅.【解析】本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1)由42a +是35,a a 的等差中项得35424a a a +=+,所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得18()20q q+=,因为1q >,所以2q =.(2)设1()n n n n c b b a +=-,数列{}n c 前n 项和为n S .由11,1,, 2.n nn S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(1)可知12n n a -=,所以111(41)()2n n n b b n -+-=-⋅,故211(45)(),22n n n b b n n ---=-⋅≥,11123221()()()()n n n n n b b b b b b b b b b ----=-+-++-+-23111(45)()(49)()73222n n n n --=-⋅+-⋅++⋅+.设221113711()(45)(),2222n n T n n -=+⋅+⋅++-⋅≥,2211111137()(49)()(45)()22222n n n T n n --=⋅+⋅++-⋅+-⋅ 所以22111111344()4()(45)()22222n n n T n --=+⋅+⋅++⋅--⋅,因此2114(43)(),22n n T n n -=-+⋅≥,又11b =,所以2115(43)()2n n b n -=-+⋅.5、【答案】(1)见解析;(2)1122n n a n =+-,1122n n b n =-+. 【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+.又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+. 又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21nn a b n -=-. 所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.6、【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析.【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N .所以2*n S n n n =-∈N ,, 由12,,n n n n n nS b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-.所以2*,n b n n n =+∈N . (2)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N时不等式成立,即12k c c c +++<那么,当1n k =+时,121k k c c c c +++++<<<==.即当1n k =+时不等式也成立. 根据(i )和(ii),不等式12n c c c +++<*n ∈N 成立.7、【答案】(Ⅰ)由1236b b b +=得216q q +=,解得12q =.由14n n c c +=得14n n c -=.由114n n n a a -+-=得121421443n n n a a --+=++++=.(Ⅱ)由12n n n n b c c b ++=得12111111()n n n n n b b c d c b b d b b +++==-,所以123111(1)n n d c c c c d b ++++++=-, 由11b =,d >得10n b +>,因此*12311,n c c c c n d++++<+∈N . 8、【答案】(1)2-;(2)1(13)(2)9nn n S -+-=.【解析】(1)设{}n a 公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-=,1,2q q ≠∴=-;(2)设{}n na 的前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++-,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+-,②①-②得,2131(2)(2)(2)(2)n n n S n -=+-+-++---1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--, 1(13)(2)9nn n S -+-∴=.。
数列(04年)已知数列}{n a 的前n 项和为n S ,))(1(31*N n a S n n ∈-=。
(Ⅰ)求1a ,2a ;(Ⅱ)求证数列}{n a 是等比数列。
(05年)已知实数a ,b ,c 成等差数列,1+a ,1+b ,4+c 成等比数列,且15=++c b a ,求a ,b ,c 。
(06年)若n S 是公差不为0的等差数列}{n a 的前n 项和,且1S ,2S ,4S 成等比数列。
(Ⅰ)求数列1S ,2S ,4S 的公比;(Ⅱ)若42=S ,求}{n a 的通项公式。
(07年)已知数列}{n a 的相邻两项12-k a ,k a 2是关于x 的方程023)23(2=⋅++-kkk x k x 的两个根,且k k a a 212≤-(=k 1,2,3,…)。
(Ⅰ)求数列1a ,3a ,5a ,7a 及)4(2≥n a n (不必证明);(Ⅱ)求数列}{n a 的前n 2项和n S 2。
(08年)已知数列}{n a 的首项31=x ,通项nq p x n n +=2(*N n ∈,p ,q 为常数),且1x ,4x ,5x 成等差数列。
求: (Ⅰ)p ,q 的值;(Ⅱ)数列}{n a 的前n 项和n S 的公式。
(09年)设n S 为数列}{n a 的前n 项和,n kn S n +=2,*N n ∈,其中k 是常数。
(Ⅰ)求1a 及n a ;(Ⅱ)若对于任意的*N m ∈,m a ,m a 2,m a 4成等比数列,求k 的值。
(10年)设1a ,d 为实数,首项为1a ,公差为d 的等差数列}{n a 的前n 项和为n S ,满足01565=+S S 。
(Ⅰ)若55=S ,求6S 及1a ;(Ⅱ)求d 的取值范围。
(11年)已知公差不为0的等差数列}{n a 的首项1a 为)(R a a ∈,且11a ,21a ,41a 成等比数列。
(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)对*N n ∈,试比较na a a a 2222111132++++ 与11a 的大小。
2013-2017年浙江高考理科数学历年真题之数列大题(教师版)1、(2013年)在公差为d 的等差数列{}n a 中,已知112310,,22,5a a a a =+且成等比数列.(Ⅰ)求d ,n a ; ⅠⅠ()120,|||||.n da a a <+++ 若求|(Ⅰ) 解;:由题意得223125(22)34014a a a d d d d ⋅=+⇒--=⇒=-=或所以 11,*46,*.n n a n n N a n n N =-∈=+∈或ⅠⅠ()设数列{}n a 的前n 项和为n S ,因为0,d <由(Ⅰ)得1,11,n da n =-=-则当11n ≤时,212121||||||.22n n a a a S n n +++==-+ 当12n ≥时,21211121||||||2110.22n n a a a S S n n +++=-+=-+ 综上即得212212111,22||||||12111012.22n n n n a a a n n n ⎧-+≤⎪⎪+++=⎨⎪-+≥⎪⎩2、(2014年)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 .若{}na 为等比数列,且.6,2231b b a +==(Ⅰ)求n a 与n b ; ⅠⅠ()设()*∈-=N n b a c nn n11。
