2014年山东省烟台市中考数学试卷
- 格式:doc
- 大小:713.50 KB
- 文档页数:22
2014山东烟台中考数学试卷一、选择题(本题共12小题,每小题3分,满分36分)1.(2014年山东烟台)﹣3的绝对值等于()A.﹣3 B. 3 C.±3 D.﹣2.(2014年山东烟台)下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2014年山东烟台)烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013年全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为()A.5.613×1011元B.5.613×1012元C.56.13×1010元D.0.5613×1012元4.(2014年山东烟台)如图是一个正方体截去一角后得到的几何体,它的主视图是()A. B.C.D.5.(2014年山东烟台)按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D. x=﹣3,y=﹣9 6.(2014年山东烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D. 72°7.(2014年山东烟台)如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为()A.1.5 B.3 C.3.5 D. 4.58.(2014年山东烟台)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B.1 C.5 D.﹣1 9.(2014年山东烟台)将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)10.(2014年山东烟台)如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)11.(2014年山东烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D. 4个12.(2014年山东烟台)如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y 与x的函数关系的图象是()A.B.C. D.二、填空题(本大题共6小题,每小题3分,满分18分)13.(2014年山东烟台)(﹣1)0+()﹣1=.14.(2014年山东烟台)在函数中,自变量x的取值范围是.15.(2014年山东烟台)在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球个.16.(2014年山东烟台)如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.17.(2014年山东烟台)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于.18.(2014年山东烟台)如图,∠AOB=45°,点O1在OA上,OO1=7,⊙O1的半径为2,点O2在射线OB上运动,且⊙O2始终与OA相切,当⊙O2和⊙O1相切时,⊙O2的半径等于.三、解答题(本大题共8个小题,满分66分)19.(2014年山东烟台)先化简,再求值:÷(x﹣),其中x为数据0,﹣1,﹣3,1,2的极差.20.(2014年山东烟台)2014年世界杯足球赛6月12日﹣7月13日在巴西举行,某初中学校为了了解本校2400名学生对本次世界杯的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“特别关注”、“一般关注”、“偶尔关注”都统计成关注,那么全校关注本届世界杯的学生大约有多少名?(3)在这次调查中,初四年级共有甲、乙、丙、丁四人“特别关注”本届世界杯,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.21.(2014年山东烟台)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC 长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.22.(2014年山东烟台)如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连接AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.23.(2014年山东烟台)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:24.(2014年山东烟台)如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D在PC上.设∠PCB=α,∠POC=β.求证:tanα•tan =.25.(2014年山东烟台)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.26.(2014年山东烟台)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.2014山东烟台中考数学试卷一、选择题(本题共12小题,每小题3分,满分36分)1.(2014年山东烟台)﹣3的绝对值等于()A.﹣3 B. 3 C.±3 D.﹣【分析】根据绝对值的性质解答即可.【解答】|﹣3|=3.故选B.【点评】此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2014年山东烟台)下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(2014年山东烟台)烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013年全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为()A.5.613×1011元B.5.613×1012元C.56.13×1010元D.0.5613×1012元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】将5613亿元用科学记数法表示为:5.613×1011元.故选;A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2014年山东烟台)如图是一个正方体截去一角后得到的几何体,它的主视图是()A. B.C.D.【分析】根据主视图是从正面看到的图形判定则可.【解答】从正面看,主视图为.故选:C.【点评】本题考查了三视图的知识,根据主视图是从物体的正面看得到的视图得出是解题关键.5.(2014年山东烟台)按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D. x=﹣3,y=﹣9 【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】由题意得,2x﹣y=3,A、x=5时,y=7,故本选项错误;B、x=3时,y=3,故本选项错误;C、x=﹣4时,y=﹣11,故本选项错误;D、x=﹣3时,y=﹣9,故本选项正确.故选D.【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.6.(2014年山东烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D. 72°【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【解答】∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选C.【点评】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.7.(2014年山东烟台)如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为()A.1.5 B.3 C.3.5 D. 4.5【分析】根据等腰梯形的性质,可得∠ABC与∠C的关系,∠ABD与∠ADB的关系,根据等腰三角形的性质,可得∠ABD与∠ADB的关系,根据直角三角形的性质,可得BC的长,再根据三角形的中位线,可得答案.【解答】已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,∴∠ABC=∠C,∠ABD=∠ADB,∠ADB=∠BDC.∴∠ABD=∠CBD,∠C=2∠DBC.∵BD⊥CD,∴∠BDC=90°,∴∠DBC=∠C=30°,BC=2DC=2×3=6.∵EF是梯形中位线,∴MF是三角形BCD的中位线,∴MF=BC=6=3,故选:B.【点评】本题考查了等腰梯形的性质,利用了等腰梯形的性质,直角三角形的性质,三角形的中位线的性质.8.(2014年山东烟台)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B.1 C.5 D.﹣1【分析】设方程的两根为x1,x2,根据根与系数的关系得到x1+x2=a,x1•x2=2a,由于x12+x22=5,变形得到(x1+x2)2﹣2x1•x2=5,则a2﹣4a﹣5=0,然后解方程,满足△≥0的a的值为所求.【解答】设方程的两根为x1,x2,则x1+x2=a,x1•x2=2a,∵x12+x22=5,∴(x1+x2)2﹣2x1•x2=5,∴a2﹣4a﹣5=0,∴a1=5,a2=﹣1,∵△=a2﹣8a≥0,∴a=﹣1.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的根的判别式.9.(2014年山东烟台)将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)【分析】根据观察,可得,根据排列方式,可得每行5个,根据有序数对的表示方法,可得答案.【解答】3=,3得被开方数是得被开方数的30倍,3在第六行的第五个,即(6,5),故选:D.【点评】本题考查了实数,利用了有序数对表示数的位置,发现被开方数之间的关系是解题关键.10.(2014年山东烟台)如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)【分析】先根据旋转的性质得到点A的对应点为点A′,点B的对应点为点B′,再根据旋转的性质得到旋转中心在线段AA′的垂直平分线,也在线段BB′的垂直平分线,即两垂直平分线的交点为旋转中心.【解答】∵将△ABC以某点为旋转中心,顺时针旋转90°得到△A′B′C′,∴点A的对应点为点A′,点B的对应点为点B′,作线段AA′和BB′的垂直平分线,它们的交点为P(1,2),∴旋转中心的坐标为(1,2).故选B.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.11.(2014年山东烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D. 4个【分析】根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.【解答】∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,所以①正确;∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,所以②错误;∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,所以③正确;∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,所以④错误.故选B.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(2014年山东烟台)如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y 与x的函数关系的图象是()A.B.C. D.【分析】分三段来考虑点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C 移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小,据此选择即可.【解答】点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP 的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小.故选:A.【点评】本题主要考查了动点问题的函数图象.注意分段考虑.二、填空题(本大题共6小题,每小题3分,满分18分)13.(2014年山东烟台)(﹣1)0+()﹣1=.【分析】分别根据0指数幂及负整数指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.【解答】原式=1+2014=2015.故答案为:2015.【点评】本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则是解答此题的关键.14.(2014年山东烟台)在函数中,自变量x的取值范围是.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.15.(2014年山东烟台)在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球个.【分析】设袋中共有球x个,根据概率公式列出等式解答.【解答】设袋中共有球x个,∵有3个白球,且摸出白球的概率是,∴=,解得x=12(个).故答案为:12.【点评】本题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.(2014年山东烟台)如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.【分析】把P分别代入函数y=2x+b与函数y=kx﹣3求出k,b的值,再求不等式kx﹣3>2x+b的解集.【解答】把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得﹣x﹣3>2x﹣14解得x<4.故答案为:x<4.【点评】本题主要考查一次函数和一元一次不等式,解题的关键是求出k,b的值求解集.17.(2014年山东烟台)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于.【分析】先正确作辅助线,构造扇形和等边三角形、直角三角形,分别求出两个弓形的面积和两个三角形面积,即可求出阴影部分的面积.