质谱离子源简介
- 格式:ppt
- 大小:2.02 MB
- 文档页数:41
质谱法基本知识(5)—场离子源和场解吸源
场离子源
阴阳极间电压达为10KV,距离约10-4cm,电压梯度达为107~108V·cm-1
偶极矩大和极化率的样品分子与阳极碰撞,电子给阳极,离子被阴极加速而拉出。
~12eV,分子离子峰强度大
阳极前端必须非常尖锐才能达到电离所要求的电压梯度,采用特殊处理的电极,在电极表面制造出一些微探针(<1μm),大量的微碳针电极称为多尖陈列电极。
场离子化是一种温和的技术,产生的碎片很少。
碎片通常是由热分解或电极附近的分子一离子碰撞反应产生的,主要为分子离子和(M +l)离子。
结构分析中,往往最好同时获得场离子化源或化学离解源产生的质谱图和用电子轰击源的质谱图,而获得相对分子质量及分子结构的信息。
场解吸源(field desorption, FD)
类似于场电离源,最弱的电离技术,一般只产生分子离子峰和准分子离子峰。
适合于热不稳定和非挥发性化合物。
激光解吸源(laser desorption,LD)
短周期、强脉冲激光轰击,产生共振吸收获得能量。
低浓度样品分散在液体或固体基质中(摩尔比1:100-50000),而该基质能强烈吸收光,从而使能量间接转移给样品分子,避免样品分子的分解。
生物大分子常用,又称为基质辅助激光解吸源。
目前,气相质谱和液相质谱的联用已经越来越普及。
作为质谱仪中的一个重要组成部分—离子源有哪些种类以及各自不同的用途呢?首先对于气相质谱(GS/MS)来说,主要有电子轰击电离源(EI)、化学电离源(CI)和场致电离源(FI)及场解吸电离源(FD)。
EI是利用一定能量的电子与气相中的样品分子相互作用(轰击),使分子失去电子,电离成离子。
当分子离子具有的剩余能量大于其某些化学键的键能时,分子离子便发生碎裂,生成碎片离子。
其优点在于它是非选择性电离,只要样品能气化都能够离子化,且离子化效率高、灵敏度高;能够提供丰富飞结构信息,是化合物的指纹谱;有庞大的标准谱库供检索。
其缺点在于不适用于难挥发、热不稳定的样品,而且只能检测正离子,不检测负离子。
CI是指引入一定的反应气进入离子化室,反应气在具有一定能量的电子流的作用下电离或裂解,生成的离子和反应气分子进一步反应或和样品分子发生离子分子反应,通过质子交换使样品分子电离。
其优点在于可以通过控制反应,根据离子亲和力和电负性选择不用的反应试剂,用于不同化合物的选择性检测。
其缺点在于也不适用于难挥发和热不稳定样品,谱图重复性不如EI图谱,而且反应试剂容易形成较高的本底,影响检测限。
FI和FD是一种软电离方式,由一个电极和一组聚焦透镜组成,形成高达几千伏的强电场,使气态分子的电子被拉出而电离。
其优点在于几乎没有碎片离子,没有本底,图谱很干净。
缺点在于仅适用于扇形磁场质谱和飞行时间质谱仪,我们常见的四级杆质谱和离子肼质谱都不能配置FI和FD源,而且高压容易产生放电效应,操作也更难一些。
EI源是我们最常见的气质离子源。
对于液相质谱(LC/MS)来说,主要有大气压离子源(API)、快原子轰击源(FAB)和基质辅助激光解析电离源(MALDI)三种电离方式。
API主要给出分子量信息,一定条件下可以提供有限的信息结构,它又包括电喷雾电离(ESI)和大气压化学电离(APCI)。
ESI是指样品溶液从毛细管流出时,在电场及辅助气流的作用下喷成雾状的带电液滴,液滴中溶剂被蒸发,使液滴直径变小,发生“库伦爆炸”,把液滴炸碎,此过程不断重复,形成样品离子。
离子源工作原理引言概述:离子源是一种用于产生离子束的装置,广泛应用于质谱仪、离子注入器等领域。
离子源的工作原理是通过电离原子或者份子,将其转化为带电的离子,并加速形成离子束。
本文将从离子源的工作原理、离子产生、离子加速、束流控制和离子检测等五个大点进行详细阐述。
正文内容:一、离子源的工作原理1.1 离子源的基本原理离子源的基本原理是通过电离技术将中性原子或者份子转化为带电离子。