记数列{}n c 的前n 项和为n S . (i )求n S ;(ii )求正整数k ,使得对任意*∈N n ,均有n k S S ≥. 解析:(I )由题意,()()*∈=N n a a a nb n 221 ,326b b-=,知3238b b a -==,又由12a =,得公比2q =(2q =-舍去),所以数列{}n a 的通项公式为2()n n a n N *=∈,所以()()1121232n n n n n a a a a ++==,故数列{}n b 的通项公式为,()1()n b n n n N *=+∈;(II )(i )由(I )知,11111()21n n n n c n N a b n n *⎛⎫=-=--∈ ⎪+⎝⎭,所以11()12n nS n N n *=-∈+; (ii )因为12340,0,0,0c c c c =>>>;当5n ≥时,()()11112n n n n c n n +⎡⎤=-⎢⎥+⎣⎦,而()()()()()11112120222n n n n n n n n n ++++++--=>,得()()51551122n n n ++≤<,所以当5n ≥时,0n c <,综上对任意n N *∈恒有4n S S ≥,故4k =.3、(2015年)已知数列{a n }满足a 1=21, 且1n a +=n a -2n a (n ∈N*) (I)证明:1≤1+n na a ≤2 (n ∈N*) (II)设数列{2n a }的前n 项和为S n , 证明)2(21+n ≤nSn ≤)1(21+n (n ∈N*)解: (I)∵a n -a n +1=2n a ≥0 ∴a n +1≤a n ∴a n ≤a 1=21由a n =11)1(---n n a a 得a n =0)1()1)(1(1121>-----a a a a n n , 故0< a n ≤21 从而n n n n n n a a a a a a -=-=+11)1(1∈[1, 2] 即1≤1+n n a a ≤2 法二: 在0< a n ≤21基础上证a n ≤2a n +1可用分析法 要使a n ≤2a n +1, 只要a n ≤2(a n -2n a )⇔22n a ≤a n ⇔0< a n ≤21, 故a n ≤2a n +1成立 (II)∵2n a =a n -a n +1 ∴S n =a 1-a 2+a 2-a 3+…+a n -a n +1=a 1-a n +1=21-a n +1 由a n +1=a n (1-a n ) ∴n n n a a a -+=+11111∴n n n a a a -=-+11111∈[1, 2], 0<a n ≤21 故1≤n n a a 111-+≤2, n ∈N*, 累加得n ≤1111a a n -+≤2n 即n +2≤11+n a ≤2n +2即221+n ≤a n +1≤21+n ,从而)2(2+n n ≤S n =21-a n +1≤)1(2+n n因此,)2(21+n ≤nSn ≤)1(21+n (n ∈N*) (n n n a a a -=-+11111=1+n n a a , (I)(II)关联在此)法二: (用数学归纳法)∵2n a =a n -a n +1 ∴S n =a 1-a 2+a 2-a 3+…+a n -a n +1=a 1-a n +1=21-a n +1 要使)2(21+n ≤nS n ≤)1(21+n 成立, 只须且必须221+n ≤a n +1≤21+n (n ∈N*)当n =1时, a 2=41, 可得41≤a 2≤31, 结论成立假设当n =k 时, 结论成立, 即221+k ≤a k +1≤21+k , k ∈N*,则当n =k +1时, 注意到x -x 2在[0,21]上是增函数,∴a k +2=a k +1-21+k a ≤22)2(1)2(121++=+-+k k k k ≤313412+=+++k k k k且a k +2=a k +1-21+k a ≥22)1(412)22(1221++=+-+k k k k ≥421+k (事实上, ∵(2k +1)(2k +4)-4(k +1)2=2k ≥0 ∴2)1(412++k k ≥421+k ) 也就是说, 当n =k +1时, 结论也成立 因此, 原命题得证4、(2016年)设数列{}n a 满足112n n a a +-…,n *∈N . (1)求证:()1122n n a a--…,n *∈N ;(2)若32n n a ⎛⎫ ⎪⎝⎭…,n *∈N ,证明:2n a …,n *∈N .解析:5、 (2017年) 已知数列{x n }满足x 1=1,x n =x n +1+ln(1+x n +1)(n ∈N *).证明:当n ∈N *时, (1)0<x n +1<x n ; (2)2x n +1− x n ≤x n x n +12;(3)12n-1≤x n ≤12n-2.解析:。
高考数学《数列》大题训练50题1 .数列{}的前n 项和为,且满足,.n a n S 11a =2(1)n n S n a =+(1)求{}的通项公式; (2)求和T n =.n a 1211123(1)na a n a ++++L 2 .已知数列,a 1=1,点在直线上.}{n a *))(2,(1N n a a P n n ∈+0121=+-y x (1)求数列的通项公式;}{n a (2)函数,求函数最小值.)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 )(n f 3 .已知函数(a ,b 为常数)的图象经过点P (1,)和Q (4,8)x ab x f =)(81(1) 求函数的解析式;)(x f (2) 记a n =log 2,n 是正整数,是数列{a n }的前n 项和,求的最小值。
)(n f n S n S 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求=f (1)+f (2)+…+f (n )的表达式.n S 5 .设数列的前项和为,且,其中是不等于和0的实常数.{}n a n n S 1n n S c ca =+-c 1-(1)求证: 为等比数列;{}n a (2)设数列的公比,数列满足,试写出 的{}n a ()q f c ={}n b ()()111,,23n n b b f b n N n -==∈≥1n b ⎧⎫⎨⎬⎩⎭通项公式,并求的结果.12231n n b b b b b b -+++L 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量与向量共线,且1+n n A A n n C B 点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列的前三项与数列的前三项对应相同,且…对任意的{}n a {}n b 212322a a a +++12n n a -+8n =∈n N*都成立,数列是等差数列.1{}n n b b +-(1)求数列与的通项公式;{}n a {}n b (2)问是否存在N *,使得?请说明理由.k ∈(0,1)k k b a -∈8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数为等差数列,试求λ的值.}3{,nn a λλ+使得9 .已知数列的前项和为,若,{}n a n n S ()1,211++=⋅=+n n S a n a n n(1)求数列的通项公式;{}n a (2)令,①当为何正整数值时,:②若对一切正整数,总有,求的n nn S T 2=n 1+>n n T T n m T n ≤m 取值范围。
