单项式与多项式公开课教案
- 格式:doc
- 大小:102.60 KB
- 文档页数:6
单项式和多项式的教案教案标题:探索单项式和多项式教学目标:1. 理解单项式和多项式的概念及其特点。
2. 能够识别和区分单项式和多项式。
3. 能够进行单项式和多项式的基本运算。
4. 能够应用单项式和多项式解决实际问题。
教学准备:1. 教师准备:教学课件、黑板、白板笔、单项式和多项式的示例、练习题、实际问题。
2. 学生准备:课本、笔记本、铅笔、橡皮擦。
教学过程:引入:1. 在黑板上写下单项式和多项式的定义,并解释其特点。
2. 通过示例,引导学生思考并区分单项式和多项式。
探索单项式:1. 让学生回顾单项式的定义,并通过示例解释单项式的各个部分(系数、字母、指数)的含义。
2. 给学生提供一些单项式的例子,并让他们识别和写出每个单项式的系数、字母和指数。
3. 引导学生进行单项式的基本运算,如加法、减法和乘法。
4. 提供一些练习题,让学生巩固单项式的概念和运算技巧。
探索多项式:1. 让学生回顾多项式的定义,并通过示例解释多项式的各个部分(项、项数、次数)的含义。
2. 给学生提供一些多项式的例子,并让他们识别和写出每个多项式的项、项数和次数。
3. 引导学生进行多项式的基本运算,如加法、减法和乘法。
4. 提供一些练习题,让学生巩固多项式的概念和运算技巧。
应用实际问题:1. 给学生提供一些实际问题,让他们能够应用单项式和多项式解决问题。
2. 引导学生分析问题,将问题转化为数学表达式,并通过单项式和多项式进行计算和求解。
3. 鼓励学生在解决实际问题过程中思考和讨论,培养他们的问题解决能力。
总结:1. 回顾单项式和多项式的概念和特点。
2. 强调单项式和多项式的基本运算技巧。
3. 提醒学生在解决实际问题时要灵活运用单项式和多项式。
扩展活动:1. 让学生自主查找更多关于单项式和多项式的例子,并进行分析和讨论。
2. 鼓励学生设计自己的实际问题,并用单项式和多项式解决。
评估方法:1. 教师观察学生在课堂上的参与和表现。
2. 教师布置练习题或小测验,检验学生对单项式和多项式的理解和运用能力。
单项式和多项式教案第一章:单项式的概念与性质1.1 引入单项式的概念:引导学生从实际问题中抽象出单项式,如计算“3x^2 + 5xy 2x^3”中的单项式。
1.2 学习单项式的系数:解释单项式中的数字因数称为单项式的系数,如在单项式“4x^2”中,系数为4。
1.3 学习单项式的次数:定义单项式的次数为单项式中所有变量的指数之和,如在单项式“3x^2y^3”中,次数为5。
1.4 探究单项式的性质:引导学生发现单项式的系数和次数对单项式的性质的影响,如系数相同且次数相同的单项式可以相加或相减。
第二章:多项式的概念与性质2.1 引入多项式的概念:通过实际问题引导学生理解多项式的概念,如计算“ax^2 + bx + c”中的多项式。
2.2 学习多项式的项:解释多项式中的每一部分称为多项式的项,如在多项式“3x^2 + 2x 1”中有三项。
2.3 学习多项式的次数:定义多项式的次数为多项式中最高次单项式的次数,如在多项式“ax^2 + bx + c”中,次数为2。
2.4 探究多项式的性质:引导学生发现多项式的项数和次数对多项式的性质的影响,如多项式的次数决定了它的图像是一个抛物线。
第三章:单项式与多项式的运算3.1 学习单项式的加减法:引导学生利用合并同类项的法则进行单项式的加减法运算,如“2x^2 3x^2 = -x^2”。
3.2 学习单项式的乘法:解释单项式相乘的法则,如“3x^2 4x^3 = 12x^5”。
3.3 学习多项式的加减法:引导学生利用合并同类项的法则进行多项式的加减法运算,如“ax^2 + bx + c + dx^2 + ex + f = (a+d)x^2 + (b+e)x + (c+f)”。
3.4 学习多项式的乘法:解释多项式相乘的法则,如“(ax^2 + bx + c)(dx^2 + ex + f) = adx^4 + (ae+bd)x^3 + (af+be+cd)x^2 + (bf+ce)x + cf”。