【解答】连接OC、OD、OE,OC交BD于M,OE交DF于N,过O作OZ⊥CD 于Z,∵六边形ABCDEF是正六边形,∴BC=CD=DE=EF,∠BOC=∠COD=∠DOE=∠EOF=60°,由垂径定理得:OC⊥BD,OE⊥DF,BM=DM,FN=DN,∵在Rt△BMO中,OB=4,∠BOM=60°,∴BM=OB×sin60°=2,OM=OB•cos60°=2,∴BD=2BM=4,∴△BDO的面积是×BD×OM=×4×2=4,同理△FDO的面积是4;∵∠COD=60°,OC=OD=4,∴△COD是等边三角形,∴∠OCD=∠ODC=60°,在Rt△CZO中,OC=4,OZ=OC×sin60°=2,∴S﹣S△COD=﹣×4×2=π﹣4,扇形OCD∴阴影部分的面积是:4+4+π﹣4+π﹣4=π,故答案为:π.【点评】本题考查了正多边形与圆及扇形的面积的计算的应用,解题的关键是求出两个弓形和两个三角形面积,题目比较好,难度适中.18.(2014年山东烟台)如图,∠AOB=45°,点O1在OA上,OO1=7,⊙O1的半径为2,点O2在射线OB上运动,且⊙O2始终与OA相切,当⊙O2和⊙O1相切时,⊙O2的半径等于.【分析】作O2C⊥OA于点C,连接O1O2,设O2C=r,根据⊙O1的半径为2,OO1=7,表示出O1O2=r+2,O1C=7﹣r,利用勾股定理列出有关r的方程求解即可.【解答】如图,作O2C⊥OA于点C,连接O1O2,设O2C=r,∵∠AOB=45°,∴OC=O2C=r,∵⊙O1的半径为2,OO1=7,∴O1O2=r+2,O1C=7﹣r,∴(7﹣r)2+r2=(r+2)2,解得:r=3或15,故答案为:3或15.【点评】本题考查了圆与圆的位置关系,解题的关键是正确的作出图形,难度中等.三、解答题(本大题共8个小题,满分66分)19.(2014年山东烟台)先化简,再求值:÷(x﹣),其中x为数据0,﹣1,﹣3,1,2的极差.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出数据的极差确定出x,代入计算即可求出值.【解答】原式=÷=•=,当x=2﹣(﹣3)=5时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(2014年山东烟台)2014年世界杯足球赛6月12日﹣7月13日在巴西举行,某初中学校为了了解本校2400名学生对本次世界杯的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“特别关注”、“一般关注”、“偶尔关注”都统计成关注,那么全校关注本届世界杯的学生大约有多少名?(3)在这次调查中,初四年级共有甲、乙、丙、丁四人“特别关注”本届世界杯,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.【分析】(1)根据条形统计图中的数据,找出中位数即可;(2)根据扇形统计图找出关注本届世界杯的百分比,乘以2400即可得到结果;(3)画树状图得出所有等可能的情况数,找出恰好是甲与乙的情况,即可确定出所求概率.【解答】(1)四个年级被抽出的人数由小到大排列为30,40,50,80,∴中位数为=45(人);(2)根据题意得:2400×(1﹣45%)=1320(人),则该校关注本届世界杯的学生大约有1320人;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是甲与乙的情况有2种,则P==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(2014年山东烟台)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC 长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.【分析】延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°﹣∠ODB﹣∠ACD=90°,解Rt△ACD,得出AD=AC•tan∠ACD=米,CD=2AD=3米,再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD ﹣CD即可求出浮漂B与河堤下端C之间的距离.【解答】延长OA交BC于点D.∵AO的倾斜角是60°,∴∠ODB=60°.∵∠ACD=30°,∴∠CAD=180°﹣∠ODB﹣∠ACD=90°.在Rt△ACD中,AD=AC•tan∠ACD=•=(米),∴CD=2AD=3米,又∵∠O=60°,∴△BOD是等边三角形,∴BD=OD=OA+AD=3+=4.5(米),∴BC=BD﹣CD=4.5﹣3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,作出辅助线得到Rt△ACD是解题的关键.22.(2014年山东烟台)如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连接AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.【分析】(1)根据题意列出关于m与n的方程组,求出方程组的解得到m与n 的值,确定出A与B坐标,设出反比例函数解析式,将A坐标代入即可确定出解析式;(2)存在,设E(x,0),表示出DE与CE,连接AE,BE,三角形ABE面积=四边形ABCD面积﹣三角形ADE面积﹣三角形BCE面积,求出即可.【解答】(1)由题意得:,解得:,∴A(1,6),B(6,1),设反比例函数解析式为y=,将A(1,6)代入得:k=6,则反比例解析式为y=;(2)存在,设E(x,0),则DE=x﹣1,CE=6﹣x,∵AD⊥x轴,BC⊥x轴,∴∠ADE=∠BCE=90°,连接AE,BE,则S△ABE=S四边形ABCD﹣S△ADE﹣S△BCE =(BC+AD)•DC ﹣DE•AD﹣CE•BC=×(1+6)×5﹣(x﹣1)×6﹣(6﹣x)×1=﹣x=5,解得:x=5,则E(5,0).【点评】此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.23.(2014年山东烟台)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:【分析】(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A行车a辆,则B型车(60﹣x)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.【解答】(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得,解得:x=1600.经检验,x=1600是元方程的根.答:今年A型车每辆售价1600元;(2)设今年新进A行车a辆,则B型车(60﹣x)辆,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.【点评】本题考查了列分式方程解实际问题的运,分式方程的解法的运用,一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.24.(2014年山东烟台)如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D在PC上.设∠PCB=α,∠POC=β.求证:tanα•tan=.【分析】连接AC先求出△PBD∽△PAC,再求出=,最后得到tanα•tan=.证明:连接AC,则∠A=∠POC=,∵AB是⊙O的直径,∴∠ACB=90°,∴tanα=,BD∥AC,∴∠BPD=∠A,∵∠P=∠P,∴△PBD∽△PAC,∴=,∵PB=0B=OA,∴=,∴tana•tan=•==.【点评】本题主要考查了相似三角形的判定与性质及圆周角的知识,本题解题的关键是求出△PBD∽△PAC,再求出tanα•tan=.25.(2014年山东烟台)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.【分析】(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,再由勾股定理可得OC的长,再求CP即可.【解答】(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC=,∴CP=OC﹣OP=.【点评】本题主要考查了四边形的综合知识.综合性较强,特别是第(4)题要认真分析.26.(2014年山东烟台)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.【分析】(1)把点B的坐标代入抛物线的表达式即可求得.(2)通过△AOC∽△CFB求得OC的值,通过△OCD∽△FCB得出DC=CB,∠OCD=∠FCB,然后得出结论.(3)设直线AB的表达式为y=kx+b,求得与抛物线的交点E的坐标,然后通过解三角函数求得结果.【解答】(1)把点B的坐标代入抛物线的表达式,得=a×22﹣2a﹣a,解得a=,∴抛物线的表达式为y=x2﹣x﹣.(2)连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF,∵∠AOC=∠CFB=90°,∴△AOC∽△CFB,∴=,设OC=m,则CF=2﹣m,则有=,解得m=m=1,∴OC=OF=1,当x=0时y=﹣,∴OD=,∴BF=OD,∵∠DOC=∠BFC=90°,∴△OCD∽△FCB,∴DC=CB,∠OCD=∠FCB,∴点B、C、D在同一直线上,∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点在抛物线上.(3)过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则,解得k=﹣,∴y=﹣x+,代入抛物线的表达式﹣x+=x2﹣x﹣.解得x=2或x=﹣2,当x=﹣2时y=﹣x+=﹣×(﹣2)+=,∴点E的坐标为(﹣2,),∵tan∠EDG===,∴∠EDG=30°∵tan∠OAC===,∴∠OAC=30°,∴∠OAC=∠EDG,∴ED∥AC.【点评】本题考查了待定系数法求解析式,三角形相似的判定及性质,以及对称轴的性质和解三角函数等知识的理解和掌握.。
2014年山东省烟台市中考数学模拟题一卷 选择题(共36分) 一、选择题(本题共12个小题,每小题3分,满分36分) 1.(4分)(2013•烟台模拟)的平方根是( )2.代数式与x ﹣2的差是负数,那么x 的取值范围是( )3.下列图形不是轴对称图形的是( ) .C4.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为( )BCD .5.下列说法正确的是( )分,方差分别是=5,6.在△ABC 中,∠A 、∠B 均为锐角,且,则△ABC 是( )7.二次函数y=ax 2+bx 的图象如图,若一元二次方程ax 2+bx+m=0有实数根,则m 的最大值为( ) A.-3 B.3 C. -6 D.98.如图,在直角梯形ABCD 中,AD∥BC,∠C=90°,AD=5,BC=9,以A 为中心将腰AB 顺时针旋转90°至9.已知梯形ABCD 的四个顶点的坐标分別为A (﹣1,0),B (5,0),C (2,2),D (0,2),直线y=kx+2将梯形分成面积相等的两部分,则k 的值为( )BD .7题图 8题图 9题图10.如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD∥OB,则图中休闲区(阴影部分)的面积是( ) )米﹣)米11.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE ,BD ;④DE,DC ,BC .能根据所测数据,求出A ,B 间距离的有( ) 12.在平面直角坐标系中,第1个正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作第2个正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作第3个正方形A 2B 2C 2C 1…按这样的规律进行下去,第2011个正方形的面积为( )C10题图 11题图 12题图二卷非选择题(共84分)二、填空题(本题共6个小题,每小题3分共18分)13.如果单项式﹣3x2a y3与是同类项,则这两个单项式的积为.14.如图母亲节那天很多同学给妈妈准备了鲜花和礼物,从图中信息可知则买5束鲜花和5个礼盒的总价为元.15.如图一小虫从P点出发绕边长为10cm的等边三角形ABC爬行一圈回到点P,在小虫爬行过程中,始终保持与三角形ABC的边的距离是2cm,求小虫爬过的路径的长是.16.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA,PR的中点.如果DR=3,AD=4,则EF的长为.17.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为.18.如图,在平面直角坐标系中,矩形OEFG的顶点F的坐标为(4,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴上,得到矩形OMNP,OM与GF相交于点A.若经过点A的反比例函数的图象交EF于点B,则点B的坐标为.15题图16题图17题图18题图三、解答题(本大题共8个小题,满分66分.)19.(6分)化简分式(﹣)÷,并从﹣1≤ x ≤3中选一个你认为合适的整数x代入求值.20.(8分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程)21. (9分)2012年,某地开始实施农村义务教育学校营养计划“蛋奶工程”.该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋.已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克.(1)一个鸡蛋中含蛋白质的质量为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?22.(9分)已知一次函数y1=x+m的图象与反比例函数的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积。
烟台市中考试卷真题数学一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. √2B. 0.3C. πD. 12. 一个正数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 23. 若a+b=5,a-b=1,则a²-b²的值是:A. 12B. 14C. 16D. 244. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π5. 一个等差数列的首项是3,公差是2,第10项是:A. 23B. 21C. 19D. 176. 下列哪个是二次根式的最简形式?A. √12B. √18C. √32D. √167. 一个直角三角形的两个直角边分别是3和4,斜边的长度是:A. 5B. 6C. 7D. 88. 一个多项式f(x)=3x³-2x²+x-5,它的导数f'(x)是:A. 9x²-4x+1B. 3x²-2x+1C. 3x²-4xD. 9x²-2x-19. 一个函数y=2x+3的反函数是:A. x=2y+3B. x=(y-3)/2C. y=(2x-3)/3D. y=(3-x)/210. 下列哪个是一元一次方程的解?A. x=2B. x=-2C. x=0D. x=1二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是________。
