计算机组成原理-数据的表示和运算(下)
- 格式:pptx
- 大小:3.97 MB
- 文档页数:57
第2章数据的表示和运算主要内容:(一)数据信息的表示1.数据的表示2.真值和机器数(二)定点数的表示和运算1.定点数的表示:无符号数的表示;有符号数的表示。
2.定点数的运算:定点数的位移运算;原码定点数的加/减运算;补码定点数的加/减运算;定点数的乘/除运算;溢出概念和判别方法。
(三)浮点数的表示和运算1.浮点数的表示:浮点数的表示范围;IEEE754标准2.浮点数的加/减运算(四)算术逻辑单元ALU1.串行加法器和并行加法器2.算术逻辑单元ALU的功能和机构2.3 浮点数的表示和运算2.3.1 浮点数的表示(1)浮点数的表示范围•浮点数是指小数点位置可浮动的数据,通常以下式表示:N=M·RE其中,N为浮点数,M为尾数,E为阶码,R称为“阶的基数(底)”,而且R为一常数,一般为2、8或16。
在一台计算机中,所有数据的R都是相同的,于是不需要在每个数据中表示出来。
浮点数的机内表示浮点数真值:N=M ×2E浮点数的一般机器格式:数符阶符阶码值 . 尾数值1位1位n位m位•Ms是尾数的符号位,设置在最高位上。
•E为阶码,有n+1位,一般为整数,其中有一位符号位EJ,设置在E的最高位上,用来表示正阶或负阶。
•M为尾数,有m位,为一个定点小数。
Ms=0,表示正号,Ms=1,表示负。
•为了保证数据精度,尾数通常用规格化形式表示:当R=2,且尾数值不为0时,其绝对值大于或等于0.5。
对非规格化浮点数,通过将尾数左移或右移,并修改阶码值使之满足规格化要求。
浮点数的机内表示阶码通常为定点整数,补码或移码表示。
其位数决定数值范围。
阶符表示数的大小。
尾数通常为定点小数,原码或补码表示。
其位数决定数的精度。
数符表示数的正负。
浮点数的规格化字长固定的情况下提高表示精度的措施:•增加尾数位数(但数值范围减小)•采用浮点规格化形式尾数规格化:1/2≤M <1 最高有效位绝对值为1浮点数规格化方法:调整阶码使尾数满足下列关系:•尾数为原码表示时,无论正负应满足1/2 ≤M <1即:小数点后的第一位数一定要为1。
计算机组成原理第⼆章数据的表⽰和运算第⼆章数据的表⽰和运算数制与编码进制转换使⽤⼆进制的原因⼆进制与⼋进制、⼗六进制的转换各种进制的书写⽅式⼗进制转换为任意进制整数部分⼗进制转换⼆进制如(75)10752=37……1 K372=18……1 K1182=9……0 K292=4……1 K342=2……0 K422=1……0 K512=0……1 K6K0K1K2K3K4K5K6=1101001⼩数部分⼗进制转换⼆进制如(75.3)10⼩数部分=0.30.3∗2=0.6=0+0.6 K−10.6∗2=1.2=1+0.2 K−20.2∗2=0.4=0+0.4 K−30.4∗2=0.8=0+0.8 K−40.8∗2=1.6=1+0.6 K−5……0.3D=0.01001……B⼩数⽆法准确表述⼗进制转换⼆进制(拼凑法)总结Processing math: 52%BCD码(Binary-Coded Decimal)修正数据(9+9)10(9)10→(1001)2(9+9)2=100110011001+1001−−−−1001010010超出了8421码中的1010−1111+(6)10⇔+(0110)2修正10010+0110−−−−11000相加结果在合法范围(1010~1111)内,不需要修正其他编码总结字符与字符串ASCII码可印刷字符:32~126其余为控制、通信字符⼤写字母:65(0100 0001)~ 90(0101 1010)⼩写字母:97(0110 0001)~ 122(0111 1010)汉字的表⽰和编码输⼊:输⼊编码输出:汉字字形码字符串⼤端模式&⼩端模式总结奇偶校验码校验原理当d=1时,⽆检错能⼒;当d=2时,有检错能⼒;当d≥3时,若设计合理,可能具有检错纠错能⼒(海明码)奇偶校验码例题奇校验:(1)1001101 (0)1010111偶校验:(0)1001101 (1)1010111只能发现数据代码中奇数位的出错情况,但不能纠错总结海明码简单思路求解步骤总结循环冗余校验码基本思想校验步骤(模⼆除)G(x)=x3+x2+1=1∗x3+1∗x2+0∗x1+1∗x0→1101110101−−−−−−−−−−−−−−−−−−−1101 |101001000110111101101−−−−−−−−−−−−−−−−−−−01110000−−−−−−−−−−−−−−−−−−−11101101−−−−−−−−−−−−−−−−−−−01100000−−−−−−−−−−−−−−−−−−−11001101−−−−−−−−−−−−−−−−−−−001→校验位对应的CRC码为101001 