最新北师大版七年级上数学教案 2.9 有理数的乘方1
- 格式:doc
- 大小:183.00 KB
- 文档页数:2
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
第二章第九节有理数的乘方(一)课型:新授课授课时间:教学目标:(1)理解乘方的意义,理解底数、指数、幂的意义及相互关系,会进行有理数的乘方运算。
(2)培养学生通过类比、联想、归纳,加强对乘方意义的理解,发展学生的思维能力,使学生初步具备类比,特殊到一般,化归及分类讨论的数学思想,并培养学生的逆向思维。
(3)会进行简单的有理数乘方运算和解答简单的实际问题。
感受有理数的乘方与实际问题之间的联系。
初步学会从数学的角度理解问题,形成解决问题的一些基本策略,初步形成评价与反思的意识。
(4)在经历发现问题、探索规律的过程中体会数学的乐趣,激发学生的好奇心和求知欲,培养学生的探索精神与合作精神。
教法及学法指导:本节应用“以预习稿为载体的自主互动式”学习模式,引导学生通过自己的预习,及对设计的问题进行仔细观察、展示自己的收获、小组讨论、主动探究,最后自己得出结论,学会解决问题的方法.理解有理数乘方的意义,掌握有理数乘方的概念,学会有理数乘方的运算,是本节课的重点知识,因此处理时采取类比有理数的乘方运算,激活学生思维去主动分析、讨论对乘方的理解及应该注意的问题。
这既体现了学生主动进行知识建构的过程,同时也培养了学生合作探究、分析问题及解决问题的能力.课前准备:制作课件,检查学生预习稿完成情况,发现学生存在的问题教学过程:一、创设情境,导入新课师:同学们好!大家都知道原子弹的威力非常大,那大家知道它的能量是如何转化的吗?生1:思考(发表自己的见解)生2:师:看来我们大家中有的同学有当科学家的潜力,其实这种原理并不难理解,只要你们肯思考!现在我们一道类似的问题,你能解决吗?(展示问题)生:思考,小组内交流自己的的看法,准备小组展示。
北师大版数学七年级上册2.9《有理数的乘方》说课稿1一. 教材分析《有理数的乘方》是北师大版数学七年级上册第2.9节的内容,本节课是在学生已经掌握了有理数的乘法、加法、减法、除法的基础上进行学习的,是对有理数运算的进一步拓展。
有理数的乘方是指一个有理数自乘若干次,例如(a2)表示(a)乘以(a),(a3)表示(a)乘以(a)再乘以(a)。
有理数的乘方在实际生活中有着广泛的应用,如计算利息、折现等。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的四则运算有一定的了解。
但是,学生可能对于有理数乘方的概念和意义理解不够深入,对于乘方的计算法则和应用可能还不够熟练。
因此,在教学过程中,需要引导学生从实际问题中抽象出有理数乘方的概念,并通过大量的练习来熟练计算法则。
三. 说教学目标1.理解有理数乘方的概念和意义,掌握有理数乘方的计算法则。
2.能够运用有理数乘方解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和创新能力,提高学生对数学的兴趣。
四. 说教学重难点1.教学重点:有理数乘方的概念、计算法则和应用。
2.教学难点:有理数乘方的计算法则的推导和理解,有理数乘方在实际问题中的应用。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中抽象出有理数乘方的概念。
2.使用多媒体课件和板书相结合的方式,直观地展示有理数乘方的过程和规律。
3.通过大量的练习和小组讨论,让学生熟练掌握有理数乘方的计算法则。
4.采用激励评价和过程性评价相结合的方式,鼓励学生积极参与课堂活动,提高学生的学习积极性。
六. 说教学过程1.导入:通过一个实际问题,如计算利息,引入有理数乘方的概念。
2.新课导入:讲解有理数乘方的定义和计算法则,引导学生通过观察和思考,发现乘方的规律。
3.案例分析:通过几个具体的例子,让学生理解和掌握有理数乘方的计算法则。
4.练习环节:布置一些练习题,让学生独立完成,巩固所学内容。
有理数的乘方北师大版数学初一上册教案教案如下:教学目标:1. 理解有理数的乘方的概念。
2. 掌握有理数的乘方的运算规则。
3. 能够计算简单的有理数的乘方。
教学重点:1. 理解有理数的乘方的概念。
2. 掌握有理数的乘方的运算规则。
教学难点:1. 计算涉及有理数的乘方的运算。
教学准备:1. 教师准备教材《北师大版数学初一上册》。
2. 学生准备教材、作业本和课堂笔记。
教学过程:Step 1: 引入新知识1. 教师通过简单的实例引入有理数的乘方的概念。
2. 教师解释有理数的乘方的定义和运算规则。
Step 2: 讲解和练习运算规则1. 教师通过教材的相关内容,逐步讲解有理数的乘方的运算规则。
2. 教师通过练习题让学生熟练掌握有理数的乘方的运算规则。
Step 3: 拓展练习1. 教师提供一些涉及有理数的乘方的计算题目,让学生进行拓展练习。
2. 教师引导学生分析、解决问题,并给予适当指导。
Step 4: 总结和归纳1. 教师和学生共同总结有理数的乘方的运算规则。
2. 学生进行复习和整理,将学到的知识进行总结和归纳。
Step 5: 课堂小结1. 教师进行课堂小结,强调有理数的乘方的重点和难点。
2. 学生进行自我评价,发现自己的不足之处。