12. 如果一个数的立方是-27,那么这个数是________。
13. 一个长方体的长、宽、高分别是2、3、4,它的体积是________。
14. 一个分数的分母是8,化简后是3/4,原分数是________。
15. 一个等腰三角形的底边长是10,两腰边长是x,若周长为36,那么x是________。
16. 一个二次方程x²-4x+4=0的判别式是________。
17. 一个圆的直径是14,那么它的周长是________。
A . 5.613 XI011 元B . 5.613 >1012元C . 56.13 >1010元D . 0.5613 XI012元2014年山东省烟台市中考数学试卷、选择题(本题共 12小题,每小题3分,满分36 分)C. ±3分析:根据绝对值的性质解答即可.解:|- 3|=3.故选 B . 点评:此题考查了绝对值的性质: 一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数;0的绝对值是0.分析:根据中心对称图形的定义旋转 180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解:A 、T 此图形旋转180°后不能与原图形重合,.••此图形不是中心对称图形,是轴对 称图形,故此选项错误;B 、T 此图形旋转180 后不能与原图形重合,•此图形不是中心对称图形,也不是轴对 称图形,故此选项错误;C 、此图形旋转180。
后不能与原图形重合,此图形不是中心对称图形,是轴对称图形, 故此选项错误;D 、•••此图形旋转180 后能与原图形重合,•••此图形是中心对称图形, 也是轴对称图形,故此选项正确.故选: D .点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.(2014年山东烟台)烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展 活力,实现了经济平稳较快发展. 2013年全市生产总值(GDP )达5613亿元.该数据用科1.(2014年山东烟台)-3的绝对值等于(2. (2014年山东烟台)下列手机软件图标中, 既是轴对称图形又是中心对称图形的是( )A 口3.B .C .D .学记数法表示为(A . 5.613 XI011元B . 5.613 >1012元C . 56.13 >1010元D . 0.5613 XI012元分析:科学记数法的表示形式为 a X10n的形式,其中1<a|v 10, n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同•当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.解:将5613亿元用科学记数法表示为: 5.613 X1011元.故选;A.点评:此题考查科学记数法的表示方法. 科学记数法的表示形式为 a X10n的形式,其中1<a|v 10, n为整数,表示时关键要正确确定a的值以及n的值.4. (2014年山东烟台)如图是一个正方体截去一角后得到的几何体,它的主视图是(分析:根据主视图是从正面看到的图形判定则可.点评:本题考查了三视图的知识,根据主视图是从物体的正面看得到的视图得出是解题关键.5. (2014年山东烟台)按如图的运算程序,能使输出结果为3的x, y的值是()刀I输入x|->|乘以2、开始L 相加|一|输出3A . x=5 , y= - 2B . x=3, y= - 3 C. x= - 4, y=2 D. x= - 3, y= - 9分析:根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.解:由题意得,2x- y=3, A、x=5时,y= 7,故本选项错误;B、x=3时,y=3,故本选项错误;C、x= - 4时,y= - 11,故本选项错误;D、x= - 3时,y= - 9,故本选项正确.故选D.点评:本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.6. ( 2014年山东烟台)如图,在菱形 ABCD 中,M , N 分别在 AB , CD 上,且 AM=CN ,MN 与AC 交于点O ,连接BO .若/ DAC =28 °则/ OBC 的度数为( )分析:根据菱形的性质以及 AM = CN ,利用ASA 可得△ AMOCNO ,可得AO = CO , 然后可得BO 丄AC ,继而可求得/ OBC 的度数.解:•••四边形 ABCD 为菱形,••• AB // CD , AB=BC ,•••/ MAO= / NCO ,Z AMO= / CNO ,V MAO =Z NCO在厶 AMO 和厶 CNO 中,T ,皿二CN, •△ AMO ◎△ CNO ( ASA ),• AO = CO ,T AB=BC ,.・. BO 丄 AC ,:/ BOC=90° ,DAC =28° ,•••/ BCA=/ DAC =28°, •/ OBC=90° - 28° =62° .故选 C . 点评:本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.7. ( 2014年山东烟台)如图,已知等腰梯形 ABCD 中,AD // BC ,ABD 与/ ADB 的关系,根据直角三角形的性质,可得BC 的长,再根据三角形的中位线,可得答案.解:已知等腰梯形 ABCD 中,AD // BC , AB=CD=AD=3,•••/ ABC=/ C ,/ ABD=/ ADB , / ADB = / BDC . •/ ABD= / CBD , / C=2/ DBC .A . 28°B . 52D . 72AB=CD=AD=3 ,梯形中位线EF 与对角线BD 相交于点A . 1.5 D . 4.5分析:可得/ ABC 与/ C 的关系,/ ABD 与/ ADB 的关系, 根据等腰三角形的性质,可得/ C . 62B . 3•/ BD 丄CD,•/ BDC=90°, •/ DBC= / C=30°, BC=2DC=2X3=6 .•/ EF是梯形中位线,••• MF是三角形BCD的中位线,••• MF=:BC—6=3,2 2故选:B.点评:本题考查了等腰梯形的性质,利用了等腰梯形的性质,直角三角形的性质,三角形的中位线的性质.& (2014年山东烟台)关于x的方程x2- ax+2a=0的两根的平方和是5,则a的值是()A . - 1 或5 B. 1 C. 5 D. - 1分析:设方程的两根为x1, x2,根据根与系数的关系得到x1+x2=a, x1^X2=2a,由于x12+x22=5, 变形得到(X1+x2)2- 2乂1艇=5,则a2- 4a - 5=0,然后解方程,满足△>0的a的值为所求.解:设方程的两根为X1, X2,贝U x什x2=a, X1?x2=2a,T X12+X22=5,2 2•(X1+X2) - 2x1?X2=5 , • a - 4a- 5=0, • a〔=5 , a2= - 1,=a2 —8a>0 a= —1 •故选:D.点评:本题考查了一元二次方程ax2+bx+c=0 (a工0的根与系数的关系:若方程的两根为X1 , X2,则X什X2=-:, X1?X2—.也考查了一元二次方程的根的判别式.a a9. (2014年山东烟台)将一组数:,■, 3, 2 ;,叮1二…,3丨,按下面的方式进行排列:二,1 3, 2 \ 下3二,心,2二3乙不;若2衍的位置记为(1, 4), 2衣的位置记为(2, 3),则这组数中最大的有理数的位置记为()A. (5, 2) B . (5, 3)C. (6, 2)D. (6, 5)分析:根据观察,可得.〒,根据排列方式,可得每行5个,根据有序数对的表示方法,可得答案.解:3不=厂打I 茁,3 —I得被开方数是「得被开方数的30倍,3帧在第六行的第五个,即(6, 5),故选:D.点评:本题考查了实数,利用了有序数对表示数的位置,发现被开方数之间的关系是解题关键.10. (2014年山东烟台)如图,将△ ABC 绕点P 顺时针旋转90。
2014-2015学年山东省烟台市九年级(上)期中数学试卷(五四学制)一、选择题(每小题3分,共36分)1.(3分)下列斜坡最陡的是()A.斜坡AB的坡度为B.斜坡CD的倾斜角是45°C.斜坡EF的坡比为1:3 D.斜坡GH的坡角为α,tanα=2.(3分)已知在Rt△ABC中,∠C=90°,sinA=,AC=2,那么BC的值为()A.2 B.4 C.4 D.63.(3分)如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()A.B.C.D.4.(3分)随着锐角α的增大,cosα的值()A.增大B.减小C.不变D.增大还是减小不确定5.(3分)如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB,CD分别表示一楼,二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()A.m B.4m C.4m D.8m6.(3分)使得函数y=的函数值为负数的自变量x的取值范围是()A.x>﹣B.x<﹣C.x>D.x<7.(3分)抛物线y=﹣2x2+3x+2与y轴的交点坐标为()A.(2,2) B.(﹣2,2)C.(0,2) D.(2,0)8.(3分)下列各图象中有可能是函数y=ax2+a(a≠0)的图象的是()A.B.C.D.9.(3分)如图是自动温度计记录的某一天气温变化的曲线,它反映了变量T(℃)与t(h)之间的对应关系,这一天中,温差(最高与最低温度的差)是()A.10℃B.﹣10℃C.8℃D.12℃10.(3分)将抛物线y=ax2﹣1(a≠0)的图象向左平移2个单位后,所得抛物线经过(1,﹣4)点,则a等于()A.﹣ B.﹣1 C.﹣3 D.﹣511.(3分)如果△ABC中,sinA=cosB=,则△ABC是()A.等腰直角三角形 B.等边三角形C.锐角三角形D.不能确定12.(3分)抛物线y=ax2+bx+c(a≠0)的对称轴是x=3,且经过点(5,0),则a+b+c等于()A.0 B.1 C.3 D.5二、填空题(每小题4分,共24分)13.(4分)已知抛物线y=3(x+1)2﹣6,当x时,y的值随x值的增大而减小.14.(4分)用总长为20cm的铁丝围成一个矩形,此矩形的一边长x(cm)的取值范围是.15.(4分)若a为锐角,比较大小:sinαtanα.16.(4分)在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=.17.(4分)如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长度是.18.(4分)如图,矩形ABCD的长AB=4cm,点O是AB的中点,OP⊥AB,两半圆的直径分别为AO与OB.以AB、OP所在直线为两轴建立直角坐标系,抛物线y=ax2经过C、D两点,则图中阴影部分的面积是cm2.三、解答题(本题共6小题,共57分)19.(4分)计算:sin30°+cos245°+sin60°•tan60°.20.(6分)在Rt△ABC中,∠C=90°,a=,b=,解这个直角三角形.21.(12分)如图,已知等腰直角三角形ABC的直角边长与正方形DEFG的边长都是4cm,AC与DG在同一直线上,开始时点A与点D重合,△ABC以1cm/s 的速度向右移动,最终点A与点G重合,设重合部分(阴影部分)的面积为y (cm2),移动的时间为x(s).(1)求出y与x的函数关系式;(2)画出(1)中所写出的函数关系式的图象.①完成下表:x/sy/cm2②画出图象.22.(9分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:≈1.41,≈1.73).23.(12分)如图,直角三角形纸片ABC中,∠C=90°,∠BAC=30°,BC=1,将其沿AD折叠,使点C落在AB上的点E处.(1)求AB与AC的长;(2)求tan15°的值.24.(14分)在一次高尔夫比赛中,一队员从山坡下O点打出一球向球洞A飞去,球的飞行路线为抛物线,以点O为原点建立如图所示的直角坐标系,抛物线的表达式为y=﹣x2+2x.已知山坡OA与水平方向x轴的夹角为30°,O,A两点相距8米.(1)当球达到最大高度时,球移动的水平距离是多少米?最大高度是多少米?(2)判断这一杆能否把高尔夫球从O点直接打入球洞A点?请说明理由.(参考数据:≈1.73)2014-2015学年山东省烟台市九年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)下列斜坡最陡的是()A.斜坡AB的坡度为B.斜坡CD的倾斜角是45°C.斜坡EF的坡比为1:3 D.斜坡GH的坡角为α,tanα=【解答】解:∵斜坡CD的倾斜角是45°,∴斜坡CD的坡比为:1:1,则1>>>,故斜坡最陡的是斜坡CD的倾斜角是45°.故选:B.2.(3分)已知在Rt△ABC中,∠C=90°,sinA=,AC=2,那么BC的值为()A.2 B.4 C.4 D.6【解答】解:∵sinA=,∴∠A=30°.∴tan30°=,∴BC=2.故选:A.3.(3分)如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()A.B.C.D.【解答】解:由图可得tan∠AOB=.4.(3分)随着锐角α的增大,cosα的值()A.增大B.减小C.不变D.增大还是减小不确定【解答】解:随着锐角α的增大,cosα的值减小.故选:B.5.(3分)如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB,CD分别表示一楼,二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()A.m B.4m C.4m D.8m【解答】解:过C作CE⊥AB于E点.在Rt△CBE中,由三角函数的定义可知CE=BC•sin30°=8×=4m.故选:B.6.(3分)使得函数y=的函数值为负数的自变量x的取值范围是()A.x>﹣B.x<﹣C.x>D.x<【解答】解:根据题意,有2x+1≠0,且2x+1<0解可得x≠﹣且x<﹣;故自变量x的取值范围是x<﹣,7.(3分)抛物线y=﹣2x2+3x+2与y轴的交点坐标为()A.(2,2) B.(﹣2,2)C.(0,2) D.(2,0)【解答】解:把x=0代入y=﹣2x2+3x+2,得y=﹣3,则抛物线y=﹣2x2+3x+2与y轴的交点坐标为(0,2).