实验3 钢中带状组织、魏氏组织、游离渗碳体的组织观察与检验
- 格式:ppt
- 大小:5.42 MB
- 文档页数:26
实验三碳钢的非平衡组织及常用金属材料显微组织观察实验目的概述实验内容实验方法实验报告思考题一、实验目的1. 观察碳钢经不同热处理后的显微组织。
2. 熟悉碳钢几种典型热处理组织——M、T、S、M回火、T回火、S回火等组织的形态及特征。
3. 熟悉铸铁和几种常用合金钢、有色金属的显微组织。
4. 了解上述材料的组织特征、性能特点及其主要应用。
TOP二、概述1. 碳钢热处理后的显微组织碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是不平衡组织。
因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。
为了简便起见,用C曲线来分析共析钢过冷奥氏体在不同温度等温转变的组织及性能(见表3-1)。
在缓慢冷时(相当于炉冷,见图2-3中的V1)应得到100%的珠光体;当冷却速度增大到V2。
时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到V3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至V4、V5,(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体。
其中与C曲线鼻尖相切的冷却速度(V4)称为淬火的临界冷却速度。
转变类型组织名称形成温度范围/℃显微组织特征硬度(HRC)珠光体型相变珠光体(P)>650在400~500X金相显微镜下可以观察到铁索体和渗碳体的片层状组织~20(HBl80~200)索氏体(S)600~650在800一]000X以上的显微镜下才能分清片层状特征,在低倍下片层模糊不清25~35屈氏体(T)550~600用光学显微镜观察时呈黑色团状组织,只有在电子显徽镜(5000~15000X)下才能看出片层状35—40贝氏体型相变上贝氏体(B上)350~550在金相显微镜下呈暗灰色的羽毛状特征40—48下贝氏体(BT)230~350在金相显微镜下呈黑色针叶状特征48~58马氏体型相变马氏体(M)<230在正常淬火温度下呈细针状马氏体(隐晶马氏体),过热淬火时则呈粗大片状马氏体60~65亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,当奥氏体缓慢冷却时(相当于炉冷,如图2-3中V1:),转变产物接近平衡组织,即珠光体和铁素体。
金相浅析及完整检验标准金相金属或合金内部结构指金属或合金的化学成分以及各种成分在合金内部的物理状态和化学状态。
金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。
广义的金相组织是指两种或两种以上的物质在微观状态下的混合状态以及相互作用状况。
金相组织金属材料的内部结构,只有在显微镜下才能观察到。
在显微镜下看到的内部组织结构称为显微组织或金相组织。
钢材常见的金相组织有:铁素体、奥氏体、渗碳体、珠光体等金相显微镜金相显微镜是将光学显微镜技术、光电转换技术、计算机图像处理技术完美地结合在一起而开发研制成的高科技产品,可以在计算机上很方便地观察金相图像,从而对金相图谱进行分析,评级等以及对图片进行输出、打印。
众所周知,合金的成分、热处理工艺、冷热加工工艺直接影响金属材料的内部组织、结构的变化,从而使机件的机械性能发生变化。
因此用金相显微镜来观察检验分析金属内部的组织结构是工业生产中的一种重要手段。
金相显微镜主要由光学系统、照明系统、机械系统、附件装置(包括摄影或其它如显微硬度等装置)组成。
根据金属样品表面上不同组织组成物的光反射特征,用显微镜在可见光范围内对这些组织组成物进行光学研究并定性和定量描述。
它可显示500~0.2m尺度内的金属组织特征。
早在1841年,俄国人(п.п.Ансов)就在放大镜下研究了大马士革钢剑上的花纹。
至1863年,英国人(H.C.Sorby)把岩相学的方法,包括试样的制备、抛光和腐刻等技术移植到钢铁研究,发展了金相技术,后来还拍出一批低放大倍数的和其他组织的金相照片。
索比和他的同代人德国人(A.Martens)及法国人(F. Osmond)的科学实践,为现代光学金相显微术奠定了基础。
至20世纪初,光学金相显微术日臻完善,并普遍推广使用于金属和合金的微观分析,迄今仍然是金属学领域中的一项基本技术。
金相显微镜是用可见光作为照明源的一种显微镜可分为正立式和倒置式两种。
实验十-特殊性能钢的组织观察与检验实验十特殊性能钢的组织观察与检验(验证性)一、实验目的及要求1.观察耐磨钢、耐热钢、不锈钢的显微组织特点。
2.了解耐磨钢、耐热钢、不锈钢所具有的特殊性能与化学成分、组织之间的关系。