数列专题一.等差数列练习题1.设S n 是数列{a n }的前n 项和,且S n =2n 2-5n ,证明数列{a n }是等差数列。
2.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列3.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 为( )A .48B .49C .50D .514.首项为-24的等差数列,从第10项起开始为正数,则公差的范围是______。
5.如果等差数列{}n a 中,34512712,___.a a a a a a ++=+++=那么6.已知1,a ,b 成等差数列,3,a +2,b +5成等比数列,则公差为( )A .3或-3B .3或-1C .3D .-37.已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为______.8.等差数列{}n a 的前三项为1,1,23x x x -++,则这个数列的通项公式为( )A .21n a n =+B .21n a n =-C .23n a n =-D .25n a n =-9.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( )A.18B.20C.22D.2410.设n S 是等差数列{}n a 的前n 项和,若363,24S S ==,则9__.a = 11.设等差数列{}n a 的前n 项和为n S ,若924972,___.S a a a =++=则12.{}n a 是公差为-2的等差数列,a 1+a 4+….. + a 97 =50,a 3+a 6+ a 9+….. + a 99 =( )A.-182B.-78C.-148D.-8213.}{n a 是等差数列,且,13,77,57146541074==++++=++k a a a a a a a a 若 则k =14.在等差数列}{n a 中,若4681012120a a a a a ++++=,则10122a a -= 15.已知}{n a 为等差数列,a 1+a 8+ a 13+ a 18=100,求a 10= 16.已知数列{a n }的前n 项和S n =n (n -40),则下列判断正确的是( ) A.a 19>0,a 21<0B.a 20>0,a 21<0C.a 19<0,a 21>0D.a 19<0,a 20>017.等差数列{a n }中,a 1>0,S 4=S 9,则S n 取最大值时,n=18.等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值。
一.基础题组1. 【2012年.浙江卷.理7】设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误的是( )A .若d <0,则数列{S n }有最大项B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0 D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列2. 【2012年.浙江卷.理13】设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =__________.3. 【2010年.浙江卷.理3】设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S = (A )11 (B )5 (C )8- (D )11-4. 【2010年.浙江卷.理15】设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=,则d 的取值范围是__________________ .5. 【2009年.浙江卷.理11】设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a = . 6. 【2008年.浙江卷.理6】已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a =(A )16(n--41) (B )16(n--21)(C )332(n --41) (D )332(n--21) 7. 【2006年.浙江卷.理11】设S n 为等差数列{}n a 的前n 项和,若51010,5S S ==-,则公差为 (用数字作答).8. 【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D.140,0a d dS <>9. 9. 【2016高考浙江理数】如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合).若1n n n n n n n d A B S A B B +=,为△的面积,则( )A .{}n S 是等差数列B .2{}nS 是等差数列 C .{}n d 是等差数列 D .2{}nd 是等差数列 10.【2016高考浙江理数】设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= .二.能力题组1. 【2013年.浙江卷.理18】(本题满分14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 三.拔高题组1. 【2014年.浙江卷.理19】(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 .若{}na 为等比数列,且.6,2231b ba +==(Ⅰ)求n a 与n b ; (Ⅱ)设()*∈-=N n b a c nn n 11。
v1.0可编辑可修改浙江高考数列经典例题汇总1. 【 2014年 . 浙江卷 . 理 19】(本题满分 14分)已知数列a n和b n满足b na 1a 2 a n 2n N . 若 a n 为等比数列,且 a 1 2,b 3 6 b 2 .( Ⅰ ) 求an 与bn ;c n1 1 n N (Ⅱ)设a nb n。
记数列 c n 的前 n 项和为S n.(i )求S n;(ii )求正整数 k,使得对任意nN,均有S k S n .2. 【 2011年 . 浙江卷 . 理 19】(本题满分 14分)已知公差不为 0的等差数列 { a n } 的首项 a 1 a111(a R), 设数列的前 n 项和为S n,且a 1,a2 ,a 4成等比数列(Ⅰ)求数列{ a n }的通项公式及S n11 11B n1 1 1 ...1A n...a 1 a 2a 22a2n,当n(Ⅱ) 记S 1 S 2 S 3S n ,2时,试比较An 与Bn 的大 小.v1.0可编辑可修改3. 【 2008 年 . 浙江卷 . 理 22】(本题 14 分)已知数列a n , a n 0, a1 0 ,a n21 a n 1 1 a n2 (n N ) .S n a1 a2 a n1 1 1T n(1 a1 )(1 a2 ) a1 )(1 a2 ) an ).1 a1 (1 (1 求证:当 n N 时,(Ⅰ)anan 1;(Ⅱ) S n n2;(Ⅲ)Tn3。