故选:C.8.(3分)下列各图象中有可能是函数y=ax2+a(a≠0)的图象的是()A.B.C.D.【解答】解:当a>0时,开口向上,顶点在y轴的正半轴;当a<0时,开口向下,顶点在y轴的负半轴,故选:B.9.(3分)如图是自动温度计记录的某一天气温变化的曲线,它反映了变量T(℃)与t(h)之间的对应关系,这一天中,温差(最高与最低温度的差)是()A.10℃B.﹣10℃C.8℃D.12℃【解答】解:由纵坐标看出最高温度是12℃,最低温度是2°,由有理数的减法,得12﹣2=10℃,故选:A.10.(3分)将抛物线y=ax2﹣1(a≠0)的图象向左平移2个单位后,所得抛物线经过(1,﹣4)点,则a等于()A.﹣ B.﹣1 C.﹣3 D.﹣5【解答】解:∵抛物线y=ax2﹣1(a≠0)的顶点坐标为(0,﹣1),∴图象向左平移2个单位后,所得抛物线的顶点坐标为(﹣2,﹣1),∴平移后得抛物线的解析式为y=a(x+2)2﹣1,把(1,﹣4)代入得﹣4=a×(1+2)2﹣1,解得a=﹣.故选:A.11.(3分)如果△ABC中,sinA=cosB=,则△ABC是()A.等腰直角三角形 B.等边三角形C.锐角三角形D.不能确定【解答】解:∵sinA=cosB=,∴∠A=45°,∠B=45°,则∠C=180°﹣45°﹣45°=90°.故△ABC为等腰直角三角形.故选:A.12.(3分)抛物线y=ax2+bx+c(a≠0)的对称轴是x=3,且经过点(5,0),则a+b+c等于()A.0 B.1 C.3 D.5【解答】解:∵抛物线y=ax2+bx+c的对称轴为x=3,∴根据二次函数的对称性得:点(5,0)的对称点为(1,0),∵当x=1时,y=a+b+c=0,∴a+b+c的值等于0.故选:A.二、填空题(每小题4分,共24分)13.(4分)已知抛物线y=3(x+1)2﹣6,当x<﹣1时,y的值随x值的增大而减小.【解答】解:抛物线y=3(x+1)2﹣6,可知a=3>0,开口向上,对称轴x=﹣1,∴当x<﹣1时,函数值y随x的增大而减小.故答案为:<﹣1.14.(4分)用总长为20cm的铁丝围成一个矩形,此矩形的一边长x(cm)的取值范围是0<x<10.【解答】解:已知一边长为xcm,则另一边长为(20﹣2x)=10﹣x,0<10﹣x<10,则x的取值范围为:0<x<10.故答案为:0<x<10.15.(4分)若a为锐角,比较大小:sinα<tanα.【解答】解:如图,设α是Rt△ABC的一个锐角,∠C=90°,令∠A=α,则sinα=,tanα=,故sinα<tanα.故答案为<.16.(4分)在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=75°.【解答】解:∵△ABC中,|tanA﹣1|+(cosB﹣)2=0∴tanA=1,cosB=∴∠A=45°,∠B=60°,∴∠C=75°.故答案为:75°.17.(4分)如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长度是10m.【解答】解:Rt△ABC中,BC=5m,tanA=1:;∴AC=BC÷tanA=5m,∴AB==10m.故答案为10m.18.(4分)如图,矩形ABCD的长AB=4cm,点O是AB的中点,OP⊥AB,两半圆的直径分别为AO与OB.以AB、OP所在直线为两轴建立直角坐标系,抛物线y=ax2经过C、D两点,则图中阴影部分的面积是cm2.【解答】解:因为抛物线y=ax2的图象关于y轴对称,所以阴影部分的面积实际是一个半圆AO的面积,所以图中阴影部分的面积是:π(AB)2=(cm2).故答案为:.三、解答题(本题共6小题,共57分)19.(4分)计算:sin30°+cos245°+sin60°•tan60°.【解答】解:原式=+()2+×=++=.20.(6分)在Rt△ABC中,∠C=90°,a=,b=,解这个直角三角形.【解答】解:在Rt△ABC中,∵a2+b2=c2,a=,b=,∴c==2,∵tanA===,∴∠A=30°,∴∠B=90°﹣∠A=90°﹣30°=60°.21.(12分)如图,已知等腰直角三角形ABC的直角边长与正方形DEFG的边长都是4cm,AC与DG在同一直线上,开始时点A与点D重合,△ABC以1cm/s 的速度向右移动,最终点A与点G重合,设重合部分(阴影部分)的面积为y (cm2),移动的时间为x(s).(1)求出y与x的函数关系式;(2)画出(1)中所写出的函数关系式的图象.①完成下表:x/sy/cm2②画出图象.【解答】解:(1)设AB和FG的交点为H,∵DA=xcm,DG=AC=4cm,△ACB是等腰直角三角形,四边形EFGD是正方形,∴∠BAC=45°,∠FGD=90°,∴∠AHG=∠BAC=45°,∴AG=GH=(4﹣x)cm,∴y=(4﹣x)2,即y=x2﹣4x+8(0≤x≤4);(2)①②.22.(9分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:≈1.41,≈1.73).【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==4+≈5.7(米),答:拉线CE的长约为5.7米.23.(12分)如图,直角三角形纸片ABC中,∠C=90°,∠BAC=30°,BC=1,将其沿AD折叠,使点C落在AB上的点E处.(1)求AB与AC的长;(2)求tan15°的值.【解答】解:(1)如图,∵∠C=90°,∠BAC=30°,BC=1,∴AB=2;由勾股定理得:AC=.(2)由题意得:DE=DC(设为λ),∠EAD=∠CAD=15°,AE=AC=,∠AED=∠C=90°,则BD=1﹣λ,BE=2﹣,∠BED=90°,由勾股定理得:,解得:λ=2﹣3,故tan15°===2﹣.24.(14分)在一次高尔夫比赛中,一队员从山坡下O点打出一球向球洞A飞去,球的飞行路线为抛物线,以点O为原点建立如图所示的直角坐标系,抛物线的表达式为y=﹣x2+2x.已知山坡OA与水平方向x轴的夹角为30°,O,A两点相距8米.(1)当球达到最大高度时,球移动的水平距离是多少米?最大高度是多少米?(2)判断这一杆能否把高尔夫球从O点直接打入球洞A点?请说明理由.(参考数据:≈1.73)【解答】解:(1)∵y=﹣x2+2x=﹣(x﹣9)2+9,∴当球达到最大高度时,球移动的水平距离是9米,最大高度是9米;(2)作AB⊥x轴于点B,在Rt△AOB中,AB=OA=×8=4,OB=OA•cos∠AOB=8×=12,当x=12时,y=﹣(12﹣9)2+9=8,∵8,∴不能把高尔夫球从O点直接打入球洞A点.。
第21章 二次根式1.(2014年黑龙江省龙东地区中考数学试卷)函数y=中,自变量x 的取值范围是2.(2014年贵州省安顺市中考数学试卷)函数y=中,自变量x 的取值范围是3.(2014年福建省厦门市中考数学试卷)先化简下式,再求值:(﹣x 2+3﹣7x )+(5x ﹣7+2x 2),其中x=+1.4.(2014年黑龙江省齐齐哈尔市中考数学试)函数中,自变量x 的取值范围是.5.(2014年广西钦州市中考数学试卷)下列运算正确的是()A .=+B . ()2=3 C . 3a ﹣a=3 D . (a 2)3=a 56.(2014年新疆生产建设兵团中考数学试卷)计算:(﹣1)3++(﹣1)0﹣7.函数的自变量的取值范围是 .8.(2014年山东省东营市中考数学试题)下列计算错误的是( )A .B .C .-2+|-2|=0D .9.(2014年上海市中考数学试卷)计算:.10.(2014年湖北省咸宁市中考数学试题)观察分析下列数据: 0,,,,,, ,…,根据数据排列的规律得到第16个数据应是 (结果需化简) .11.(2014年山东省滨州市中考数学试题)计算下列各式的值:观察所得结果,总结存在的规律,运用得到的规律可得=____________.12.(2014年山东省烟台市中考数学试题)将一组数,按下面的方法进行排列:若的位置记为位置记为(2,3).则这组数中最大的有理数的位置记为A.(5.2) B(5.3) C.(6.2) D_ (6.5)13.(浙江省杭州2014年中考数学)的值等于( )A .B .C .D .14.(浙江省杭州2014年中考数学)如果一个数与相乘的结果是有理数,那这个数可以是 (写出一个即可)15.如图所示实数在数轴上的位置,以下四个命题中是假命题的是( )A.B.C.D.16.在这1000个二次根式中,与是同类二次根式的个数共有( )A .3B .4C .5D .617.在△ABC 中,a 、b 、c 为三角形的三边,化简﹣2|c ﹣a ﹣b|的结果为( )A .3a+b ﹣cB .﹣a ﹣3b+3cC .a+3b ﹣cD .2a18.实数a ,b ,c 在数轴上的对应点如图,化简a+|a+b|﹣的值是( ).A .﹣b ﹣cB .c ﹣bC .2(a ﹣b+c )D .2a+b+c19.下列二次根式中,最简二次根式是( )A .B .C .D .20.下列说法中正确的是( )A .是一个无理数 B .函数的自变量x 的取值范围是x >1C .8的立方根是±2D .若点P (﹣2,a )和点Q (b ,﹣3)关于x 轴对称,则a+b 的值为521.若和都是最简二次根式,则m= ,n= .22.2+的最小值是 .23.对进行化简后正确的是( )A .B .﹣C .﹣D .24.如果实数a 、b 满足,那么点(a ,b )在( )A .第一象限B .第二象限C .第二象限或坐标轴上D .第四象限或坐标轴上25.化简二次根式,结果是( )A .﹣aB .﹣aC .aD .a26.当a≤时,化简+|2a ﹣1|等于( )A .2B .2﹣4aC .aD .027.已知,则=____28.若,则= . 29.在平面直角坐标系中,已知点A (-,0),B (,0),点C 在x 轴上,且AC +BC =6,写出满足条件的所有点C 的坐标 .30.若y=﹣2,则(x+y)y=31.利用表格中的数据,可求出+(4.123)2-的近似值是(结果保留整数).a a217289 4.12313.03818324 4.24313.41619361 4.35913.784A.3B.4C.5D.6第21章二次根式乘除1.(2014年福建省三明市中考数学试卷)先化简,再求值:(1+)•,其中x=+12.(2014年山东省青岛市中考数学试题)计算:=3.(2014年山东省聊城市中考数学试题)下列计算正确的是()4.(2014年湖北省随州市中考数学试卷)先简化,再求值:(﹣)+,其中a=+1.5.6.如果+=0,则+=.7.计算:.8.先化简,再求值:﹣,其中x=﹣1.9.;10.已知:x=1﹣,y=1+,求x2+y 2﹣xy﹣2x+2y的值11.计算:﹣×= .12.用一条长为40 cm的绳子围成一个面积为a cm2的长方形,a的值不可能为()A.20 B.40 C.100 D.12013.已知,,则。
2014-2015学年山东省烟台市七年级(上)期中数学试卷(五四学制)一、选择题(本题共10个小题,每小题3分)1.(3分)以下列各组长度的线段为边,能构成三角形的是()A.6cm、8cm、15cm B.7cm、5cm、12cm C.4cm、6cm、5cm D.8cm、4cm、3cm2.(3分)下列图形中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个3.(3分)锐角三角形中,任意两个内角之和必大于()A.120°B.100°C.90°D.60°4.(3分)如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC5.(3分)下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有()A.4个 B.3个 C.2个 D.1个6.(3分)如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形7.(3分)等腰三角形的一个内角为100°,则它的底角为()A.100°B.40°C.100°或40°D.不能确定8.(3分)如图,在Rt△ABC中,∠C=90°,它的周长为24,且AB:BC=5:3,则AC的长为()A.6 B.8 C.10 D.129.(3分)如图,在△ABC中,D、E分别是AC、BC边上的一点,AD=2DC,BE=EC,若△DBE的面积为1,则△ABC的面积等于()A.4 B.6 C.8 D.1010.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A.2πB.4πC.8πD.16π二、填空题(本题共10个小题)11.(3分)三角形的三条交于一点,这点叫做三角形的重心.12.(3分)正九边形有条对称轴.13.(3分)如图是边长为1的正方形网格,点A、B、C、D都在格点上,图中阴影部分的面积等于.14.(3分)如图,∠α=.15.(3分)如图,在△ABC中,∠C=90°,AD是角平分线,点D到AB的距离为7cm,则CD=.16.(3分)如果一个三角形有两个角等于60°,那么这个三角形是三角形.17.(3分)在△ABC中,若∠C=∠B=∠A,则△ABC是三角形(按角分类)18.(3分)如图,AD与BC交于点O,△AOB≌△COD,A和C,B和D是对应顶点,若BO=5,AO=3,AB=4,则BD2=.19.(3分)如图,在△ABC中,∠A=36°,∠B=72°,CD是∠ACD的平分线,则图中共有个等腰三角形.20.(3分)如图,在△ABC中,AB=AC,AD平分∠BAC,点E、F在AD上,若△ABC的面积为16cm2,则图中阴影部分的面积是cm2.三、解答题21.(8分)尺规作图:如图,已知线段a、b和∠α用尺规作一个三角形,使其两边分别等于a、b,这两边的夹角等于2∠α.要求:不写已知、求作、作法,只画图,保留作图痕迹.22.(6分)利用一个点、一条线段、一个正三角形(或等腰三角形)、一个正方形(或长方形)设计一个轴对称图案,并说明你希望表达的含义.23.(9分)如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=10,试求△PMN的周长.24.(11分)已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC 的长.25.(11分)如图,小芳和她的同学汤秋千,秋千AB在静止时,下端B离地面0.6m,秋千荡到AB′的位置时,下端B′距静止位置的水平距离B′D等于2m,距地面1.4m,求秋千AB的长.26.(12分)如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:①AC=AD;②CF=DF.2014-2015学年山东省烟台市七年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(本题共10个小题,每小题3分)1.(3分)以下列各组长度的线段为边,能构成三角形的是()A.6cm、8cm、15cm B.7cm、5cm、12cm C.4cm、6cm、5cm D.8cm、4cm、3cm【解答】解:根据三角形的三边关系,得:A、6+8=14<15,不能组成三角形;B、7+5=12,不能组成三角形;C、4+5=9>6,能够组成三角形;D、4+3=7<8,不能组成三角形.