《单项式与多项式》教案教学目标1、经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感.2、了解整式产生的背景和整式的概念,能求出整式的次数.3、进一步发展观察、归纳、分类等能力,发展有条理的思考及语言表达能力. 教学重点正确理解单项式、多项式、常数项及整式的概念.教学难点掌握单项式和多项式的特征,会正确区分单项式和多项式.教学方法尝试练习法,讨论法,归纳法.教学过程一、情境导入1、一个三角尺如图所示,阴影部分所占的面积是__________;2、某校学生总数为x ,其中男生人数占总数的35, 该校男生人数为__________; 3、一个长方体的底面是边长为a 的正方形,高为h ,体积是__________; 4、某建筑物的窗户,上半部为半圆形,下半部为长方形.已知长方形的长、宽分别为a 、b ,这扇窗户的透光面积是?二、新课教学请你根据上面式子的结构,看看能分成多少类? 第一类:216b π、109x 、0.8(115%)a +、2a h单项式第二类:24ab c -、2a +2b 多项式引出概念:单项式、多项式、整式、系数、次数、常数项……只含有加、减、乘、乘方运算的代数式叫做整式.其中,不含有加、减运算的整式叫做单项式.几个单项式的和叫做多项式.……单项式与多项式的区别:x 53、h a 2、ab 、722y x -、216b π、a 、—b 、1的次数和系数. 2、多项式的项数和次数,练习:216b ab π-、2a +2b 、mn ab 2121-、2532232-+-b a b a 、b a ab -+23的项数和次数. 注:1、单独一个非零数的次数是0.2、当单项式的系数为1或—1时,这个“1”应省略不写.3、确定多项式的次数时,应注意先确定每个单项式每个字母的指数;再计算这个单项式中所有字母的指数的和.4、单独一个数或一个字母也是单项式在讲解完单项式、多项式、整式的概念及整式的次数后,立即让学生把上一环节中的代数式进行归类并求出它们的次数.三、巩固练习:1、在代数式231a ,2243b a -,-ab ,)(1y x a +,)(21b a +,712+x 中, 单项式有________________,它们各自的系数分别为____________,多项式有______________________________.2、单项式的次数:字 母 字母的指数 指数和 次 数3x225ab -bc a 2-3 项数 项 各项次数 最高次数 多项式次数16b ab π-bc a 32-2212+y x 四、拓展思维:师生共同探讨完成书本“挑战自我”.五、小结:(1)这节课,你学到了什么?(2)整式是指什么?(3)单项式、多项式的次数是怎样求的?。
《单项式与多项式》教学设计第一篇:《单项式与多项式》教学设计《单项式与多项式》教案横山中学沈习兵2014.10.14 【教学目标】一、知识与技能:1.了解整式的有关概念,会识别单项式、多项式和整式。
2.能说出一个单项式的系数和次数,多项式的项的系数和次数,以及多项式的项数和次数。
二、过程与方法:在参与对单项式、多项式识别的过程中,培养观察、归纳、概括和语言表达的能力。
三、情感、态度与价值观:通过单项式与多项式有关概念的探究,培养学生发现问题、解决问题的科学思想。
【重点与难点】1.能说出单项式的系数、次数2.能说出多项式每一项的系数、次数,及整个多项式是几次几项式。
【教学过程】2.1 代数式(3、你能举出一些单项式的例子吗?三、问题与思考(1)“9”是不是单项式?“a”是不是单项式?注意:单独一个数或一个字母也是单项式。
(2)是不是单项式?“2x+1”和“a–b” 是不是单项式?都不是单项式,单项式只含有一个乘积运算。
注意:单项式的分母中不含字母,且不含加减运算四、单项式系数与次数1、单项式是由数字因数和字母因数组成,如3ab •2、单项式中的数字因数叫作单项式的系数如:3a2的系数是3,-0.6x2y的系数是-0.63、问:a的系数是多少?-a的系数呢?4、一个单项式中,所有字母的指数的和叫作这个单项式的次数如: 3a2的次数是2,-0.6x2y的次数是35、问:8的次数是多少?五、几点说明:1、单项式的系数必须包括前面的符号2、注意:单项式的系数是1时,1可省略。
单项式的系数是-1时,1可省略,但负号不可省略。
•3、单独一个数字的次数为0 •4、圆周率π是常数,不要把它看成字母5、如果一个单项式的次数为n,我们就把它叫作n次单项式。
如x2y3的次数为5,我们就说x2y3是五次单项式六、大家一起练:• 例1 判断下列各代数式是否是单项式。
如果不是,请简要说明理由;如果是,请指出它的系数与次数:(1)x+1(2) r22(3)1 / x(4)-½ab 解答:(1)不是.因为原代数式中出现了加法运算.(2)是.它的系数是∏,次数是2.(3)不是.因为原代数式是1与x的商.(4)是.它的系数是3x+4(3)b-5 + ab3-a22、已知:3xmy2m-x2y-4是一个六次多项式,m的值为。