4.【2007 年 . 浙江卷 . 理 21】(本题 15 分)已知数列{ an}中的相邻两项a2 k 1,a2k是关于x的方程的两个根,且a2 k 1a2k(k 1,2,3, )(Ⅰ)求a1,a3, a5, a7;(Ⅱ)求数列{ an}的前 2n 项的和S2 n;v1.0 可编辑可修改f ( n) 1 ( |sin n | 3) T n( 1)f (2) ( 1)f (3)( 1)f (4)( 1)f ( n 1)a 1a 2a 3a 4a 5 a 6a 2 n 1a2n( Ⅲ)记2 sin n ,1T n5(n N * )求证:6245. 【2005年 .浙江卷 .理20】设点An (xn ,0),P n(x n,2n 1 )和抛物线Cn :y = x2+ an x +1bn(n ∈N*) ,其中 an =- 2- 4n -2n 1,x n由以下方法得到: x1 =1,点 P2(x2 , 2) 在抛物线 C1: y = x2+ a1x + b1 上,点 A1(x1 , 0) 到 P2 的距离是 A1 到 C1 上点的最短距离, ,点P n 1 ( x n 1 ,2n) 在抛物线 C n :y = x2 + an x + bn 上,点 A n ( x n , 0) 到Pn 1的距离是 A n 到C n上点的最短距离.( Ⅰ) 求 x2 及 C1的方程.( Ⅱ) 证明 {x n} 是等差数列.16. 【 2015 高考浙江,理 20】已知数列a n满足a1= 2 且an 1 =a n -a n2(nN * )v1.0可编辑可修改a n 2(1)证明: 1 an 1 N *(n);a n2 1 S n 1(2)设数列的前 n 项和为Sn,证明 2( n 2) n 2( n 1) (n N * )a n 11a n满足a n7. 【 2016 高考浙江理数】设数列 2 ,n .(I )证明:an2n 1 a12, n ;3 na n,证明:an2, n.2 ,n(II )若例 1.(浙江省新高考研究联盟2017 届高三下学期期初联考)已知数列a满足a1=3,na n+1=a n2+2a n,n∈ N* ,设b n=log 2(a n+1).(I )求 {a n} 的通项公式;(II )求证: 1+<n(n ≥2) ;(I II )若2c n =b n,求证: 2≤(cn 1)n <3.c n例 2.(浙江省温州中学2017 届高三 3 月高考模拟)正项数列a n满足a 2 a 3a 2 2a , a 1.n n n 1 n 1 1(Ⅰ)求 a2的值;(Ⅱ)证明:对任意的n N ,a 2a ;n n 1(Ⅲ)记数列 a n 的前 n 项和为S n,证明:对任意的n1S n 3 .N , 22n 1例 3.(浙江省温州市十校联合体2017 届高三上学期期末)已知数列 { a n } 满足a1 1,a n 1 1a n2m,8(1)若数列 { a n } 是常数列,求m的值;(2)当m1时,求证:a n a n 1;(3)求最大的正数m ,使得a n 4 对一切整数n 恒成立,并证明你的结论。
专题08 数列求和(奇偶项讨论求和)(典型例题+题型归类练)一、必备秘籍有关数列奇偶项的问题是高考中经常涉及的问题,解决此类问题的难点在于搞清数列奇数项和偶数项的首项、项数、公差(比)等.本专题主要研究与数列奇偶项有关的问题,并在解决问题中让学生感悟分类讨论等思想在解题中的有效运用.因此,在数列综合问题中有许多可通过构造函数来解决.类型一:通项公式分奇、偶项有不同表达式;例如:n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数角度1:求n n n a n c b n ⎧⎪=⎨⎪⎩为奇数为偶数的前2n 项和2n T角度2:求n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数的前n 项和n T类型二:通项含有(1)n -的类型;例如:(1)nn n c a =-类型三:已知条件明确的奇偶项或含有三角函数问题二、典型例题类型一:通项公式分奇、偶项有不同表达式通项公式分奇、偶项有不同表达式;例如:n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数角度1:求n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数的前2n 项和2n T例题1.(2022·浙江嘉兴·模拟预测)已知公差不为零的等差数列{}n a 满足24692,,,a a a a =成等比数列.数列{}n b 的前n 项和为n S ,且满足()22N n n S b n *=⋅-∈(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足211,,n n n n n n a a c a n b ++⎧⎪⎪=⎨⎪⎪⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .第(2)问解题思路点拨:由(1)知:,,可代入到第(2)问中,求出的通项公式:,即:注意到奇偶项通项不同,直接考虑分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧,由于奇偶项通项比较复杂,可设;,则(注意到本例求解的为偶数项和,最后一项一定是代入偶数的通项公式,否则,若是求,最后一项是代入奇数项通项,还是代入偶数项通项,则需要讨论)分组求和当为奇数 当为偶数,两式相减得:综上:【答案】(1)n a n =;2nn b =(2)2255212n n n n T n +=+-+ (1)由题:46922,24,27a d a d a d =+=+=+,∵2649a a a =⋅,即()()()2242227d d d +=++得:1d =,即n a n = 当1n =时,12b =,当2n ≥时,22n n S b =⋅-,1122n n S b --=⋅-,两式相减整理得12nn b b -=, 即数列{}n b 是以首项12b =,公比2q的等比数列∴2nn b =(2)当n 为奇数时,1111(2)22n c n n n n ⎛⎫==- ⎪++⎝⎭1352111111112335212121n n nA c c c c n n n -⎛⎫=++++=-+-++-= ⎪-++⎝⎭ 当n 为偶数时,n c =23521222n n n B +=+++, 231135212122222n n n n n B +-+=++++ 两式相减得:23111113222213121525122222222222n n n n n n n n n B +-+++++=++++-=+--=- 得:2552n nn B +=-2255212n n n n n n T A B n +=+=+-+角度2:求n n n a n c b n ⎧⎪=⎨⎪⎩为奇数为偶数的前n 项和n T例题2.(2022·山东日照·模拟预测)已知数列{}n a 中,11a =,22a =,2n n a ka +=(1k ≠),n *∈N ,23a a +,34a a +,45a a +成等差数列.(1)求k 的值和{}n a 的通项公式;(2)设22log n n na nb a n ⎧=⎨⎩,为奇数,为偶数,求数列{}n b 的前n 项和n S .第(2)问解题思路点拨:由(1)知,代入即:注意到奇偶项通项不同,直接考虑分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧当为偶数时,数列{的前项中有个奇数项,有个偶数项.