001s余数为001、010时并不能确定是哪⼀位出错了此时是信息位过多,降低信息位就可以解决问题K个信息位,R个校验位,若⽣成多项式选择得当,且2R≥K+R+1,则CRC码可纠正1位错总结定点数的表⽰⽆符号数通常只有⽆符号整数,⽽没有⽆符号⼩数1001100B=1∗27+1∗26+0∗25+0∗24+1∗23+1∗22+0∗21+0∗20=156D有符号数的定点表⽰原码⽤尾数表⽰真值部分的绝对值,符号位“0/1”对应“正/负”若机器字长为n+1位,则尾数占n位反码若符号位为0,则反码与原码相同若符号位为1,则数值位全部取反反码是原码转变为补码的⼀个中间状态补码正数的补码=原码负数的补码=反码末位+1(要考虑进位)设机器字长为8位[+0]原=0000 0000[+0]反=0000 0000[+0]补=0000 0000[−0]原=1000 0000[−0]反=1111 1111[−0]补=1 0000 0000由于机器字长为8位,进位丢弃[−0]补=0000 0000逆向将负数补码转回原码的⽅法相同:尾数取反,末尾+1[−19]原=1001 0011[−19]反=1110 1100[−19]补=1110 1101[−19]原=1001 0010+0000 0001=1001 0011移码补码的基础上将符号位取反移码只能⽤于表⽰整数⼏种码表⽰定点整数练习假设机器字长为8位定点整数x=50[+50]原=0011 0010[+50]反=0011 0010[+50]补=0011 0010[+50]移=1011 0010定点整数x=−100[−100]原=1110 0100[−100]反=1001 1011[−100]补=1001 1100[−100]移=0001 1110知识回顾各种码的作⽤⽤加法代替减法表盘为例10+9=1919%12=7相当于求余数模运算的性质可以说在模12的情况下上述数字等价其中-3和9互为补数,⼆者绝对值之和等于模\begin{align} 有符号数&~~~~~~~~~~~~~~~~~~~⽆符号数\\ 14~~~~~~&0000~1110~~~~~~~~14\\ -14~~~+&1000~1110~~~~~~142\\ -----&-----------\\0~~~~~~&1001~1100~~~~~~156\\ &模-a的绝对值=a的补数\\ &0000~1110\\ -&0000~1110\\ -----&-----------\\ &0000~0000\\ &\\ &模2^8-0000~1110\\ &1~0000~0000\\ -&~~~0000~1110\\ -----&-----------\\ &~~~1111~0010\\ -----&-----------\\ &~~~0000~1110\\ +&~~~1111~0010\\ -----&-----------\\ &~1~0000~0000\\ \end{align}\begin{align} &求-66的补码\\ &[-66]_{原}=1100~0010\\ &[-66]_{反}=1011~1101\\ &[-66]_{补}=1011~1110\\ &[+88]_{原}=0101~1000\\ &1101~1000\\ +&0011~1110\\ --&-----------------\\ 1~&0001~0110~~~~~~22D\\ \end{align}移位运算算术移位原码的算术移位\begin{align} &[+20]_{原}=0001~0100\\ &{左移⼀位}=0010~1000=+40D\\ \end{align}反码的算数移位补码的算数移位\begin{align} &[-20]_{原}=1001~0100\\ &[-20]_{反}=1110~1011\\ &[-20]_{补}=1110~1100\\ &左移⼀位=1010~1000\\ &[-20]_{原}=1001~0100\\ &[-20]_{反}=1110~1011\\ &[-20]_{补}=1110~1100\\ &右移⼀位=1111~0110\\ \end{align}逻辑移位(针对⽆符号数)应⽤举例循环移位总结加减运算原码的加减运算补码的加减运算\begin{align} &A=15,B=-24,C=124,求[A+C]_{补}[B-C]_{补}\\ &[A]_{原}=0000~1111\\ &[A]_{反}=0000~1111\\ &[A]_{补}=0000~1111\\ &[B]_{原}=1001~1000\\ &[B]_{反}=1110~0111\\ & [B]_{补}=1110~1000\\ &[C]_{原}=0111~1100\\ &[C]_{反}=0111~1100\\ &[C]_{补}=0111~1100\\ &[A+C]_{补}\\ &0000~1111\\ +&0111~1100\\ ----&------------\\ &1000~1011\\&1111~0100\\ &1111~0101~~~~~~-117D\\ &[B-C]_{补}\\ 1&~0000~0000\\ -&~0111~1100\\ ----&-------------\\ &~1000~0100\\ +&~1110~1000\\ ----&-------------\\ &~0110~1100\\&~0110~1100\\ &~0110~1100~~~~~~+108D\\ \end{align}出现了溢出溢出判断⼀位符号逻辑表达式进位判断双符号位符号扩展整数⼩数总结乘法运算⼿算乘法(⼗进制)⼿算乘法(⼆进制)原码⼀位乘法实现⽅法:先加法再移位,重复n次(0)乘法进⾏前ACC置0(1)第⼀步加法加法移位(2)第⼆步加法加法移位(3)第三步加法加法移位(4)第四步加法加法移位乘法结果修正符号位原码⼀位乘法(⼿算模拟)\begin{align} &⾼位部分积~~~~ ~~~~低位部分积~~~~ ~~~~ ~~~~说明\\ &~~00.0000~~~~ ~~~~ ~~~~ ~~~~ 101\underline{1}|~~~~ ~~~~ 低位=1~~~~ +|x|\\ +|x|&~~00.1101~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~|\\ ----&---------------------\\ &~~00.1101\\ 右移&~~00.0110~~~~ ~~~~ ~~~~ ~~~~ 110\underline{1}|1~~~~ ~~~ 低位=1~~~~ +|x|\\ +|x|&~~00.1101~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~|\\ ----&---------------------\\ &~~01.0011\\ 右移&~~00.1001~~~~ ~~~~ ~~~~ ~~~~ 111\underline{0}|11~~ ~~~低位=0~~~~ +0 \\ +&~~00.0000\\ ----&---------------------\\&~~00.1001\\ 右移&~~00.0100~~~~ ~~~~ ~~~~ ~~~~ 111\underline{1}|011 ~~~低位=1~~~~ +|x| \\ +|x|&~~00.1101\\ ----&---------------------\\ &~~01.0001\\ 右移&~~00.1000~~~~ ~~~~ ~~~~ ~~~~ 111\underline{1}|1011 ~右移部分积和乘数全部移出 \\ &|x|=00.10001111\\ &x*y=-0.10001111\\ \end{align}补码的⼀位乘法辅助位⼿算模拟\begin{align} &⾼位部分积~~~~ ~~~~低位部分积~~~~ ~~~~ ~~~~说明\\ &~~00.0000~~~~ ~~~~ ~~~~ 0.101\underline{1}|0~~~~ ~~~~ ~~~~起始情况\\ +[-x]_补&~~00.1101~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ Y_4Y_5=10,Y_5-Y_4=-1,+[-x]_{补}\\ ----&-----------------------------\\ &~~00.1101\\ 右移&~~00.0110~~~~ ~~~~ ~~~~10.10\underline{1}|10~~~~ ~~~~ ~~~~右移部分积和乘数\\ +0&~~00.0000~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ Y_4Y_5=10,Y_5-Y_4=0,+0\\ ----&-----------------------------\\ &~~00.0110\\ 右移&~~00.0011~~~~ ~~~~ ~~~~ 010.1\underline{0}|110~~~~ ~~~~ ~~~~右移部分积和乘数\\ +[x]_补&~~11.0011~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~~~~~ ~~~~ Y_4Y_5=01,Y_5-Y_4=1,+[x]_补\\ ----&-----------------------------\\ &~~11.0110\\ 右移&~~11.1011~~~~ ~~~~ ~~~~ 0010.