这一过程可以通过不同的方式实现,如电子轰击电离、化学电离、光电离等。
1.2 离子源的电离方法离子源常用的电离方法包括电子轰击电离、化学电离和光电离。
其中,电子轰击电离是最常用的方法,通过加速高能电子与气体份子碰撞,使其电离产生正离子和自由电子。
二、离子的产生2.1 电子轰击电离电子轰击电离是离子源中最常用的电离方法。
在电子轰击电离过程中,高能电子与气体份子发生碰撞,将其电离产生离子和自由电子。
2.2 化学电离化学电离是通过化学反应将份子转化为离子。
常见的化学电离方法包括化学反应、化学气相离子化等。
2.3 光电离光电离是利用光子与原子或者份子相互作用,将其电离产生离子。
常见的光电离方法包括激光电离、紫外光电离等。
三、离子的加速3.1 电场加速离子源中常使用电场加速离子。
通过施加电场,使离子获得动能,并加速形成离子束。
电场加速可以采用直流电场、交流电场或者射频电场等方式。
3.2 磁场加速磁场加速是离子源中常用的加速方法之一。
通过施加磁场,使离子受到洛伦兹力的作用,获得动能并加速。
四、束流控制4.1 离子束的聚焦离子束的聚焦是离子源中的重要环节。
通过施加适当的聚焦电场或者磁场,使离子束保持一定的直径和形状,以便更好地进行后续的加工和分析。
4.2 离子束的偏转离子束的偏转是为了将离子束引导到所需的位置。
通过施加适当的偏转电场或者磁场,使离子束按照预定的路径进行偏转。
4.3 离子束的调制离子束的调制是为了控制离子束的强度和频率。
通过调节离子源中的参数,如电压、频率等,可以实现对离子束的调制。
DART实时直接分析质谱离子源介绍字体: 小中大|打印|L发布: 2010-8-09 17:45 作者: webmaster 来源: 华质泰科查看: 26088次实时直接分析(Direct Analysis in Real Time)简称DART,是一种热解析和离子化技术。
DART操作简单,样品置放于DART源出口和一台LC-MS质谱仪的离子采样口,便可进行分析。
适用于分析液、固、气态的各类型样品由美国J. Laramee和R. Cody(美JEOL公司)于2005年发明,现由IonSense公司商品化生产、制造和销售。
获得2005年Pittcon大奖。
DART已广泛应用于药物发现与开发(ADME)、食品药品安全控制与检测、司法鉴定、临床检验、材料分析、天然产品品质鉴定、及相关化学和生物化学等领域。
相比于现行通用的液质联用(LC-MS)技术,DART-MS分析将不再需要繁杂的样品制备和耗时的色谱分离。
作为一种“绿色”分析检测技术,DART-MS将不需要化学溶剂的消耗,急剧缩短样品分析周期,和极大地减少对固定资产及人员的投资。
该技术在美欧等国的研究与应用已成燎原之势,并在著名大学(如Purdue,Rice,George Washington,U Maryland)、研究院(如Los Almos NL,NRCC Canada,US Army)、跨国制药公司(如Roche,Merck,Amgen,GSK,Pfizer,Eli Lilly)、国家执法部门(如FBI,FDA,EPA)等相继采用。
DART主要功能DART能在几秒钟内分析存在于气体、液体、固体或材料表面的化合物,从而对样品无损耗定性和定量分析。
通过调节DART的气流温度,可对表面分子进行差异化解析并离子化。
大多数情况下样品再也无需冗繁的样品处理和制备。
对块状样品和形状怪异的固体样本的分析特别有效,再无须关注样本的几何形状。
另外在食品如水果、蔬菜、奶粉、饮料、肉类、水产、农作物等表面的农药和兽药残留;在原料药、API、药片、喷雾剂、针剂、中药等药品制剂内和包装表面的化学成份、分解产物及假性药物;在包装材料、玩具、塑料制品、纸和纤维制品等表面和内里的毒性成分;在沥青、混凝土、玻璃、塑料、人皮肤、食品、衣物及名片和信用卡表面的化学战剂、车间、环境、室内、器皿等现场的气态、液态及固态化合物及污染物,等等,均可进行实时的无接触和无损耗检测。