(注意到本例求解的,最后一项是代入奇数项通项,还是代入偶数项通项,需要讨论)(讨论时优先讨论为偶数)为奇数为偶数当为奇数时,为偶数,注意到为偶数,所以可使用偶数项和的结论,代入左侧求和结果:,则:,整理:综上:21n b -++1n a -+,注意到最后一项n 为偶数,再利用1n n a -+,其中奇数项,偶数项各为【答案】(1)2k =,12222n n n n a n -⎧⎪=⎨⎪⎩,为奇数,为偶数(2)12221,38211,38n n n n nn S n n +⎧+-+⎪⎪=⎨--⎪+⎪⎩为偶数为奇数 (1)解:23a a +,34a a +,45a a +成等差数列, 所以()3423452a a a a a a +=+++,得5342a a a a -=-,得()()2311k a k a -=-, 因为1k ≠,所以322a a ==,所以312a k a ==,得12222n n n n a n -⎧⎪=⎨⎪⎩,为奇数,为偶数. (2)由(1)知,122n n n b n n -⎧⎪=⎨⎪⎩,为奇数,为偶数当n 为偶数时,设n =2k ,可得21321242n k k k S S b b b b b b -==++⋅⋅⋅+++++()022212222422k k -=++⋅⋅⋅++++⋅⋅⋅+ ()()22114141142232k k k k k k ++--=+⨯=+-,即()22138n n n nS +-=+; 当n 为奇数时,设n =2k -1,可得2113212422n k k k S S b b b b b b ---==++⋅⋅⋅++++⋅⋅⋅+ ()0222122224222k k -=++⋅⋅⋅++++⋅⋅⋅+- ()()()2221114141142232k k k k k k +-----=+⨯=+-, 即1221138n n n S +--=+. 综上所述,()12221,38211,38n n n n nn S n n +⎧+-+⎪⎪=⎨--⎪+⎪⎩为偶数为奇数.类型二:通项含有(-1)n的类型通项含有(1)n -的类型;例如:(1)nn n c a =-例题3.(2022·河南·开封高中模拟预测(理))在数列{}n a 中,33a =,数列{}n a 的前n 项和n S 满足()()*112n n S a n n =+∈N . (1)求数列{}n a 的通项公式; (2)若()21nn n b a =-,求数列{}n b 的前n 项和n T .【答案】(1)()*n a n n =∈N (2)2*2*,,2,.2n n nn N n T n n n N n ⎧+-∈⎪⎪=⎨+⎪∈⎪⎩且是奇数且是偶数 第(2)问解题思路点拨:由题意知,求,代入:注意到通项中含有“”,会影响最后一项取“正还是负”,通过讨论的奇偶,结合分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧(注意到本例求解的,代入最后一项,是正,还是负,需要讨论)(讨论时优先讨论为偶数)为奇数为偶数当为奇数时,为偶数,即:注意到为偶数,所以可使用偶数项和的结论,代入左侧求和结果:,则:,整理:综上:(1)因为()112n n S a n =+,所以()12n n nS a =+. 所以当2n ≥时,()11112n n n S a ---=+. 两式相减,得()()1211n n n a na n n a n -=+----, 即()()1211n n n a n a --=--. 所以()111n n n a na +-=-.相减得()()()11121n n n n n a n a na n a +----=--, 即112n n n a a a -+=+. 所以数列{}n a 是等差数列. 当n =1时,()11112a a =+,解得11a =. 所以公差31131a a d -==-. 所以()()*11n a n n n =+-=∈N . (2)()()2211nnn nb a n =-=-⨯, 当n 为奇数时,()()22222212311212n n nT n n n +=-+-+⋅⋅⋅+-⨯=++⋅⋅⋅+--=-⎡⎤⎣⎦;当n 为偶数时,22222123122n n n T n n +=-+-+⋅⋅⋅+=++⋅⋅⋅+=.综上所述,2*2*,,2,.2n n n n N n T n n n N n ⎧+-∈⎪⎪=⎨+⎪∈⎪⎩且是奇数且是偶数例题4.(2022·重庆八中模拟预测)已知n S 是公差不为零的等差数列{}n a 的前n 项和,36S =,2319a a a =⋅.(1)求数列{}n a 的通项公式;(2)设数列()()24141nnn a b n n +=-∈-N ,数列化{}n b 的前2n 项和为2n T感悟升华(核心秘籍)(1)对比例题3,例题4,通项都含有“(1)n-”,在求和时都使用(连续两项分组求和法:即连续的两项分一组);不同的是,例题3求前n 项和nT ;例题4求前2n 项和2nT ;(2)对于例题3求123n n T b b b b =+++⋅⋅⋅+,其中最后一项代入,是取“正”还是取“负”不确定,故需讨论n 为奇数还是偶数,在讨论时,作为核心技巧,先讨论n 为偶数,再利用n 为偶数的结论,快速求n 为奇数的和;;(3)对于例题4求21234212n n n T b b b b b b -=++++++,注意到最后一项2n b 一定是正,故不需要讨论;【答案】(1)*,N na n n =∈(2)21141n T n =-++ (1)公差d 不为零的等差数列{}n a ,由2319a a a =⋅, ()()211182a a d a d +=+,解得1a d =.第(2)问解题思路点拨:由(1)知:,可代入到第(2)问中,求出的通项公式:,注意到通项中含有“”,会影响最后一项取“正还是负”,通过讨论的奇偶,结合分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧(注意到本例求解的为偶数项和,代入最后一项,一定是正,故不需要讨论)分组求和又31336S a d =+=,可得11a d ==,所以数列{}n a 是以1为首项和公差的等差数列, 所以*,N na n n =∈.(2)解:由(1)可知()()241111412121nn n n b n n n ⎛⎫=-=-+ ⎪--+⎝⎭, 211111111113355743414141n T n n n n ∴=--++--+--++---+1141n =-++, 类型三:已知条件明确的奇偶项或含有三角函数问题例题5.(2022·江西赣州·二模(文))已知数列{}n a 的前n 项和为n S ,且满足()22n n S a n *=-∈N(1)求数列{}n a 的通项公式;(2)已知()2cos log n n b n a π=⋅,求数列{}n b 的前n 项和n T .感悟升华(核心秘籍)第(2)问解题思路点拨:由题意知,求,注意,所以可化简为:,注意到通项中含有“”,会影响最后一项取“正”还是取“负”,通过讨论的奇偶,结合分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧(注意到本例求解的,代入最后一项,是正,还是负,需要讨论)(讨论时优先讨论为偶数)为奇数为偶数当为奇数时,为偶数,即:注意到为偶数,所以可使用偶数项和的结论,代入左侧求和结果:,则:,,整理:综上:【答案】(1)2n n a =(2),;1,.n n n T n n ⎧=⎨--⎩ 为偶数为奇数(1)当1n =时,1122S a =-,即12a = 当2n ≥时,1122n n S a --=-,即12a =所以1122n n n n n a S S a a --=-=-得()122n n a a n -=≥ 即{}n a 以12a =为首相,公比为2的等比数列 所以数列{}n a 的通项公式为2n n a =(2)()()()cos 2cos 12nn n b n a n n n ππ=⋅=⋅=-⋅①当n 为偶数时,1232468102n n T b b b b n =+++⋅⋅⋅+=-+-+-+⋅⋅⋅+ 22nn =⋅= ②当n 为奇数时,1231n n n n T b b b b T b -=+++⋅⋅⋅+=+ ()12212n n n -=⋅+-=-- 综上:,;1,.n n n T n n ⎧=⎨--⎩ 为偶数为奇数三、题型归类练1.