\underline{1}|0110~~~~ ~~~~ ~~~~右移部分积和乘数\\ +[-x]_补&~~00.1101~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ Y_4Y_5=10,Y_5-Y_4=-1,+[-x]_补\\ ----&-----------------------------\\ &~~00.1000\\ 右移&~~00.0100~~~~~~~~ ~~~~ \underline{\underline{0001}}\underline{0}.|10110~~~~ ~~~~ ~~~~右移部分积和乘数\\ +[x]_补&~~11.0011~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~Y_4Y_5=01,Y_5-Y_4=1,+[x]_补\\ ----&-----------------------------\\ &~~11.0111\\ &[x*y]_补=11.0111~0001\\ &x*y=-0.1000~1111\\ \end{align}除法运算⼿算除法(⼗进制)⼿算除法(⼆进制)恢复余数法原码除法:恢复余数法(0)初始(1)第⼀步上商求余数判断上商是否正确01011上商后得11110,相减结果为负,应上商0修正逻辑左移(2)第⼆步上商求余数判断上商是否正确相减结果为正数,上商正确逻辑左移(3)第三步上商求余数判断上商是否正确上商⽆误逻辑左移(4)第四步上商求余数判断上商是否正确相减结果⼩于0,上商有误修正逻辑左移(5)第五步:最后⼀步除法上商&求余数判断上商是否正确最后⼀步除法,如果上商求余数结果⼩于0.还需要继续恢复余数(6)最后⼀步\begin{align} &余数=ACC*2^{-n}\\ \end{align}原码除法(⼿算)加减交替法默认规定被除数要⼩于除数,否则硬件电路⽆法运⾏,如果被除数⼤于除数,商的结果为⼤于1的数将⽆法表⽰通过第⼀步的商来判断被除数与除数的⼤⼩关系第⼀步商的结果⼀定为负值,如果为正值说明被除数⽐除数⼤,硬件电路会⽴即停⽌运算补码除法加减交替法总结C语⾔中的强制类型转换数据的存储和排列⼤⼩端模式边界对齐浮点数的表⽰浮点数尾数的规格化左规&右规规格化浮点数的特点总结IEEE754 浮点数标准\begin{align} &IEEE754规定偏置值=2^{n-1}\\ \end{align}IEEE 754 标准\begin{align} &(-0.75)_{10}=(-0.11)_2=(-1.1)*2^{-1}\\ &数符=1\\ &尾数部分=.1000~0000……(隐含最⾼位1)\\ &阶码真值=-1\\ &单精度浮点型偏移量=127D\\ &移码=阶码真值+偏移量=-1+111~1111=0111~1110(凑⾜8位)\\ \end{align}总结浮点数的运算浮点数的加减运算\begin{align} &(0)转换格式\\ &5D=101B,\frac{1}{256}=2^{-8},X=-101*2^-8=-0.101*2^{-5}=-0.101*2^{-101}\\ &59D=111011,\frac{1}{1024}=2^{-10},Y=111011*2^{-10}=0.111011*2^{-4}=0.111011*2^{-100}\\ &X: &[阶码]_{原}=-101\\ &[阶码]_{补}=1011\\ &阶码双符号位补码:11011\\ &[尾数]_{原}=-0.101\\ &[尾数]_{补}=1.011\\ &尾数双符号位补码:11.011\\&X=11011,11.011000000\\ &Y: &[阶码]_{原}=-100\\ &[阶码]_{补}=1100\\ &阶码双符号位补码:11100\\ &[尾数]_{原}=0.111011\\ &[尾数]_{补}=0.111011\\ &尾数双符号位补码:00.111011\\ &X=11100,00.111011000\\ &浮点数加减法运算步骤\\ &(1)对阶\\ &⼩阶向⼤阶看齐,尾数每右移⼀位,阶码+1\\ &[1]求阶差:[\Delta E]_补=||E_X|_原+|E_Y|_补|=11011+00100=11111\\ &\Delta=-1\\ &[2]对阶:X:11011,11.011000000\rightarrow 