单项式与多项式教案第一章:单项式的概念与性质1.1 引入单项式的概念:引导学生通过具体的例子,理解单项式的定义,即数字与字母的乘积。
1.2 掌握单项式的系数:解释单项式中数字因数叫做单项式的系数,并进行相关练习。
1.3 理解单项式的次数:引导学生了解单项式中,所有字母的指数和叫做这个单项式的次数,并进行相关练习。
1.4 探索单项式的性质:通过练习,让学生掌握单项式的大小比较、相等条件等性质。
第二章:多项式的概念与性质2.1 引入多项式的概念:通过具体的例子,让学生理解多项式的定义,即几个单项式的和。
2.2 理解多项式的项:解释多项式中每个单项式叫做多项式的项,并进行相关练习。
2.3 掌握多项式的次数:引导学生了解多项式中,最高次项的次数叫做这个多项式的次数,并进行相关练习。
2.4 探索多项式的性质:通过练习,让学生掌握多项式的相等条件、大小比较等性质。
第三章:单项式与多项式的运算3.1 单项式乘以单项式:引导学生理解单项式乘以单项式的运算规则,并进行相关练习。
3.2 单项式乘以多项式:解释单项式乘以多项式的运算规则,并进行相关练习。
3.3 多项式乘以多项式:引导学生理解多项式乘以多项式的运算规则,并进行相关练习。
3.4 单项式除以单项式:解释单项式除以单项式的运算规则,并进行相关练习。
3.5 多项式除以单项式:引导学生理解多项式除以单项式的运算规则,并进行相关练习。
第四章:单项式与多项式的应用4.1 求解含单项式的方程:通过具体的例子,让学生学会求解含有单项式的方程。
4.2 求解含多项式的方程:引导学生学会求解含有多项式的方程。
4.3 实际问题中的应用:通过实际问题,让学生运用单项式和多项式的知识解决问题。
第五章:单项式与多项式的进一步探讨5.1 同类项的概念:解释同类项的定义,即字母相同且相同字母的指数也相同的项。
5.2 合并同类项:引导学生掌握合并同类项的方法,并进行相关练习。
5.3 单项式的因式分解:解释单项式的因式分解方法,并进行相关练习。
6.1 单项式与多项式教学目标:1.理解整式、单项式、多项式的概念。
2. 能说出一个单项式的系数和次数,多项式的项的系数和次数,以及多项式的项数和次数3.在单项式、多项式概念的形成和应用过程中,培养学生的符号意识、以及观察、归纳、概括和语言表达能力。
重点:单项式的次数和系数,多项式的项数和次数难点:单项式、多项式概念的理解以及怎样找单项式的系数和次数 教学过程一、课前预习(教师寄语:学会学习,从认真预习开始!)回顾旧知:什么是代数式?你能写出几个例子吗?(第五章内容)预习任务见学案二、课内探究 复习引入:1.用代数式填空:(1)边长为x 的正方形的周长 (2)边长为a 的正方体的表面积(3)底面积为s ,高为h 的圆锥的体积(4)拉萨市最近平均每天都是零下5℃,连续a 天的温度和2.观察上面所列的代数式包括那些运算?有何特征?(同学之间交流讨论) 学生展示:含有那些运算?引入新课,展示目标 探究点一 1、单项式概念由 或 的积组成的代数式叫做单项式 练习1 下列式子哪些是单项式? x+yx 1 pr 2-3xyz ﹣32xy 3 27ab ab 272、解剖单项式,例题讲解练习2 完成下列表格屏幕展示注意问题:老师再次强调易错点对单项式作出小结,给出时间掌握后做智力小冲关智力小冲关探究点二多项式:几个的和叫多项式屏幕展示:由有理数式子的两种读法引入多项式,具体讲解多项式的有关知识,边讲解边举例练习:请分别写出下列多项式的项、项数、常数项、次数、多项式是几次几项式3x-7 x2 - 3x+4 b-5 + ab3-a2归纳总结:单项式和多项式统称为三、畅谈收获本节课的目标你达到了吗?预习中的疑惑解决了吗?系数:单项式次数:多项式常数项:次数:四、冲关检测第一关判断:1. 多项式6x3-4x2y+3xy2-y3的项是6x3,4x2y,3xy2,y3。
( )2. πr²的系数是1,次数是3。
()第二关多项式2--4π,它是次项式,最高次项的系数是,常数项是.第三关1.多项式3m3-2m-5+m2的常数项是____, 一次项是_____, 二次项的系数是_。
怀远县新城实验中学
校公开课教学设计
2.1代数式
第4课时单项式与多项式
授课教师:***
授课地点:录播室
授课时间:2016年10月19日
2.1代数式
第4课时单项式与多项式