(2022·湖北·荆门市龙泉中学二模)已知数列{}n a 的前n 项和为112n n S a +=-,且214a = (1)求数列{}n a 的通项公式;(2)()0.5*log ,,n n n a n b n N a n ⎧=∈⎨⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T ; 【答案】(1)12nn a ⎛⎫= ⎪⎝⎭(2)211334nn +-⨯ (1)在数列{}n a 中, 由112n n S a +=-可知1212n n S a ++=-, 两式作差可得()()1211212n n n n S a S a +++---=-,即2112n n a a ++=, 当1n =时,1212S a =-,,即112a =,211412a a ==, 所以数列{}n a 是以12为首项,12为公比的等比数列,即1111222n nn a -⎛⎫⎛⎫=⋅= ⎪⎪⎝⎭⎝⎭; (2)由(1)知()*,1,2nn n n b n N n ⎧⎪=∈⎨⎛⎫⎪ ⎪⎝⎭⎩为奇数为偶数, 所以()()21321242n n n T b b b b b b -=+++++++()211113214162n n ⎛⎫=+++-++++ ⎪⎝⎭()111441211214nn n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+-⎢⎥⎣⎦=+-211334nn =+-⨯.2.(2022·全国·模拟预测)已知数列{}n a 满足11a =,14nn n a a +⋅=,*n ∈N .(1)求数列{}n a 的通项公式n a ;(2)若2log ,,1,,n n n a n b a n ⎧=⎨+⎩为奇数为偶数求数列{}n b 的前2n 项和2n S .【答案】(1)12,,2,.n n n n a n -⎧=⎨⎩为奇数为偶数(2)1224433n n S n +=+-(1)由题意,当1n =时,24a =,因为14n n n a a +⋅=①,则1124n n n a a +++⋅=②,可得24n na a +=, 所以数列{}n a 的奇数项和偶数项都是公比为4的等比数列.因为11a =,24a =,所以当n 为奇数时,1112142n n n a a +--=⨯=;当n 为偶数时,12242nn n a a -=⨯=.综上,12,,2,.n n nn a n -⎧=⎨⎩为奇数为偶数 (2)由(1)得1,,21,,n n n n b n -⎧=⎨+⎩为奇数为偶数∴()()21321242n n n S b b b b b b -=++⋅⋅⋅++++⋅⋅⋅+()()41422214nn n n ⎡⎤--⎡⎤⎢⎥=++⎢⎥-⎢⎥⎣⎦⎣⎦124433n n +=+-. 3.(2022·山东·肥城市教学研究中心模拟预测)已知数列{}n a 满足11a =,19nn n a a +⋅=,N n *∈.(1)求数列{}n a 的通项公式n a ;(2)若13log ,1,n n n a n b a n ⎧⎪=⎨⎪-⎩为奇数为偶数,求数列{}n b 的前2n 项和2n S .【答案】(1)13,3,n n nn a n -⎧=⎨⎩为奇数为偶数(2)1229898n n n S +--= (1)解:由题意,当1n =时,129a a =,可得29a =,因为19n n n a a +⋅=,可得1129n n n a .a +++=,所以,29n na a +=, 所以数列{}n a 的奇数项和偶数项都是公比为9的等比数列.所以当n 为奇数时,设()21N n k k *=-∈,则1221211933k k n n k a a ----==⋅==, 当n 为偶数时,设()2N n k k *=∈,则12299933k k k nn k a a -==⋅===.因此,13,3,n n nn a n -⎧=⎨⎩为奇数为偶数. (2)解:由(1)得1,31,n n n n b n -⎧=⎨-⎩为奇数为偶数,()()21321242n n n S b b b b b b -∴=+++++++()()2462024223333n n n =-----+++++-⎡⎤⎣⎦()()12919229892198nn n n n n +----=-+-=-.4.(2022·福建三明·模拟预测)设数列{}n a 的前n 项和为n S ,()122n n S n a +-+=,210a =,1n n b a =-. (1)求证:{}n b 是等比数列;(2)设332,1,log log n n nn b n c n b b +⎧⎪=⎨⎪⋅⎩为奇数为偶数,求数列{}n c 的前21n 项和21n T +.【答案】(1)证明见解析(2)()232133841n n nT n ++-=++ (1)证明:对任意的N n *∈,1224n n S a n +=+-, 当1n =时,则有12228a a =-=,解得14a =,当2n ≥时,由1224n n S a n +=+-可得1226n n S a n -=+-,上述两个等式作差得122n n n a a a +=-+,所以,132n n a a +=-,则()1131n n a a +-=-, 所以,13n n b b +=且1113b a =-=,所以,数列{}n b 是等比数列,且首项和公比均为3.(2)解:由(1)可知1333n nn b -=⨯=,所以,()3,1,2n n n c n n n ⎧⎪=⎨⎪+⎩为奇数为偶数,所以,()1321211113332446222n n T n n ++=++++++⨯⨯+()()3211113332446222n n n +⎡⎤=+++++++⎢⎥⨯⨯+⎣⎦()21339111119412231n n n +⎡⎤-⨯=++++⎢⎥-⨯⨯+⎣⎦()232333111111331842231841n n nn n n ++--⎛⎫=+⨯-+-++-=+ ⎪++⎝⎭. 5.(2022·江西·新余四中模拟预测(理))在数列{}n a 中,21,,2,n nn n a n -⎧=⎨⎩为奇数为偶数 (1)求1a ,2a ,3a ;(2)求数列{}n a 的前n 项和n S .【答案】(1)11a =,24a =,35a =(2)212224,,2324,.23n n n n n n S n n n ++⎧+-+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数 (1)因为21,,2,,n n n n a n -⎧=⎨⎩为奇数为偶数所以12111a =⨯-=,2224a ==,32315a =⨯-=,(2)因为21,,2,,n n n n a n -⎧=⎨⎩为奇数为偶数 所以1a ,3a ,5a ,是以1为首项,4为公差的等差数列,2a ,4a ,6a ,是以4为首项,4为公比的等比数列.当n 为奇数时,数列的前n 项中有12n +个奇数项,有12n -个偶数项.所以()()1231322431n n n n n n S a a a a a a a a a a a a ---=+++⋅⋅⋅+=++⋅⋅⋅+++++⋅⋅⋅++12211141411242214221423n n n n n n n -+⎛⎫++⎛⎫-- ⎪ ⎪++-⎝⎭⎝⎭=⨯+⨯+=+-; 当n 为偶数时,数列{{}n a 的前n 项中有2n 个奇数项,有2n个偶数项.所以()()1231331242n n n n n n S a a a a a a a a a a a a ---=+++⋅⋅⋅+=++⋅⋅⋅+++++⋅⋅⋅++2224141242214221423nn n n n n n +⎛⎫⎛⎫-- ⎪ ⎪--⎝⎭⎝⎭=⨯+⨯+=+-. 所以212224,,2324,.23n n n n n n S n n n ++⎧+-+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数 6.