故选:C.2.(3分)下列图形中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有2个.故选:B.3.(3分)锐角三角形中,任意两个内角之和必大于()A.120°B.100°C.90°D.60°【解答】解:如果两个锐角和不大于90°,那么第三个角将大于等于90°,就不再是锐角三角形.故选:C.4.(3分)如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC【解答】解:A、加∠ADB=∠ADC,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD ≌△ACD(ASA),是正确选法;B、加∠B=∠C∵∠1=∠2,AD=AD,∠B=∠C,∴△ABD≌△ACD(AAS),是正确选法;C、加DB=DC,满足SSA,不能得出△ABD≌△ACD,是错误选法;D、加AB=AC,∵∠1=∠2,AD=AD,AB=AC,∴△ABD≌△ACD(SAS),是正确选法.故选:C.5.(3分)下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有()A.4个 B.3个 C.2个 D.1个【解答】解:①面积相等的两个三角形不一定全等,故本选项错误;②两个等边三角形一定是相似图形,但不一定全等,故本选项错误;③如果两个三角形全等,它们的形状和大小一定都相同,符合全等形的定义,正确;④边数相同的图形不一定能互相重合,故本选项错误;综上可得错误的说法有①②④共3个.故选:B.6.(3分)如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【解答】解:一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是钝角三角形.故选:C.7.(3分)等腰三角形的一个内角为100°,则它的底角为()A.100°B.40°C.100°或40°D.不能确定【解答】解:根据等腰三角形的性质得,底角度数为:(180°﹣100°)÷2=40°;故选:B.8.(3分)如图,在Rt△ABC中,∠C=90°,它的周长为24,且AB:BC=5:3,则AC的长为()A.6 B.8 C.10 D.12【解答】解:设AB=5x,BC=3x,则AC==4x,于是5x+3x+4x=24,解得x=2,故AC=4×2=8,故选:B.9.(3分)如图,在△ABC中,D、E分别是AC、BC边上的一点,AD=2DC,BE=EC,若△DBE的面积为1,则△ABC的面积等于()A.4 B.6 C.8 D.10【解答】解:如图,过点A作AM⊥BC,过点D作DN⊥BC;则AM∥DN;∴△AMC∽△DNC,∴,而AD=2DC,∴AM=3DN(设DN为λ);设BE=EC=μ,∴=6,而S=1,△BED=6,∴S△ABC故选:B.10.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A.2πB.4πC.8πD.16π【解答】解:S1=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故选:A.二、填空题(本题共10个小题)11.(3分)三角形的三条中线交于一点,这点叫做三角形的重心.【解答】解:三角形的三条中线交于一点,这点叫做三角形的重心.故答案为:中线.12.(3分)正九边形有9条对称轴.【解答】解:正九边形有9条对称轴.故答案为:9.13.(3分)如图是边长为1的正方形网格,点A、B、C、D都在格点上,图中阴影部分的面积等于15.【解答】解:如图,S ABCD=S MNPQ﹣S△ABM﹣S△BCQ﹣S△CDP﹣S△ADN=6×5﹣=30﹣15=15.故答案为15.14.(3分)如图,∠α=17°.【解答】解:∵三角形内角和是180°,∴40°+32°=55°+α,解得α=17°.故答案为:17°.15.(3分)如图,在△ABC中,∠C=90°,AD是角平分线,点D到AB的距离为7cm,则CD=7cm.【解答】解:∵AD是∠BAC的平分线,BC⊥AC,点D到AB的距离为7cm,∴CD=7cm.故答案为:7cm.16.(3分)如果一个三角形有两个角等于60°,那么这个三角形是等边三角形.【解答】解:∵一个三角形有两个角等于60°,且三角之和为180°,∴第三个角的度数=180°﹣60°﹣60°=60°,∴这个三角形是等边三角形.故答案为:等边.17.(3分)在△ABC中,若∠C=∠B=∠A,则△ABC是直角三角形(按角分类)【解答】解:∠C=x°,∵∠C=∠B=∠A,∴∠B=2∠C=2x,∠A=3∠C=3x,∵∠A+∠B+∠C=180°,即:3x+2x+x=180°,解得:x=30°,∴∠C=30°,∠A=3∠C=90°,∠B=2∠C=60°,∴此三角形是直角三角形.故答案为:直角.18.(3分)如图,AD与BC交于点O,△AOB≌△COD,A和C,B和D是对应顶点,若BO=5,AO=3,AB=4,则BD2=80.【解答】解:∵AB2+AO2=42+32=25,BO2=52=25,∴AB2+AO2=BO2,∴∠A=90°,∵△AOB≌△COD,∴BO=DO=5,∵BO=5,AO=3,∴AD=AO+DO=3+5=8,在Rt△ABD中,BD2=AB2+AD2=42+82=80.故答案为:80.19.(3分)如图,在△ABC中,∠A=36°,∠B=72°,CD是∠ACD的平分线,则图中共有3个等腰三角形.【解答】解:有3个等腰三角形,理由是:∵在△ABC中,∠A=36°,∠B=72°,∴∠ACB=180°﹣∠A﹣∠B=72°,∴∠ACB=∠B,∴△ABC是等腰三角形,∵CD是∠ACD的平分线,∴∠ACD=∠BCD=∠ACB=36°,∴∠A=∠ACD=36°,∴△ACD是等腰三角形,∵∠BCD=36°,∠B=72°,∴∠CDB=180°﹣36°﹣72°=72°,∴∠B=∠CDB,∴△BCD是等腰三角形,故答案为:3.20.(3分)如图,在△ABC中,AB=AC,AD平分∠BAC,点E、F在AD上,若△ABC的面积为16cm2,则图中阴影部分的面积是8cm2.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥DC,∴S△BEF =S△CEF,∴S阴影部分=S△ABD=S△ABC=×16=8(cm2).故答案为8.三、解答题21.(8分)尺规作图:如图,已知线段a、b和∠α用尺规作一个三角形,使其两边分别等于a、b,这两边的夹角等于2∠α.要求:不写已知、求作、作法,只画图,保留作图痕迹.【解答】解:如图所示:△ABC即为所求.22.(6分)利用一个点、一条线段、一个正三角形(或等腰三角形)、一个正方形(或长方形)设计一个轴对称图案,并说明你希望表达的含义.【解答】解:如图所示.表示一个垃圾箱.23.(9分)如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=10,试求△PMN的周长.【解答】解:∵P点关于OA、OB的对称点P1,P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN,=P1M+MN+P2N,=P1P2,∵P1P2=10,∴△PMN的周长=10.24.(11分)已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC 的长.【解答】解:∵AB=AC∴∠B=∠C=30°∵AB⊥AD∴BD=2AD=2×4=8(cm)∠B+∠ADB=90°,∴∠ADB=60°∵∠ADB=∠DAC+∠C=60°∴∠DAC=30°∴∠DAC=∠C∴DC=AD=4cm∴BC=BD+DC=8+4=12(cm).25.(11分)如图,小芳和她的同学汤秋千,秋千AB在静止时,下端B离地面0.6m,秋千荡到AB′的位置时,下端B′距静止位置的水平距离B′D等于2m,距地面1.4m,求秋千AB的长.【解答】解:设AB=xm,则AB′=xm,由题意可得出:DB=1.4﹣0.6=0.8(m),则AD=AB﹣DB=x﹣0.8,在Rt△AB′D中,AD2+B′D2=AB′2,则(x﹣0.8)2+22=x2解得:x=2.9.答:秋千AB的长为2.9m.26.(12分)如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:①AC=AD;②CF=DF.【解答】证明:①∵AB=AE,BC=ED,∠B=∠E,∴△ABC≌△AED(SAS),∴AC=AD,②∵AF⊥CD,AC=AD,∴CF=FD(三线合一性质).。
2015年山东省烟台市中考数学试卷一、选择题(本题共12小题,每小题3分,满分36分)每小题都给出标号为A、B、C、D四个备选答案,其中并且只有一个是正确的1.(3分)(2015•烟台)﹣的相反数是()A.﹣B.C.﹣D.2.(3分)(2015•烟台)剪纸是我国最古老民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.(3分)(2015•烟台)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.4.(3分)(2015•烟台)下列等式不一定成立的是()A.=(b≠0)B.a3•a﹣5=(a≠0)C.a2﹣4b2=(a+2b)(a﹣2b)D.(﹣2a3)2=4a65.(3分)(2015•烟台)丽华根据演讲比赛中九位评委所给的分数作了如下表格平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数6.(3分)(2015•烟台)如果x2﹣x﹣1=(x+1)0,那么x的值为()A.2或﹣1 B.0或1 C.2D.﹣17.(3分)(2015•烟台)如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB中点,则tan∠BFE的值是()A.B.2C.D.8.(3分)(2015•烟台)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2015的值为()A.()2012B.()2013C.()2012D.()20139.(3分)(2015•烟台)等腰直角三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A.9B.10 C.9或10 D.8或1010.(3分)(2015•烟台)A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地.其中正确的个数是()A.1B.2C.3D.411.(3分)(2015•烟台)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4abB.a x2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣112.(3分)(2015•烟台)如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2为边长的正方形DEFG的一边CD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)(2015•烟台)如图,数轴上点A、B所表示的两个数的和的绝对值是.14.(3分)(2015•烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是.15.(3分)(2015•烟台)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为.16.(3分)(2015•烟台)如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是.17.(3分)(2015•烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数y=(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.18.(3分)(2015•烟台)如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为.三、解答题(本大题共7小题,满分66分)19.(6分)(2015•烟台)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.20.(8分)(2015•烟台)”切实减轻学生课业负担”是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D四个等级,A:1小时以内;B:1小时﹣﹣1.5小时;C:1.5小时﹣﹣2小时;D:2小时以上.根据调查结果绘制了如图所示的两种不完整的统计图,请根据图中信息解答下列问题:(1)该校共调查了学生;(2)请将条形统计图补充完整;(3)表示等级A的扇形圆心角α的度数是;(4)在此次调查问卷中,甲、乙两班各有2人平均每天课外作业量都是2小时以上,从这4人中人选2人去参加座谈,用列表表或画树状图的方法求选出的2人来自不同班级的概率.21.(8分)(2015•烟台)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?22.(9分)(2015•烟台)如图1,滨海广场装有风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯.该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6米,DE=1.8米,∠CDE=60°.且根据我市的地理位置设定太阳能板AB的倾斜角为43°.AB=1.5米,CD=1米,为保证长为1米的风力发电机叶片无障碍安全旋转,对叶片与太阳能板顶端A的最近距离不得少于0.5米,求灯杆OF至少要多高?(利用科学计算器可求得sin43°≈0.6820,cos43°≈0.7314,tan43°≈0.9325,结果保留两位小数)23.(9分)(2015•烟台)如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且=.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.24.(12分)(2015•烟台)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与⊙M相交于A、B、C、D四点,其中A、B两点的坐标分别为(﹣1,0),(0,﹣2),点D在x轴上且AD为⊙M的直径.点E是⊙M与y轴的另一个交点,过劣弧上的点F作FH⊥AD于点H,且FH=1.5(1)求点D的坐标及该抛物线的表达式;(2)若点P是x轴上的一个动点,试求出△PEF的周长最小时点P的坐标;(3)在抛物线的对称轴上是否存在点Q,使△QCM是等腰三角形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.25.