esi离子源原理ESI离子源(Electrospray Ionization,电喷雾离子源)是现代质谱技术中常用的一种离子化技术。
ESI离子源利用电场力将液相样品引入注射针,经过加压喷雾形成微小液滴,根据荷质比的原理,微小液滴中的离子与电子互相作用生成带电离子。
整个离子化过程在无溶剂气体环境中进行。
ESI离子源的出现,大大扩展了质谱分析的应用范围,为生物学、化学、药物学等领域研究提供了有力工具。
ESI离子源的原理可以分步骤阐述如下:1. 液相样品进入注射针ESI离子源中,液相样品经过预处理后,进入比较细的无菌注射针中,占据针头内部的空洞。
2. 注射针喷雾液相样品受到加压作用,在注射针的一端形成微小的液滴或极细的液直径范围从1-10微米。
这是ESI离子源实现电喷雾离子化的第一步,也是最基础的一步。
3. 液滴中的离子和电子相互作用在扩散和热力学均衡的作用下,液滴中的离子和电子相互作用,形成稳定的带电离子复合物。
4. 带电离子复合物进入进样锥离子化复合物进入进样锥,保持液相态,其质谱扫描时即可进行质谱分析。
5. 离子分离及检测在经过进样锥并进入四级杆质谱仪后,离子被进行分离及检测,产生质谱图谱,从而得出样品的成分及聚合度等信息。
综上所述,ESI离子源原理是一个复杂的过程,它采用注射针、电压源和大气压下的微滴技术,使样品分子在无溶剂气体环境下发生变化,转化成离子分子,从而实现对分析物成分及性质的测定。
ESI离子源不仅可以离子化生物大分子,如蛋白质、核酸、多肽等,还可以离子化溶剂中的小分子,为质谱分析提供了有力的工具。
ESI离子源的应用已经得到了广泛的应用,这为化学、生物、药物研究等领域提供了强有力的技术支持。
质谱仪离子源安全操作及保养规程一、前言质谱仪作为分析化学中不可或缺的仪器,其安全性和可靠性十分重要。
作为质谱仪中最重要的部分之一,离子源的安全操作和保养是确保实验结果准确、仪器长期使用的重要保障。
本文档旨在系统的介绍如何安全操作和保养质谱仪离子源。
二、离子源的类型目前常见的离子源类型包括:电子轰击离子源(EI),化学电离离子源(CI),质子转移反应离子源(PRM),电喷雾离子源(ESI),大气压化学电离离子源(APCI),表面电离离子源(MALDI)等。
在实验中应选择合适的离子源类型,避免因选择不当带来的安全隐患。
三、离子源的安全操作离子源应在低压及无电流状态下进行安装和拆卸。
操作前应先关闭离子源的内外两部分的高压。
等到高压导通电路被断开过一段时间之后,才可开始操作。
在操作过程中,应注意不要在离子源上受力过大的情况,防止引起离子源的气密性损坏和仪器的安全隐患。
此外,还应注意离子源的电路、加热器和蒸发器部分与离子源主体的连接处,防止由于未正确连接导致的短路和高压引起的安全隐患。
离子源的保养需要时常进行和规范的维护,严格按照质谱仪的维护计划和制定的保养规程进行操作,以最大限度的保障离子源的稳定和可靠性。
1.每个工作日的结束之后,应清洁离子源的表面,防止在仪器静止不用过程中钝化层对离子源的影响。
对于使用过的离子源,还应进行清洗工作,以防样品分子残留对离子源衍生物产生欠影响。
2.应定期检查离子源的显微镜和调节仪表,并进行适当的维护。
离子源的调节一般应在周日进行维护,定期清洗属于基础的离子源维护工作。
3.离子源过热和超压都会加速离子源的寿命损耗,请尽量遵守并注意离子源的使用规范。
五、离子源的更换随着质谱仪的使用和时间的推移,离子源可能需要更换。
当出现离子源不能工作或者出现质量信号不稳定的现象时,就需要对离子源进行更换。
更换离子源前,应先设定好感应板、涂覆退火和过程中对离子源的可能受到一定影响的部分进行一定的维护。
质谱离子源液质联用和气质联用气质联用仪(GC-MS):适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图,可与标准谱库对比。