(2022·安徽省舒城中学模拟预测(理))已知数列{}n a 的前n 项和为,239n n n S S a =-. (1)求数列{}n a 的通项公式;(2)若()31log nn n b a =-,求数列{}n b 的前n 项和n T .【答案】(1)13n n a +=;(2),23,2n nn T n n ⎧⎪⎪=⎨+⎪-⎪⎩为偶数为奇数 【详解】(1)当1n =时,11239S a =-.因为11S a =,所以11239a a =-,所以19a =. 因为239n n S a =-,所以11239n n S a ++=-. 两式相减,得11233n n n a a a ++=-,即13n n a a += 又因为19a =,所以0n a >.所以数列{}n a 是以9为首项,3为公比的等比数列.所以11933n n n a -+=⨯=.(2)由(1)可知()()()31log 11n nn n b a n =-=-+故当n 为偶数时,()()()234512n nT n n ⎡⎤=-++-++⋯+-++=⎣⎦当n 为奇数时,()()()()()123451112n n T n n n n -⎡⎤=-++-++⋯+--+-+=-+⎣⎦ 32n +=-所以,23,2n nn T n n 为偶数为奇数⎧⎪⎪=⎨+⎪-⎪⎩ 7.(2022·全国·模拟预测)已知数列{}n a 中,()112,1n n n a n a a a +=-=+. (1)求证:数列1n a n +⎧⎫⎨⎬⎩⎭是常数数列;(2)令(1),nn n n b a S =-为数列{}n b 的前n 项和,求使得99n S ≤-的n 的最小值.【答案】(1)证明见解析;(2)最小值为67. (1)由()11n n n n a a a +-=+得:()111n n na n a +=++,即()1111n n a a n n n n +=+++ 11111n n a a n n n n +∴=+-++,即有111,1n n a a n n +++=∴+数列1n a n +⎧⎫⎨⎬⎩⎭是常数数列; (2)由(1)知:()1113,31,(1)31n n n n a a a n b n n+=+=∴=-∴=-- 即()31,31,n n n b n n -⎧⎪=⎨--⎪⎩为偶数为奇数,∴当n 为偶数时,()()()()32581134312n nS n n ⎡⎤=-++-+++--+-=⎣⎦,显然99n S -无解; 当n 为奇数时,()()11313131122n n n n n S S a n ++++⎡⎤=-=-+-=-⎣⎦,令99n S ≤-,解得:66n , 结合n 为奇数得:n 的最小值为67. 所以n 的最小值为67.8.(2022·重庆八中模拟预测)已知{n a }是各项都为正数的数列,其前n 项和为n S ,且满足12n n nS a a =+. (1)求证:数列{2n S }为等差数列; (2)设()1nnnb a =-,求{n b }的前64项和64T .【答案】(1)证明见解析;(2){}n b 的前64项和648T =. (1)∵ 12n n nS a a =+,所以221n n n S a a -= 当2n ≥时,有1n n n a S S -=-,代入上式得()12n n n S S S -- ()211n n S S ---=整理得()22112n n S S n --=≥.又当1n =时, 211121S a a -=解得11S =;∴数列{}2n S 是首项为1,公差为1的等差数列. (2)由(1)可得211n S n n =+-=,∵{}n a 是各项都为正数,∴n S ,∴12)n n n a S S n -=-=≥, 又111a S ==,∴n a则(1)(1)n nn n n b a -===-,6411)T ∴=-+-+⋅⋅⋅-+=11-+⋅⋅⋅8,即:648T =.∴{}n b 的前64项和648T =.9.(2022·辽宁·模拟预测)已知n S 为等差数列{}n a 的前n 项和,1522a a +=,()22n n S n a n =-+. (1)求{}n a 的通项公式; (2)设()1821nn n n n b a a ++=-⋅,求数列{}n b 的前21n 项和21n T +. 【答案】(1)41n a n =-(2)8102421n n +-+(1)解:设等差数列{}n a 的公差为d . 由1522a a +=,得311a =,由()22n n S n a n =-+,得()2222S a =-, 又21222S a a a d =+=-,解得4d =, 所以()3341n a a n d n =+-=-. (2)由(1)得()1821nn n n n b a a ++=-⋅, ()()()8214143+=-⋅-+nn n n ,()1114143⎛⎫=-+ ⎪-+⎝⎭n n n ,所以21123221++=+++++n n n T b b b b b ,111111113771111158183⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++++ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭n n 118387⎛⎫-+ ⎪++⎝⎭n n , 11387=--+n ,8102421+=-+n n .10.(2022·山东济宁·三模)已知等差数列{}n a 的前n 项和为n S ,且31a =,67S =,数列{}n b 满足11222n n b b b ++++=-.(1)求数列{}n a 和{}n b 的通项公式;(2)记()tan n n n c b a π=⋅,求数列{}n c 的前3n 项和. 【答案】(1)3n n a =,2nn b =(2))187n - (1)解:设等差数列{}n a 的公差为d ,则3161216157a a d S a d =+=⎧⎨=+=⎩,解得113a d ==,所以,()111333n na n =+-=,当1n =时,21222b ,当2n ≥时,112122n n n b b b b +-++++=-,可得12122n n b b b -+++=-,上述两个等式作差可得1222n n nn b +=-=,12b =也满足2n n b =,故对任意的N n *∈,2n n b =.(2)解:由(1)可得2tan3nn n c π=, 设(323132323132202n n n n n n n p c c c -----=++=⨯+=,所以,18nn p p +==,所以,数列{}n p 是等比数列,且首项为1p =-8, 因此,数列{}n c 的前3n 项和为))31818187n n n T ---==-.11.(2022·陕西西安·三模(理))设公差不为零的等差数列{}n a 的前n 项和为n S ,36S =,2a ,4a ,8a 成等比数列,数列{}n b 满足11b =,121n n b b +=+. (1)求数列{}n a 和{}n b 的通项公式; (2)求10021πsin 2kk k aa =⎛⎫⋅⋅ ⎪⎝⎭∑的值.【答案】(1)n a n =,21nn b =-;(2)5000-.(1)设等差数列{}n a 的公差为d (0d ≠),由题意得()()()31211133637S a d a d a d a d =+=⎧⎪⎨+=++⎪⎩,解得111a d =⎧⎨=⎩, 故数列{}n a 的通项公式n a n =. ∵121n n b b +=+,∴()1121n n b b ++=+,即1121n n b b ++=+(*n ∈N ),又11b =, ∴{}1n b +是以2为首项,2为公比的等比数列,12nn b +=, ∴21nn b =-.