教材分析:
本节内容主要是学习单项式、单项式的系数、单项式的次数;多项式、多项式的项、多项式的次数等几个概念。
本节属于概念教学课,在设计时力图体现概念形成的过程,即首先给学生以感性材料,让他们观察、比较、分析,找出材料中个体的共同特点,最后进行归纳、抽象概括。
要使学生通过学习能理解这些概念,并会利用所学知识确定单项式的系数和次数,以及多项式的项和次数。
为后面的整式的加减作准备。
学情分析
学生对代数式、字母表示数已有一些认识,本节课主要让学生对单项式进行全面了解,并深入认识单项式的系数、次数。
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。
教学目标:
知识与技能
1.理解单项式的有关概念,会找出单项式的系数,次数。
2.掌握多项式的项数,次数的概念及多项式的命名,并能熟练的说出多
项式的项和次数。
3. 在参与对单项式、多项式识别的过程中进而理解整式的概念. 过程与方法
通过观察、归纳和概括得出单项式的概念,进而得出多项式的概念. 情感,态度与价值观
在平等的教学氛围中,通过学生之间、师生之间的交流、合作与评价,拉近学生之间、师生之间的情感距离. 教学重难点:
1、能说出单项式的系数、次数
2、能说出多项式每一项的系数、次数,及整个多项式是几次几项式。
教学过程
一、 引 入
问题、 观察所列的代数式,它们有什么共同的特点?
4x, 6a 2 , a 3,
-n, vt, , 2
r π
二、新课教学
1、共同点:它们都是由数字与字母的乘积组成的
2、结论:表示数字与字母的乘积的代数式叫做单项式. 特别地,单独的一个数或一个字母是单项式。
如a,-5等。
3,练一练
下列代数式中,哪些是单项式
12-,
a
c b 32,yz x 2, y,xy y x -+-2223,323c ab -,232
3c b a 4单项式的系数与次数
系数:单项式中的数字因数叫做这个单项式的系数。
次数:一个单项式中的所有字母的指数的和叫做这个单项式的次数。
单项式的名称:次数是几就叫几次单项式
-ab 的系数是_-1__,次数是__2__。
h r 312π的系数是_π3
1
_,次数是__3_
注意:单项式系数是1或-1时,”1”可省略不写,但”-1”时.”-”号不可省略. 5练一练 6.多项式:几个单项式的和叫做多项式
8352
-+-x x
(1)每个单项式叫做多项式的项(包括前面的符号),不含字母的项叫做常数项.由几个单项式组成的就叫几项式 (2)次数最高项的次数叫做多项式的次数
8352
-+-x x 名称 二次三项式
练一练
指出下列多项式是几次几项式?并说出它们的常数项?
3
2233)2(32)1(a a a x x +-+
+-π
7单项式和多项式统称为整式 找出下列代数式中哪些是整式? (1)ab a 22-,(2) 21, (3)b a +2,(4)a 45-,(5)a 23,(6)73
1
2-x ,(7)a ,(8)-3x, 三巩固练习 1判断
(1)单项式32n xy -的系数是3
2- ,次数是n+1。
( )
(2)多项式 6x 3-4x 2y+3xy 2-y 3 的项是 6x 3,4x 2y ,3xy 2,y 3 ( ) (3) m 2n 没有系数 ( ) (4) (4) -13是一次一项式。
( )
(5) 322y x π 的系数是 3
2
, ( )
(6)(5)232x 是五次单项式 ( ) 2 填空
(1)若单项式-5x m y 的次数和-2a 2b 2的次数相同,则m=___. (2)如果22x m y 是5次单项式,则m=______ (3)多项式3x 2+2x -5是____次____项式 3选择
(1) 下列代数式中不是单项式的是( ) A -3ab B a
3
- C 2 D 0 (2)下列说法正确的是( )
A a 的指数是0
B a 没有指数
C -5是一次单项式
D - 5是单项式 (3)下列说法中, 正确的是( )
A.单项式322y
x -的系数是-2,次数是3. B 单项式a 的系数是0,次数是0
C,1432
-+-x y x 是二次三项式 D 单项式232ab -的次数是2,系数是2
9
-
四 小结
今天你有什么收获?
五
作业
P67 习题2.1 第6题
整
式
单项式
系数:单项式中的数字因数。
次数:所有字母的指数的和。
多项式
项:式中的每个单项式叫多项式的项。
(其中不含字母的项叫做常数项)
次数:多项式中次数最高的项的次数。