教学反思:1. 教师在讲解有理数的乘方的概念时,要注重提供简单易懂的实例,加深学生对该概念的理解。
2. 教师在讲解有理数的乘方的运算规则时,要通过练习题帮助学生熟练掌握该规则并能够灵活运用。
3. 教师要根据学生的实际情况,进行灵活性的调整,确保每个学生都能够理解和掌握有理数的乘方的知识。
2024有理数的乘方北师大版数学初一上册教案一、教学目标1.知识与技能目标:理解有理数的乘方概念,掌握有理数乘方的运算规则。
2.过程与方法目标:通过实例分析,培养学生运用有理数乘方的解题能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养合作交流意识。
二、教学重难点重点:有理数的乘方概念及运算规则。
难点:有理数乘方的应用。
三、教学过程(一)导入1.教师通过提问方式引导学生回顾小学阶段学习的乘法运算。
2.引出有理数的乘方概念,让学生初步了解有理数乘方的意义。
(二)新课讲解1.讲解有理数的乘方概念(1)展示乘方的数学符号:a^n,其中a表示底数,n表示指数。
(2)解释乘方的意义:n个a相乘。
(3)通过实例讲解乘方的运算方法。
2.讲解有理数乘方的运算规则(1)同底数乘方的运算法则:a^m×a^n=a^(m+n)(2)不同底数乘方的运算法则:a^m×b^n=(ab)^n(3)负数乘方的运算法则:(-a)^n=(-1)^n×a^n3.讲解有理数乘方的应用(1)解方程:如2^x=16,求解x。
(2)计算幂次方根:如求√2^4,√3^3等。
(三)课堂练习1.学生独立完成课后练习题,巩固有理数乘方的运算方法。
2.教师选取部分学生展示解题过程,指导学生规范书写。
(四)小组讨论1.将学生分成若干小组,每组选取一个组长。
(1)有理数乘方的运算规则有哪些?(2)如何运用有理数乘方解决实际问题?(五)课堂小结2.学生分享学习心得,提出疑问,教师解答。
四、作业布置1.完成课后练习题。
2.自主探究:有理数乘方在实际生活中的应用。
五、教学反思本节课通过讲解有理数乘方的概念、运算规则和应用,让学生掌握了有理数乘方的运算方法。
在教学过程中,教师注重引导学生积极参与,培养学生的合作交流意识。
但部分学生对负数乘方的运算方法掌握不够熟练,需要在课后加强练习。
总体来说,本节课教学效果较好,达到了预期的教学目标。
2.9 有理数的乘方
1.在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算法则.
2.能熟练地进行乘方运算.
一、情境导入
贝贝同学说:“珠穆朗玛峰是世界的最高峰,它的海拔高度约是8844m.如果有一张足够大且厚度为0.1mm 的纸,那么连续对折30次(理想状态下)的厚度能超过珠穆朗玛峰.”皮皮疑惑地说“这不可能吧,一张纸能折那么高吗?”通过下面的学习,相信你一定能解开皮皮的困惑!
二、合作探究
探究点一:有理数乘方的意义
把下列各式写成乘方的形式,并指出底数和指数各是什么. (1)(-3.14)×(-3.14)×(-3.14)×(-3.14)×(-3.14);
(2)25×25×25×25×25×25
;
(3).
解析:首先化成幂的形式,再指出底数和指数各是什么.
解:(1)(-3.14)×(-3.14)×(-3.14)×(-3.14)×(-3.14)=(-3.14)5,其中底数是-3.14,指数是5;
(2)25×25×25×25×25×25=(25)6,其中底数是2
5,指数是6;
(3)
,其中底数是m ,指数是2n .
方法总结:乘方是一种特殊的乘法运算,幂是乘方的结果,当底数是负数或分数时,要先用括号将底数括起来再写指数.
探究点二:有理数乘方的运算
计算:(1)-(-3)3; (2)(-34)2;
(3)(-2
3
)3; (4)(-1)2015.
解析:可根据乘方的意义,先把乘方转化为乘法,再根据乘法的运算法则来计算;或者先确定幂的符号,再用乘法求幂的绝对值.
解:(1)-(-3)3=-(-33)=33=3×3×3=27; (2)(-34)2=34×34=916
;
(3)(-23)3=-(23×23×23)=-8
27;
(4)(-1)2015=-1.
方法总结:乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数.
探究点三:与乘方有关的规律探究问题
有一张厚度为0.1毫米的纸,将它对折一次后,厚度为2×0.1毫米,求: (1)对折2次后,厚度为多少毫米? (2)对折20次后,厚度为多少毫米?
解析:要求每次对折后纸的厚度,应先求出每次折叠后纸的层数,再用每张的厚度乘以纸的层数即可.纸的对折次数与纸的层数关系如下:
对折次数 1 2 3 4 … 20 纸的层数 21
22
23
24
…
220
解:(1)∵厚度为0.1毫米的纸,将它对折一次后,厚度为2×0.1毫米, ∴对折2次的厚度是0.1×22毫米. 答:对折2次的厚度是0.4毫米;
(2)对折20次的厚度是0.1×220毫米=104857.6(毫米), 答:对折20次的厚度是104857.6毫米.
方法总结:解决本题的关键是将纸的层数化为幂的形式,找出这些幂与对折次数的对应关系.
教学过程中,强调学生自主探索和合作交流,经历丰富的观察、分析、比较、归纳、概括等数学活动的体验,发展学生的数感,培养学生良好的学习习惯,增强学习数学的兴趣和勇于探索的精神.。