(14分)(2015•烟台)【问题提出】如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF【类比探究】(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.2015年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,满分36分)每小题都给出标号为A、B、C、D四个备选答案,其中并且只有一个是正确的1.(3分)(2015•烟台)﹣的相反数是()A.﹣B.C.﹣D.考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣的相反数是.故选B.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2015•烟台)剪纸是我国最古老民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是中心对称图形但不是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故错误;C、不是轴对称图形,也不是中心对称图形.故错误;D、不是轴对称图形,是中心对称图形.故正确.故选D.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)(2015•烟台)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看易得左视图为:.故选A.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(3分)(2015•烟台)下列等式不一定成立的是()B.a3•a﹣5=(a≠0)A.=(b≠0)C.a2﹣4b2=(a+2b)(a﹣2b)D.(﹣2a3)2=4a6考点:二次根式的乘除法;幂的乘方与积的乘方;因式分解-运用公式法;负整数指数幂.分析:分别利用二次根式的性质以及负整数指数幂的性质和平方差公式以及积的乘方运算法则化简求出即可.解答:解:A、=(a≥0,b>0),故此选项错误,符合题意;B、a3•a﹣5=(a≠0),正确,不合题意;C、a2﹣4b2=(a+2b)(a﹣2b),正确,不合题意;D、(﹣2a3)2=4a6,正确,不合题意.故选:A.点评:此题主要考查了二次根式的性质以及负整数指数幂的性质和平方差公式以及积的乘方运算法则等知识,正确掌握运算法则是解题关键.5.(3分)(2015•烟台)丽华根据演讲比赛中九位评委所给的分数作了如下表格平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数考点:统计量的选择.分析:根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.解答:解:去掉一个最高分和一个最低分对中位数没有影响,故选D.点评:本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.6.(3分)(2015•烟台)如果x2﹣x﹣1=(x+1)0,那么x的值为()A.2或﹣1 B.0或1 C.2D.﹣1考点:解一元二次方程-因式分解法;零指数幂.分析:首先利用零指数幂的性质整理一元二次方程,进而利用因式分解法解方程得出即可.解答:解:∵x2﹣x﹣1=(x+1)0,∴x2﹣x﹣1=1,即(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,当x=﹣1时,x+1=0,故x≠﹣1,故选:C.点评:此题主要考查了因式分解法解一元二次方程以及零指数幂的性质,注意x+1≠0是解题关键.7.(3分)(2015•烟台)如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB中点,则tan∠BFE的值是()A.B.2C.D.考点:菱形的性质;解直角三角形.分析:首先利用菱形的性质得出AB=BC,即可得出∠ABC=60°,再利用三角函数得出答案.解答:解:∵四边形ABCD是菱形,∴AB=BC,∵CE⊥AB,点E是AB中点,∴∠ABC=60°,∴∠EBF=30°,∴∠BFE=60°,∴tan∠BFE的值为.故选D.点评:此题考查菱形的性质,关键是根据含30°的直角三角形的性质和三角函数解答.8.(3分)(2015•烟台)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2015的值为()A.()2012B.()2013C.()2012D.()2013考点:等腰直角三角形;正方形的性质.专题:规律型.分析:根据题意可知第2个正方形的边长是,则第3个正方形的边长是,…,进而可找出规律,第n个正方形的边长是,那么易求S2015的值.解答:解:根据题意:第一个正方形的边长为2;第二个正方形的边长为:;第三个正方形的边长为:,…第n个正方形的边长是,所以S2015的值是()2012,故选C点评:本题考查了正方形的性质、等腰直角三角形的性质、勾股定理.解题的关键是找出第n个正方形的边长.9.(3分)(2015•烟台)等腰直角三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A.9B.10 C.9或10 D.8或10考点:根的判别式;一元二次方程的解;等腰直角三角形.分析:由三角形是等腰直角三角形,得到①a=2,或b=2,②a=b①当a=2,或b=2时,得到方程的根x=2,把x=2代入x2﹣6x+n﹣1=0即可得到结果;②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,由△=(﹣6)2﹣4(n﹣1)=0可的结果.解答:解:∵三角形是等腰直角三角形,∴①a=2,或b=2,②a=b两种情况,①当a=2,或b=2时,∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴x=2,把x=2代入x2﹣6x+n﹣1=0得,22﹣6×2+n﹣1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,∴△=(﹣6)2﹣4(n﹣1)=0解得:n=10,故选B.点评:本题考查了等腰直角三角形的性质,一元二次方程的根,一元二次方程根的判别式,注意分类讨论思想的应用.10.(3分)(2015•烟台)A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地.其中正确的个数是()A.1B.2C.3D.4考点:一次函数的应用.分析:观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间的关系求得结果.解答:解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3﹣1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3﹣1)=6(千米/小时),则甲到达B地用的时间为:20÷4=5(小时),乙到达B地用的时间为:20÷6=(小时),1+3,∴乙先到达B地,故④正确;正确的有3个.故选:C.点评:本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息.11.(3分)(2015•烟台)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4abB.a x2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1考点:二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点;二次函数与不等式(组).分析:由抛物线与x轴有两个交点则可对A进行判断;由于抛物线开口向上,有最小值则可对B进行判断;根据抛物线上的点离对称轴的远近,则可对C进行判断;根据二次函数的对称性可对D进行判断.解答:解:A、图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2﹣4ab >0所以b2>4ab,故A选项正确;B、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax2+bx+c≥﹣6,故B选项正确;C、抛物线的对称轴为直线x=﹣3,因为﹣5离对称轴的距离大于﹣2离对称轴的距离,所以m<n,故C选项错误;D、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,故D选项正确.故选C.点评:本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,抛物线与x 轴的交点远近二次函数与不等式的关系.12.(3分)(2015•烟台)如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2为边长的正方形DEFG的一边CD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:首先根据Rt△ABC中∠C=90°,∠BAC=30°,AB=8,分别求出AC、BC,以及AB 边上的高各是多少;然后根据图示,分三种情况:(1)当0≤t≤2时;(2)当2时;(3)当6<t≤8时;分别求出正方形DEFG与△ABC的重合部分的面积S的表达式,进而判断出正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是哪个即可.解答:解:如图1,CH是AB边上的高,与AB相交于点H,,∵∠C=90°,∠BAC=30°,AB=8,∴AC=AB×cos30°=8×=4,BC=AB×sin30°=8×=4,∴CH=AC×,AH=,(1)当0≤t≤2时,S==t2;(2)当2时,S=﹣=t2[t2﹣4t+12]=2t﹣2(3)当6<t≤8时,S=[(t﹣2)•tan30°]×[6﹣(t﹣2)]×[(8﹣t)•tan60°]×(t ﹣6)=[]×[﹣t+2+6]×[﹣t]×(t﹣6)=﹣t2﹣t2﹣30=﹣t2﹣6﹣24综上,可得S=∴正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是A图象.故选:A.点评:(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.(2)此题还考查了直角三角形的性质和应用,以及三角形、梯形的面积的求法,要熟练掌握.二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)(2015•烟台)如图,数轴上点A、B所表示的两个数的和的绝对值是1.考点:数轴;绝对值;有理数的加法.分析:首先根据数轴得到表示点A、B的实数,然后求其和绝对值即可.解答:解:解:从数轴上可知:表示点A的数为﹣3,表示点B的数是2,则﹣3+2=﹣1,|﹣1|=1,故答案为:1.点评:本题考查了数轴和绝对值,解题的关键是从数轴上得到点A、点B表示的数,然后求其和的绝对值.14.(3分)(2015•烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是540°.考点:多边形内角与外角.分析:根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.解答:解:多边形的边数:360°÷72°=5,正多边形的内角和的度数是:(5﹣2)•180°=540°.故答案为:540°.点评:考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.15.(3分)(2015•烟台)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为.考点:概率公式;一次函数的性质;正比例函数的性质;反比例函数的性质;二次函数的图象.分析:用不经过第四象限的个数除以总个数即可确定答案.解答:解:∵4张卡片中只有第2个精光第四象限,∴取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为,故答案为:.点评:本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.(3分)(2015•烟台)如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是6.考点:圆锥的计算.分析:根据弧长求得圆锥的底面半径和扇形的半径,利用勾股定理求得圆锥的高即可.解答:解:∵弧长为6π,∴底面半径为6π÷2π=3,∵圆心角为120°,∴=6π,解得:R=9,∴圆锥的高为=6,故答案为:6.点评:本题考查了圆锥的计算,解题的关键是能够利用圆锥的底面周长等于侧面展开扇形的弧长求得圆锥的底面半径,难度一般.17.(3分)(2015•烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数y=(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.考点:反比例函数系数k的几何意义.分析:由A、C的坐标分别是(4,0)和(0,2),得到P(2,1),求得k=2,得到反比例函数的解析式为:y=,求出D(4,),E(1,2)于是问题可解.解答:解:∵四边形OABC是矩形,∴AB=OC,BC=OA,∵A、C的坐标分别是(4,0)和(0,2),∴OA=4,OB=2,∵P是矩形对角线的交点,∴P(2,1),∵反比例函数y=(x>0)的图象过对角线的交点P,∴k=2,∴反比例函数的解析式为:y=,∵D,E两点在反比例函数y=(x>0)的图象的图象上,∴D(4,),E(1,2)∴S阴影=S矩形﹣S△AOD﹣S△COF﹣S△BDE=4×2﹣×2﹣×2﹣××3=.故答案为:.点评:本题考查了反比例函数系数k的几何意义,待定系数法求函数的解析式,矩形的性质三角形的面积的求法,掌握反比例函数系数k的几何意义是解题的关键.18.(3分)(2015•烟台)如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为2﹣2或2+2..考点:直线与圆的位置关系;一次函数的性质.分析:根据直线ly=﹣x+1由x轴的交点坐标A(0,1),B(2,0),得到OA=1,OB=2,求出AB=;设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,通过△BMO~△ABO,即可得到结果.解答:解:在y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,∴A(0,1),B(2,0),∴AB=;如图,设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,∵∠MCB=∠AOB=90°,∠B=∠B,∴△BMO~△ABO,∴,即∴BM=2,∴OM=2﹣2,或OM=2+2.