111011,11.1011000000\\ &X=-0.0101*2^{-100}\\ &(2)尾数减法\\ &-Y=11100,11.000101000\\ &11011,11.011000000\\ +&11100,11.000101000\\ ---&----------------------------\\ &10.110001000\\ &X_Y=11100,10.110001000\\ &(3)规格化\\&X_Y=11100,10.110001000\rightarrow11101,011000100\\ &(4)舍⼊ \\ &⽆需舍⼊\\ &(5)判断溢出\\ &常阶码,⽆溢出,结果真值为2^{-3}*(-0.1001111)_2 \end{align}舍⼊强制类型转换总结加法器设计算术逻辑单元ALU机器字长=ALU⼀次可以处理的数据长度基本逻辑运算⽤门电路求偶校验位⼀位全加器串⾏加法器并⾏加法器总结加法器、ALU的改进并⾏加法器的优化组内并⾏&串⾏ALU芯⽚优化。
计算机专业基础综合计算机组成原理(数据的表示和运算)-试卷1(总分:76.00,做题时间:90分钟)一、单项选择题(总题数:31,分数:62.00)1.单项选择题1-40小题。
下列每题给出的四个选项中,只有一个选项是最符合题目要求的。
(分数:2.00)__________________________________________________________________________________________ 解析:2.若用二进制数表示十进制数0到999 999,则最少需要的二进制数的位数是( )。
(分数:2.00)A.6B.16C.20 √D.100 000解析:解析:如果用二进制表示0~999 999(<2 20 )则需要20位。
3.在补码加法运算中,产生溢出的情况是( )。
I.两个操作数的符号位相同,运算时采用单符号位,结果的符号位与操作数相同Ⅱ.两个操作数的符号位相同,运算时采用单符号位,结果的符号位与操作数不同Ⅲ.运算时采用单符号位,结果的符号位和最高数位不同时产生进位Ⅳ.运算时采用单符号位,结果的符号位和最高数位相同时产生进位Ⅴ.运算时采用双符号位,运算结果的两个符号位相同Ⅵ.运算时采用双符号位,运算结果的两个符号位不同(分数:2.00)A.I,Ⅲ,ⅤB.Ⅱ,Ⅳ,ⅥC.Ⅱ,Ⅲ,Ⅵ√D.I,Ⅲ,Ⅵ解析:解析:常用的溢出判断方法主要有三种:采用一个符号位、采用进位位和采用变形补码。
采用一个符号位的溢出条件为:结果的符号位与操作数符号位不同。
采用进位位的溢出条件为:结果的符号位和最高数位不同时产生进位。
采用双符号位(变形补码)的溢出条件为:运算结果的两个符号位不同。
4.计算机中常采用下列几种编码表示数据,其中,±0编码相同的是( )。
I.原码Ⅱ.反码Ⅲ.补码Ⅳ.移码(分数:2.00)A.I和ⅢB.Ⅱ和ⅢC.Ⅲ和Ⅳ√D.I和Ⅳ解析:解析:假设字长为8位,[+0] 原=00000000,[一0] 原=10000000;[+0] 反=00000000,[一0] 反=11111111;[+0] 补 =00000000,[一0] 补 =00000000;[+0] 移 =10000000,[一0] 移 =10000000。
计算机专业基础综合计算机组成原理(数据的表示和运算)历年真题试卷汇编2(总分:102.00,做题时间:90分钟)一、单项选择题(总题数:37,分数:86.00)1.下列数中最大的是____。
【中南大学1998年】A.(1100lOl0)2B.(102)8C.(E9)16 √D.(121)3考查进位计数制及其相互转换。
本题将B、C选项改写为二进制表示,可更快找到最大数。
2.下列数中最小的是____。
【北京邮电大学2002年】A.(101001)2B.(52)8C.(101001)BcD √D.(233)16考查进位计数制及其相互转换。
C选项补齐为00101001,即为十进制数29,为最小数。
3.把十进制数172转换为八进制数和十六进制数分别是____。
【中南大学1998年】A.(543),(AC)B.(543),(AB)C.(254),(AC) √D.(253),(AC)考查不同进位计数制之间的转换。
十进制数172表示成二进制为10101100。
转换为八进制时,从最低位每3位对应一位八进制,则得(254)。
转换为十六进制时,从最低位每4位对应一位十六进制,则得(AC)。
4.下列____种说法有误差。
【华中师范大学1997年】A.任何二进制整数都可用十进制表示B.任何二进制小数都可用十进制表示C.任何十进制整数都可用二进制表示D.任何十进制小数都可用二进制表示√考查二进制与十进制的转换。