GC-MS一般采用EI和CI离子源。
EI:电子电离源,最常用的气相离子源,有标准谱库CI:化学电离源,可获得准分子离子。
PCI,NCI液质联用(LC-MS):不挥发性化合物分析测定,极性化合物的分析测定,热不稳定化合物的分析测定,大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定;液质的离子源种类比较多,这里只列主要的几个。
大气压电离(API)(包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI)ESI 为电喷雾,即样品先带电再喷雾,带电液滴在去溶剂化过程中形成样品离子,从而被检测,对于极性大的样品效果好一些;APCI 为大气压力化学电离源,样品先形成雾,然后电晕放电针对其放电,在高压电弧中,样品被电离,然后去溶剂化形成离子,最后检测,对极性小的样品效果较好。
APPI:大气压光电离源,适用于弱极性的化合物,如多环芳烃等ESI 的软电离程度较APCI 的还小,但其应用范围较APCI 的大,只有少部分ESI 做不出,可以用APCI 辅助解决问题,但是APCI还是不能解决所有ESI 解决不了的问题,一般用ESI 和APPI 搭配使用比ESI 和APCI 的应用范围更广一些。
电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。
电喷雾电离源的最大特点是容易形成多电荷离子。
这样,一个分子量为10000Da的分子若带有10个电荷,则其质荷比只有1000Da,进入了一般质谱仪可以分析的范围之内。
根据这一特点,目前采用电喷雾电离,可以测量分子量在300000Da 以上的蛋白质。
电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。
离子源的主要作用及分类一、引言离子源是一种常见的实验室仪器,其主要作用是将固体样品中的分子转化为离子,并将其注入到质谱仪或其他分析设备中进行分析。
离子源在生物医学、环境科学、材料科学等领域都有广泛的应用。
二、离子源的分类离子源根据其工作原理和使用场景可以分为多种类型,常见的离子源包括电喷雾离子源(ESI)、大气压化学电离(APCI)、热喷雾(TH)和电喷雾静电陷阱(ESI-IT)等。
1. 电喷雾离子源(ESI)电喷雾是一种基于液滴形成和蒸发的方法,通过高压电场将样品溶液中的分子转化为带有电荷的气态粒子。
ESI适用于生物大分子如蛋白质、核酸等的质谱分析,具有高灵敏度和高选择性。
2. 大气压化学电离(APCI)APCI利用高能量反应将样品中的分子转化为带正负荷的气态粒子,适用于较大分子量的化合物,如脂质类物质、天然产物等。
APCI的操作简单,而且对样品的溶剂选择不敏感。
3. 热喷雾(TH)TH离子源是一种基于热蒸发的方法,将样品转化为气态粒子。
TH适用于易挥发性的小分子化合物,如药物、农药等,具有高灵敏度和高分辨率。
4. 电喷雾静电陷阱(ESI-IT)ESI-IT是一种结合了ESI和离子陷阱质谱仪技术的离子源。
它可以在不改变分析条件的情况下,对复杂样品进行多级质谱分析,并具有高灵敏度和高选择性。
三、离子源的作用离子源作为质谱仪中最核心的组成部分之一,其主要作用是将样品中的分子转化为带电粒子,并将其注入到质谱仪中进行分析。
离子源在样品预处理、定量分析、结构鉴定等方面都有重要作用。
1. 样品预处理离子源可以将样品中复杂混杂的化合物转化为单个带电粒子进行分析,避免了在样品处理过程中对化合物的破坏和失真。
2. 定量分析离子源可以将样品中的化合物转化为带电粒子,并通过质谱仪进行定量分析。
通过离子源的选择,可以实现对不同类型化合物的定量分析。
3. 结构鉴定离子源可以将样品中的化合物转化为带电粒子,并通过质谱仪进行结构鉴定。