∴m=2﹣2或m=2+2.故答案为:2﹣2,2+2.点评:本题考查了直线与圆的位置关系,一次函数的性质,相似三角形的判定和性质,注意分类讨论是解题的关键.三、解答题(本大题共7小题,满分66分)19.(6分)(2015•烟台)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.解答:解:原式=÷=•=,当x=2时,原式=4.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(8分)(2015•烟台)”切实减轻学生课业负担”是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D四个等级,A:1小时以内;B:1小时﹣﹣1.5小时;C:1.5小时﹣﹣2小时;D:2小时以上.根据调查结果绘制了如图所示的两种不完整的统计图,请根据图中信息解答下列问题:(1)该校共调查了200学生;(2)请将条形统计图补充完整;(3)表示等级A的扇形圆心角α的度数是108°;(4)在此次调查问卷中,甲、乙两班各有2人平均每天课外作业量都是2小时以上,从这4人中人选2人去参加座谈,用列表表或画树状图的方法求选出的2人来自不同班级的概率.考点:列表法与树状图法;扇形统计图;条形统计图.分析:(1)根据B类的人数和所占的百分比即可求出总数;(2)求出C的人数从而补全统计图;(3)用A的人数除以总人数再乘以360°,即可得到圆心角α的度数;(4)先设甲班学生为A1,A2,乙班学生为B1,B2,根据题意画出树形图,再根据概率公式列式计算即可.解答:解:(1)共调查的中学生数是:80÷40%=200(人),故答案为:200;(2)C类的人数是:200﹣60﹣80﹣20=40(人),补图如下:(3)根据题意得:α=×360°=108°,故答案为:108°;(4)设甲班学生为A1,A2,乙班学生为B1,B2,一共有12种等可能结果,其中2人来自不同班级共有8种,∴P(2人来自不同班级)==.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)(2015•烟台)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?考点:分式方程的应用;一元一次不等式的应用.分析:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5千米/小时,根据题意可得,高铁走(1026﹣81)千米比普快走1026千米时间减少了9小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.解答:解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=9,解得:x=72,经检验,x=72是原分式方程的解,且符合题意,则2.5x=180,答:高铁列车的平均时速为180千米/小时;(2)630÷180=3.5,则坐车共需要3.5+1.5=5(小时),王老师到达会议地点的时间为1点40.故他能在开会之前到达.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.(9分)(2015•烟台)如图1,滨海广场装有风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯.该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6米,DE=1.8米,∠CDE=60°.且根据我市的地理位置设定太阳能板AB的倾斜角为43°.AB=1.5米,CD=1米,为保证长为1米的风力发电机叶片无障碍安全旋转,对叶片与太阳能板顶端A的最近距离不得少于0.5米,求灯杆OF至少要多高?(利用科学计算器可求得sin43°≈0.6820,cos43°≈0.7314,tan43°≈0.9325,结果保留两位小数)考点:解直角三角形的应用.分析:过E作EG⊥地面于G,过D作DH⊥EG于H,在R t△ABC中,求得AC=AB•cos∠CAB=1.5×0.7314≈1.1,由∠CDE=60°,得到EH=DE=0.9,得出DF=GH=EG﹣EH=6﹣0.9=5.1,于是OF=1+0.5+1.10+1+5.1=8.70m.解答:解:过E作EG⊥地面于G,过D作DH⊥EG于H,∴DF=HG,在R t△ABC中,AC=AB•cos∠CAB=1.5×0.7314≈1.10,∵∠CDE=60°,∴∠EDH=30°,∴EH=DE=0.9,∴DF=GH=EG﹣EH=6﹣0.9=5.1,∴OF=1+0.5+1.10+1+5.1=8.70m.答:灯杆OF至少要8.70m.点评:本题考查了解直角三角形,作辅助线构造直角三角形是解题的关键.23.(9分)(2015•烟台)如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且=.。
2014年烟台市初中学生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共36分)一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.-3的绝对值等于()A.-3B.3C.±3D.-2.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()3.烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013年全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为()A.5.613×1011元B.5.613×1012元C.56.13×1010元D.0.5613×1012元4.如图是一个正方体截去一角后得到的几何体,它的主视图是()5.按如图所示的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=-2B.x=3,y=-3C.x=-4,y=2D.x=-3,y=-96.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连结BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°7.如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为()A.1.5B.3C.3.5D.4.58.关于x的方程x2-ax+2a=0的两根的平方和是5,则a的值是()A.-1或5B.1C.5D.-19.将一组数,,3,2,,…,3,按下面的方法进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)10.如图,将△ABC绕点P顺时针旋转90°得到△A'B'C',则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)11.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2.下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个12.如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6个小题,每小题3分,满分18分)13.(-1)0+-=.14.函数y=-中,自变量x的取值范围是.15.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球个.16.如图,已知函数y=2x+b与函数y=kx-3的图象交于点P,则不等式kx-3>2x+b的解集是.17.如图所示,正六边形ABCDEF内接于☉O,若☉O的半径为4,则阴影部分的面积等于.18.如图,∠AOB=45°,点O1在OA上,OO1=7,☉O1的半径为2.点O2在射线OB上运动,且☉O2始终与OA相切,当☉O2和☉O1相切时,☉O2的半径等于.三、解答题(本大题共8个小题,满分66分)19.(本题满分6分)先化简,再求值:-÷---,其中x为数据0,-1,-3,1,2的极差.2014年世界杯足球赛6月12日—7月13日在巴西举行.某初中学校为了了解本校2400名学生对此次世界杯的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘成了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“特别关注”“一般关注”“偶尔关注”都统计成关注,那么全校关注本届世界杯的学生大约有多少名?(3)在这次调查中,初四年级共有甲、乙、丙、丁四人“特别关注”本届世界杯,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.小明坐于堤边垂钓.如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米.若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.22.(本题满分8分)如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连结AB,在线段DC上是否存在一点E,使△ABE的面积等于5.若存在,求出E点坐标;若不存在,请说明理由.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:如图,AB是☉O的直径,延长AB至P,使BP=OB.BD垂直于弦BC,垂足为点B,点D在PC上.设∠PCB=α,∠POC=β.求证:tanα·tan=.25.(本题满分10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连结AE和DF交于点P,请你写出AE与DF的关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连结AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连结AE和DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连结AE和DF交于点P.由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.26.(本题满分12分)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=.抛物线y=ax2-ax-a经过点B,与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连结ED.试说明ED∥AC的理由.答案全解全析:一、选择题1.B因为一个负数的绝对值是它的相反数,所以|-3|=3.2.D A选项是轴对称图形但不是中心对称图形,B选项是中心对称图形但不是轴对称图形,C选项是轴对称图形但不是中心对称图形,D选项既是轴对称图形又是中心对称图形.3.A5613亿元=5.613×103亿元=5.613×103×108元=5.613×1011元.4.C由主视图的定义可知C正确.5.D该运算程序写成等式为2x-y=3,把各选项代入验证,只有D符合.6.C∵∠AOM=∠CON,∠MAO=∠NCO,AM=CN,∴△AOM≌△CON,∴AO=CO,∴点O是菱形ABCD对角线的交点,∴BO⊥AC,∴∠OBC=90°-∠BCO=90°-∠DAC=90°-28°=62°.7.B∵AB=AD,∴∠ABD=∠ADB.∵四边形ABCD是等腰梯形,∴∠ABC=∠C,∠ADB=∠DBC,∴∠ABD=∠DBC=∠C,∵BD⊥CD,∴∠DBC+∠C=90°,∴∠C=60°,∠DBC=30°,∴BC=6,∵EF是梯形的中位线,∴MF是△DBC的中位线,∴FM=3.评析此题考查等腰梯形的性质、中位线的性质及角度的计算,渗透着边角之间的转化.关键就是30度角的计算,从而确定下底边的长.8.D设方程x2-ax+2a=0的两根分别为x1,x2,则+=(x1+x2)2-2x1x2=a2-2×2a=5,解得a=5或-1,经检验,只有-1符合题意.评析本题考查一元二次方程根与系数的关系.易错点是不易发现隐含条件Δ≥0.9.C最大的有理数是9,即=.由数的排列规律可以发现第n个数表示为,且每一行都是5个数,所以9是第27个数,在第6行、第2列的位置.故选C.评析此题考查数的排列规律及二次根式的化简.10.B分别连结AA'、CC',并分别作它们的垂直平分线,交点即为点P.评析此题考查旋转的性质,即对应点所连线段的垂直平分线的交点是旋转中心.11.B因为对称轴为直线x=2,所以-=2,所以4a+b=0,所以①正确;因为当x=-3时,9a-3b+c<0,所以9a+c<3b,所以②错误;因为a<0,b>0,c>0,4a+b=0,所以8a+7b+2c=-2b+7b+2c=5b+2c>0,所以③正确;因为当x>2时,y的值随x值的增大而减小,所以④错误.所以正确的有2个.故选B.12.A如图(1),当点P在AD边上时,作BE⊥AD于点E,y=BE·x,是正比例函数;图(1)图(2)如图(2),当点P在CD边上时,作DF⊥BA于点F,y=AB·DF,是一个定值;如图(3),当点P在BC边上时,作AG⊥BC于点G,y=AG·(2AD+CD-x),是一次函数,且y随x 的增大而减小.故选A.图(3)二、填空题13.答案2015解析原式=1+2014=2015.14.答案x≤1且x≠-2解析∵1-x≥0,x+2≠0,∴x≤1且x≠-2.15.答案12解析P(摸到白球)=球的总个数=,∴球的总个数=3÷=12.16.答案x<4解析根据题图可知,在交点P(4,-6)的左侧,y=kx-3的函数值大于y=2x+b的函数值,即kx-3>2x+b.17.答案π解析连结OD,由题意易知阴影部分的面积等于扇形OBCD的面积,所以阴影部分面积S==π.18.答案3或15解析根据题意知两圆只能外切,设两圆相切时,☉O2的半径为r,则r2+(7-r)2=(r+2)2,解得r=3或15,经检验都符合题意.评析考查圆与圆、圆与直线相切的性质,关键是运用位置关系构造方程.三、解答题19.解析原式=-÷----(1分)=-·--(2分)=-=-.(4分)∵x=2-(-3)=5,(5分)∴原式=-==.(6分)20.解析(1)四个年级被调查的人数由小到大排列为30,40,50,80.∴中位数是=45(人).(2分)(2)2400×(1-45%)=1320(人).∴该校关注本届世界杯的学生大约有1320人.(3分)(3)画树状图如下:(6分)由图可知,共有12种等可能结果,其中恰好是甲和乙的有2种结果.∴P(恰好是甲和乙)==.(7分)评析此题考查条形统计图和扇形统计图及概率计算,易错点是第(1)问中中位数的计算,需要先把数据从小到大排序.21.解析如图,延长OA交直线BC于点D.∵AO的倾斜角为60°,∴∠ODB=60°,∵∠ACD=30°,∴∠CAD=180°-∠ODB-∠ACD=90°.