(2)当2k m =,*m ∈N 时,()22πsin 2sin π02k k a a m m ⎛⎫⋅⋅== ⎪⎝⎭,当21k m =-,*m ∈N 时,()()()2122π21sin 21sinπ12122m k k m a a m m +-⎛⎫⋅⋅=-=-⋅- ⎪⎝⎭, ∴10022222221πsin 135797992kk k aa =⎛⎫⋅⋅=-+-+⋅⋅⋅+- ⎪⎝⎭∑()()()()()()1313575797999799=-++-++⋅⋅⋅+-+()2135797995000=-⨯++++⋅⋅⋅++=-.12.(2022·江苏·南京市第一中学三模)数列{}n a 满足116nn n a a +=,12a =.(1)求{}n a 的通项公式;(2)若2sin 2n n n b a π=,求数列{}n b 的前20项和20S .【答案】(1)212n n a -=(2)()4022115- (1)116nn n a a +=11216n n n a a +++∴=,两式相除得:216n na a +=, 当21n k =-时, 1357211352316k k k a a a a a a a a ---⨯⨯⨯⨯= 121216k k a --∴=⨯ ,212n n a -∴=当2n k =时, 168242462216k kk a a a a a a a a --⨯⨯⨯⨯= 12816k k a -∴=⨯,212n n a -∴=综上所述,{}n a 的通项公式为:212n n a -=(2)由(1)知:212n n a -∴=2212sin 2n n n b π-∴= ∴ 数列{}n b 的前20项和:20123419201357373949163614002sin2sin2sin 2sin 2sin2sin 222222S b b b b b b ππππππ=++++++=⋅+⋅+⋅+⋅++⋅+⋅1537373993614164002sin 2sin 2sin2sin 2sin 2sin222222ππππππ⎛⎫⎛⎫=⋅+⋅++⋅+⋅+⋅++⋅ ⎪ ⎪⎝⎭⎝⎭()()()104401593337404421222122222221122115⎡⎤--⎢⎥⎣⎦=+++++===--- 13.(2022·广东茂名·模拟预测)已知数列{}n a 的前n 项和为n S ,满足()213n n S a =-,*n N ∈. (1)求数列{}n a 的通项公式; (2)记sin2n n n b a π=⋅,求数列{}n b 的前100项的和100T . 【答案】(1)()2nn a =-,n *∈N (2)101225- (1)当2n ≥时,()()11221133n n n n n a S S a a --=-=---, 整理得12nn a a -=-, 又()111213a S a ==-,得12a =- 则数列{}n a 是以-2为首项,-2为公比的等比数列. 则()2nn a =-,n *∈N(2)当4,n k k N *=∈时,()4442sin 02k kk b π=-⋅=, 当41,n k k N *=-∈时,()()444111412sin22k k k k b π----=-⋅=, 当42,n k k N *=-∈时,()()4242422sin 02k k k b π---=-⋅=, 当43,n k k N *=-∈时,()()444333432sin22k k k k b π----=-⋅=-,则()()5973799100123100222222T b b b b =++++=-+++++++()()25254334101442222222212125-⋅-⋅-=-+=--。
浙江高考数列经典例题汇总1.【2014年.浙江卷.理19】(本题满分14分)已知数列 和'bn ■满足a 1a2an= (J 2 F (n 匸 N )若 En }为等比数列 且 a 1 = 2, 3 = 6 + b 2 .(I ) 求 a n 与 bn ;(∏ )设Cn TE 「N l 记数列⑺的前n 项和为S n(i )求 Sn ;(ii )求正整数k ,使得对任意n ∙ N ",均有S k- S n2.【2011年.浙江卷•理19】(本题满分14分)已知公差不为O 的等差数列{an }的首项a ^ a(aR ),设数列的前n 项和为Sn ,且a 1 ,(I)求数列{a n}的通项公式及 SnA l与Bn 的大小.% , %成等比数列A n(∏)记丄丄丄SS2S 3-B nSn丄丄丄a 〔 a ? a ?2丄a2n ,当n 一 2时,试比较3.【2008年•浙江卷•理22】 (本题14分)已知数列^n [ an≥0 a 1 = Oa ; 1 a . 1 T = a 2(n ∙ N t ) S n ^ a 1a 2 R nT n+1 a 1(1 a 1)(1 a 2)+…+(1 *1)(1 *2厂(1 a n )求证: 当n . N •时, (I) an ::: an 1 ;(∏)S n n -'2;(川)Tn < 3O4.【2007年浙江卷 理21】(本题15分)已知数列{an }中的相邻两项 舷」,如 是关于X 的 方程的两个根,且a 2k 」-a 2k (k =1,2,3,…) (I)求 a 1,a 3,a 5,a 7 ;1 5 *求证:Ln 讨n N )5.【2005年•浙江卷•理20】设点An (Xn , 0), Pn(Xn ,2 )和抛物线Cn : y = x2 + an X +1n 4bn(n ∈ N*)其中an = - 2 — 4n — 2 , Xn 由以下方法得到: x1 = 1,点P2(x2 , 2)在抛物 线C1 : y = x2 + a1x + b1上,点 A1(x1 , 0)到P2的距离是 A1到C1上点的最短距离,(∏)求数列{an}的前2n 项的和S2n ;f(n)T 直 3)(川)i 己 2 Sln n ,Tna.(-1)f ⑶.(-1)f (4). (-1)f (τa 5a6a2n∕a2na 3a4点 P n 1 (X n I ,2 )在抛物线 C n : = χ2 + an X + bn 上,点 Al(Xn , 0)到 Pn -1 的距离是 An 到 Cn 上点的最短距离.(求 x2及C1的方程. (∏证明{xn }是等差数列.16.【2015高考浙江,理20】已知数列 E 满足a ι=2且a n 1 = a n -a ^ ( n N i )-电-2*(1 )证明:1a n1( nN );1 / S n 』1/ 2 A(2)设数列® '的前n 项和为S n ,证明2(n∙2) n 2(n I) ( n N )a n% 1 < 12 丨 n = N*(I )证明: a n 白2心(a 1 -2 ) n 乏N *.a n(II )若7.【2016高考浙江理数】 设数列y 满足n2n ,证明:例1 .(浙江省新高考研究联盟 2017届高三下学期期初联考) 已知数列^a n 满足a 1=3,(III )若 2c n=b n ,求证:2≤(c ^1)n <3∙C n例2 •(浙江省温州中学 2017届高三3月高考模拟)正项数列a n a n- 3an 12an 1 ,a i _ 1•(I )求a 2的值;(∏)证明:对任意的 n∙ N , a n 乞2a n1;(川)记数列Ia nI 的前n 项和为S h ,证明:对任意的 n∙ Na n+ι=a n 2+2a n , n ∈ N* , 设b n =∣og 2(a n +1)∙ ⑴求{a n }的通项公式;:a n ∙'满足(II )求证:例3•(浙江省温州市十校联合体2017届高三上学期期末) 已知数列{a n}满足12a naι =1,a8 n(1)若数列{a n}是常数列,求m的值;(2)当m∙1时,求证:a n::: a n 1;(3)求最大的正数m,使得a n 4对一切整数n恒成立,并证明你的结论。