计算机中,小数的表示是离散的,并不是所有十进制小数都可用二进制表示。
5.下列____是不合法的BCD码。
【哈尔滨工程大学2003年】A.1111001B.11010110 √C.100D.10000101考查BCD码。
BCD码中,1010~1111为冗余编码,故B选项为不合法的BcD码。
6.余3编码是____。
【华中科技大学2002年】A.字符编码B.有权编码C.无权编码√D.汉字编码考查余3码。
余3码是一种无权码,是在8421码的基础上加上(0011) 2形成的,因每个数都多余“3”,故称余3码。
计算机专业基础综合计算机组成原理(数据的表示和运算)历年真题试卷汇编2(总分:102.00,做题时间:90分钟)一、单项选择题(总题数:37,分数:86.00)1.下列数中最大的是____。
【中南大学1998年】(分数:2.00)A.(1100lOl0)2B.(102)8C.(E9)16 √D.(121)3解析:解析:考查进位计数制及其相互转换。
本题将B、C选项改写为二进制表示,可更快找到最大数。
2.下列数中最小的是____。
【北京邮电大学2002年】(分数:2.00)A.(101001)2B.(52)8C.(101001)BcD √D.(233)16解析:解析:考查进位计数制及其相互转换。
C选项补齐为00101001,即为十进制数29,为最小数。
3.把十进制数172转换为八进制数和十六进制数分别是____。
【中南大学1998年】(分数:2.00)A.(543),(AC)B.(543),(AB)C.(254),(AC) √D.(253),(AC)解析:解析:考查不同进位计数制之间的转换。
十进制数172表示成二进制为10101100。
转换为八进制时,从最低位每3位对应一位八进制,则得(254)。
转换为十六进制时,从最低位每4位对应一位十六进制,则得(AC)。
4.下列____种说法有误差。
【华中师范大学1997年】(分数:2.00)A.任何二进制整数都可用十进制表示B.任何二进制小数都可用十进制表示C.任何十进制整数都可用二进制表示D.任何十进制小数都可用二进制表示√解析:解析:考查二进制与十进制的转换。
计算机中,小数的表示是离散的,并不是所有十进制小数都可用二进制表示。
5.下列____是不合法的BCD码。
【哈尔滨工程大学2003年】(分数:2.00)A.1111001B.11010110 √C.100D.10000101解析:解析:考查BCD码。
BCD码中,1010~1111为冗余编码,故B选项为不合法的BcD码。
2024系统架构设计师知识点一、计算机基础。
1. 计算机组成原理。
- 数据的表示和运算(二进制、十六进制等数制转换,原码、补码、反码)- 计算机硬件系统结构(CPU、内存、硬盘、I/O设备等组件的功能和交互)- 指令系统(指令格式、寻址方式等)- 中央处理器(CPU的组成结构,如控制器、运算器,CPU的性能指标如主频、缓存等)2. 操作系统。
- 操作系统的类型(批处理、分时、实时、网络、分布式操作系统等)- 操作系统的功能(进程管理、内存管理、文件管理、设备管理)- 进程与线程(进程的概念、状态转换,线程的概念、与进程的区别和联系,线程同步与互斥机制如信号量、互斥锁等)- 内存管理技术(分区存储管理、页式存储管理、段式存储管理、段页式存储管理等)3. 计算机网络。
- 网络体系结构(OSI七层模型和TCP/IP四层模型的层次结构、各层功能和协议)- 网络设备(路由器、交换机、防火墙等设备的功能和工作原理)- 网络协议(IP协议、TCP协议、UDP协议、HTTP协议、FTP协议等的特点、报文格式和应用场景)- 网络安全(加密技术如对称加密、非对称加密,数字签名、认证技术、防火墙技术、入侵检测技术等)二、系统架构设计基础。
1. 软件架构风格。
- 分层架构(各层的职责、优点和应用场景)- 客户端 - 服务器架构(C/S架构的特点、通信方式、适用场景)- 浏览器 - 服务器架构(B/S架构的特点、与C/S架构的比较、适用场景)- 微服务架构(微服务的概念、特点、拆分原则、服务治理等)- 事件驱动架构(事件的产生、传播和处理机制,事件源、事件处理器等概念)2. 软件设计模式。
- 创建型模式(单例模式、工厂模式、抽象工厂模式、建造者模式、原型模式的结构、实现和应用场景)- 结构型模式(代理模式、适配器模式、装饰器模式、桥接模式、组合模式、外观模式、享元模式的结构、实现和应用场景)- 行为型模式(观察者模式、策略模式、模板方法模式、命令模式、状态模式、职责链模式、中介者模式、迭代器模式、访问者模式的结构、实现和应用场景)3. 系统可靠性与可用性设计。