(1分)在Rt△ACD中,AD=AC·tan∠ACD=×=(米).(3分)∴CD=2AD=3米.(4分)又∵∠O=60°,∴△BOD为等边三角形.(5分)∴BD=OD=OA+AD=3+=4.5(米).(6分)∴BC=BD-CD=4.5-3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.(7分)22.解析(1)由题意得解得∴m,n的值分别为1,6.(3分)∴A(1,6),B(6,1).设反比例函数的表达式为y=,将A(1,6)代入y=,得k=xy=1×6=6.∴y=.(4分)(2)存在.(5分)设E(x,0)(1≤x≤6),则DE=x-1,CE=6-x.∵AD⊥x轴,BC⊥x轴,∴∠ADE=∠BCE=90°.连结AE,BE.S△ABE=S梯形ABCD-S△ADE-S△BCE=(BC+AD)·DC-DE·AD-CE·BC=(1+6)×5-(x-1)×6-(6-x)×1=-x=5.(7分)∴x=5.∴E(5,0).(8分)评析第(1)问考查待定系数法求反比例函数解析式,第(2)问考查坐标系中三角形面积的计算方法,用梯形面积减去两个直角三角形的面积,从而找到思路.面积的计算是中考中的常见题型,大家要在复习中及时总结方法,积累解题经验.23.解析(1)设今年A型车每辆售价x元,则去年每辆售价(x+400)元.由题意得=-.(2分)解得x=1600.(3分)经检验,x=1600是所列方程的根.答:今年A型车每辆售价为1600元.(4分)(2)设车行新进A型车x辆,则B型车为(60-x)辆,获利y元.由题意,得y=(1600-1100)x+(2000-1400)(60-x),(5分)即y=-100x+36000.(6分)∵B型车的进货数量不超过A型车数量的2倍,∴60-x≤2x.∴x≥20.(7分)由y与x的关系式可知-100<0,∴y的值随x值的增大而减小.∴当x=20时,y的值最大.∴60-x=60-20=40(辆).答:当车行新进A型车20辆,B型车40辆时,这批车获利最大.(8分)24.证明连结AC.(1分)则∠A=∠POC=.(2分)∵AB是☉O的直径,∴∠ACB=90°,∴tan=.(3分)∵BD⊥BC,∴tanα=,(4分)又易知BD∥AC,∴△PBD∽△PAC.∴=.(6分)∵PB=OB=OA,∴==.(7分)∴tanα·tan=·==.(8分)评析此题涉及直径所对的圆周角是直角、三角形相似及锐角三角函数的知识,综合性较强.解题的关键是tan=的确定.25.解析(1)AE=DF,AE⊥DF.(1分)理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.又易知DE=CF,∴△ADE≌△DCF,∴AE=DF,∠DAE=∠CDF.(2分)由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°,∴AE⊥DF.(3分)(2)是.(4分)(3)成立.(5分)理由:由(1)同理可证,AE=DF,∠DAE=∠CDF.延长FD交AE于点G,则∠CDF+∠ADG=90°.∴∠ADG+∠DAE=90°,∴AE⊥DF.(6分)(4)画出草图如图.(7分)由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧.(8分)设AD的中点为O,连结OC交弧于点P,此时CP的长度最小.在Rt△ODC中,OC===.(9分)∴线段CP的最小值为OC-OP=-1.(10分)评析这是一道探究性问题,前三问比较容易入手,考查正方形、三角形全等等知识,第(4)问利用90度圆周角所对的弦是直径构造圆,从而画出点P的运动轨迹是四分之一的圆,这一步是解决此问的关键.26.解析(1)把点B的坐标代入抛物线的表达式,得=a×22-2a-a.解得a=.(1分)∴抛物线的表达式为y=x2-x-.(2分)(2)连结CD.过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°.(3分)∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF.∵∠AOC=∠CFB=90°,∴△AOC∽△CFB.∴=.=.设OC=m,则CF=2-m,则有-解得m1=m2=1.∴OC=CF=1.(5分)对于y=x2-x-,当x=0时,y=-,∴OD=.∴BF=OD.∵∠DOC=∠BFC=90°,∴△OCD≌△FCB.∴DC=CB,∠OCD=∠FCB.(6分)∴点B,C,D在同一条直线上.(7分)∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点的抛物线上.(8分)(3)过点E作EG⊥y轴于点G.设直线AB的表达式为y=kx+b(k≠0),则解得k=-,b=.∴y=-x+.(9分)代入抛物线表达式后解得x=±2.当x=-2时,y=-x+=-×(-2)+=.∴点E的坐标为-.(10分)∵tan∠EDG===,∴∠EDG=30°.∵tan∠OAC===,∴∠OAC=30°.∴∠OAC=∠EDG,∴ED∥AC.(12分)评析此题第(1)问考查了待定系数法求二次函数解析式;第(2)问考查了点关于直线对称知识;第(3)问通过运用三角函数确定角度大小从而判定两直线平行.。
2014年山东省烟台市中考数学试卷一、选择题(本题共12小题,每小题3分,满分36分). C D .3.(3分)(2014•烟台)烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳4.(3分)(2014•烟台)如图是一个正方体截去一角后得到的几何体,它的主视图是( ). C D .5.(3分)(2014•烟台)按如图的运算程序,能使输出结果为3的x ,y 的值是( )6.(3分)(2014•烟台)如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O ,连接BO .若∠DAC=28°,则∠OBC 的度数为( )7.(3分)(2014•烟台)如图,已知等腰梯形ABCD 中,AD ∥BC ,AB=CD=AD=3,梯形中位线EF 与对角线BD 相交于点M ,且BD ⊥CD ,则MF 的长为( )29.(3分)(2014•烟台)将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…10.(3分)(2014•烟台)如图,将△ABC 绕点P 顺时针旋转90°得到△A ′B ′C ′,则点P 的坐标是( )11.(3分)(2014•烟台)二次函数y=ax 2+bx+c (a ≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c >3b ;③8a+7b+2c >0;④当x >﹣1时,y 的值随x 值的增大而增大.其中正确的结论有( )12.(3分)(2014•烟台)如图,点P 是▱ABCD 边上一动点,沿A →D →C →B 的路径移动,设P 点经过的路径长为x ,△BAP 的面积是y ,则下列能大致反映y 与x 的函数关系的图象是( ).C D .二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2014•烟台)(﹣1)0+()﹣1=_________.14.(3分)(2014•烟台)在函数中,自变量x的取值范围是_________.15.(3分)(2014•烟台)在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球_________个.16.(3分)(2014•烟台)如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.17.(3分)(2014•烟台)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于_________.18.(3分)(2014•烟台)如图,∠AOB=45°,点O1在OA上,OO1=7,⊙O1的半径为2,点O2在射线OB上运动,且⊙O2始终与OA相切,当⊙O2和⊙O1相切时,⊙O2的半径等于_________.三、解答题(本大题共8个小题,满分66分)19.(6分)(2014•烟台)先化简,再求值:÷(x﹣),其中x为数据0,﹣1,﹣3,1,2的极差.20.(7分)(2014•烟台)2014年世界杯足球赛6月12日﹣7月13日在巴西举行,某初中学校为了了解本校2400名学生对本次世界杯的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“特别关注”、“一般关注”、“偶尔关注”都统计成关注,那么全校关注本届世界杯的学生大约有多少名?(3)在这次调查中,初四年级共有甲、乙、丙、丁四人“特别关注”本届世界杯,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.21.(7分)(2014•烟台)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.22.(8分)(2014•烟台)如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连接AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.23.(8分)(2014•烟台)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?24.(8分)(2014•烟台)如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D在PC上.设∠PCB=α,∠POC=β.求证:tanα•tan=.25.(10分)(2014•烟台)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.26.(12分)(2014•烟台)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.2014年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,满分36分).C D.3.(3分)(2014•烟台)烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳4.(3分)(2014•烟台)如图是一个正方体截去一角后得到的几何体,它的主视图是().C D..5.(3分)(2014•烟台)按如图的运算程序,能使输出结果为3的x,y的值是()6.(3分)(2014•烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()∵7.(3分)(2014•烟台)如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为()∠MF=BC=2﹣.也考查了一元二次方程的根的判别式.9.(3分)(2014•烟台)将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…,根据排列方式,可得每行=得被开方数是10.(3分)(2014•烟台)如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()11.(3分)(2014•烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()=2=212.(3分)(2014•烟台)如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是().C D.二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2014•烟台)(﹣1)0+()﹣1=2015.14.(3分)(2014•烟台)在函数中,自变量x的取值范围是x≤1且x≠﹣2.15.(3分)(2014•烟台)在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球12个.,∴,=16.(3分)(2014•烟台)如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是x<4.﹣代入17.(3分)(2014•烟台)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于π.,BD=2BM=4的面积是OM=××,=2=×=π,+4π4π4π故答案为:18.(3分)(2014•烟台)如图,∠AOB=45°,点O1在OA上,OO1=7,⊙O1的半径为2,点O2在射线OB上运动,且⊙O2始终与OA相切,当⊙O2和⊙O1相切时,⊙O2的半径等于3或15.三、解答题(本大题共8个小题,满分66分)19.(6分)(2014•烟台)先化简,再求值:÷(x﹣),其中x为数据0,﹣1,﹣3,1,2的极差.÷•===20.(7分)(2014•烟台)2014年世界杯足球赛6月12日﹣7月13日在巴西举行,某初中学校为了了解本校2400名学生对本次世界杯的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“特别关注”、“一般关注”、“偶尔关注”都统计成关注,那么全校关注本届世界杯的学生大约有多少名?(3)在这次调查中,初四年级共有甲、乙、丙、丁四人“特别关注”本届世界杯,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.中位数为=.21.(7分)(2014•烟台)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.ACD=ACD==BD=OD=OA+AD=3+=4.522.(8分)(2014•烟台)如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连接AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.)由题意得:,,y=﹣CE﹣(﹣23.(8分)(2014•烟台)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?24.(8分)(2014•烟台)如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D在PC上.设∠PCB=α,∠POC=β.求证:tanα•tan=.,再求出=,最后得到tan=A=∠,=∴,∴,tan=•=.tan=.25.(10分)(2014•烟台)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.QC=QP=26.(12分)(2014•烟台)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.=a,y=﹣∴,,则有=,,OD=,则﹣x+,代入抛物线的表达式﹣x+x x.x+=+EDG==,OAC===。