3.了解相关检验方法和标准检验技术。
二、实验原理特殊性能钢是指加入了大量合金元素,使钢具有了一些特殊的物理性能和化学性能的钢,根据它们的性能特点,可分为耐磨钢、不锈钢、耐热钢、磁钢等(一)耐磨钢传统耐磨钢为ZGMn13俗称高锰钢。
高锰钢是在过共析钢中增加锰的含量(约11%〜14%)使Mn/C之比接近10/1,再经过水淬后得到室温单一奥氏体组织的钢。
在承受载荷和严重摩擦作用下,使钢发生显著硬化。
载荷越大,硬化程度越高,耐磨性能好。
如在静载荷下使用,它的耐磨性反而不高,因此适合制作承受剧烈冲击和在严重摩擦条件下工作的零件。
1、铸态组织由于机加工困难,一般铸造成型。
铸态组织应该为:奥氏体基体+少量珠光体型共析组织+ 大量分布在晶内和晶界上的碳化物。
(在高温时析出的碳化物在晶界呈网状或者局部呈块状;在较低温度析出的碳化物则在晶内呈针状、片状分布,或者以明显或不明显的渗碳体魏氏组织出现在在奥氏体基体上。
)碳化物较脆,一般不能直接使用。
2、热处理后的组织4般经过水韧处理。
水韧处理:将ZGMn13 铸件加热到高温(1000〜1100℃)保温一段时间,使铸态组织中的碳化物全部溶入基体奥氏体中,然后迅速淬水快冷使碳化物来不及从过饱和的奥氏体中析出,以获得均匀的单相奥氏体组织,这种处理称为水韧处理。
正常组织为过饱和的单相奥氏体,晶粒大小不均匀,也有少量均匀分布的粒状碳化物。
水韧处理后的碳化物有:未溶、析出、或过热碳化物。
3、铸造高锰钢的常见缺陷主要是分散分布的串状或串连成断续网状分布的显微疏松、气孔、非金属夹杂物及沿晶裂纹等。
4、铸造高锰钢的金相检验标准按照GB/T 13925-1992《铸造高锰钢金相》标准进行显微组织、碳化物、晶粒度和非金属夹杂物的评级。
实验十三渗层的组织观察与检验实验十三渗层的组织观察与检验(验证性)一、实验目的及要求1.掌握渗碳层、碳氮共渗层、氮化层、渗硼层组织的检验和评级方法。
2.正确使用金相标准进行评级。
二、实验原理为了提高某些机械零件表面的耐磨性、抗蚀性以及抗疲劳性能,而心部仍具有良好的强度和韧性,工业上一般采用化学热处理来实现。
将零件与化学物质接触,在高温下使有关元素进入零件表面的过程称为化学热处理。
包括渗碳、渗氮、碳氮共渗、渗硼、渗金属等。
因为这些工艺都是使零件的表面一定深度内的组织与结构有所改变。
金相检验就是对改变了的表层组织进行检查,以便按照相关的技术条件进行评定,以保证表面处理后的零件质量。
(一)钢的渗碳层的组织检验1、渗碳后缓冷状态的组织低碳钢渗碳后表层含碳量一般在0.8-1.0%相当于过共析钢。
所以渗碳缓冷的组织由三部分组成。
第一层:过共析层,组织为片状珠光体及网状渗碳体。
第二层:共析层,组织为片状珠光体。
第三层:亚共析层,组织为片状珠光体及铁素体,铁素体数量愈来愈多至心部。
缓冷条件下,最外层出现网状渗碳体属正常现象,但淬火后应被消除掉,若存在将使零件表面增加脆性,对应用不利,淬火后不希望存在。
2、渗碳层深度的测定方法有:剥层化学分析法、断口法、金相法、显微硬度法。
任讲其中两种方法:(1)金相法:试样在缓冷状态下进行。
①从试样表面测到过渡层之后为渗层深度,即过共析层+共析层+过渡层。
标准规定过共析层+共析层之和不得小于总渗碳层深度的40-70%,保证过渡不能太陡,有一定的坡度。
②过共析层+共析层+?过渡层之和为渗层深度。
优点和断口法有效硬化层相近。
③等温淬火法,如18Cr2Ni4W属马氏体钢,850℃加热后在280℃等温,数分钟后水冷,含碳量>0.3%的区域形成M,而近于0.3%的区域MS点高形成回火马氏体,试样浸蚀形成白色区域和黑区的界线。
(2)显微硬度法(淬火、回火件):显微硬度法,用9.8N负荷,以试样边缘起测量显微硬度值的分布梯度。
铁碳合金的平衡组织观察试验一、实验目的1.了解金相试样的制备过程及金相显微镜的构造和使用方法。
2.进一步熟悉Fe-Fe3C相图,了解不同成分的合金在平衡状态下的显微组织特征。
3.了解碳的质量分数对铁碳合金显微组织的影响,从而加深理解成分、组织与性能之间的相互关系。
二、实验试样材料铁碳合金的平衡状态金相试样一套(表1)。
1.组织特征显微组织特征是指晶粒、相、组织的形状、大小、数量和分布。
对于纯金属来说,指的是晶粒的形态、大小和分布,对于合金来说还要研究相和组织特征。
铁碳合金的平衡组织是研究和分析钢铁材料的基础,所谓平衡状态的显微组织是指合金在极为缓慢的冷却条件下(如退火状态即接近平衡状态)所得到的组织。
铁碳合金的平衡组织主要指碳钢和白口铸铁组织。
所有碳钢和白口铸铁的室C)这两个基本相所组织。
但由于含碳量温组织均由铁素体(F)和渗碳体(Fe3C)相对数量、析出条件以及分布情况均有所不同,铁素体(F)和渗碳体(Fe2不同,因为呈现各种不同的组织形态。
在金相显微镜下平衡组织一般有下面几种基本组成物。
(1)铁素体(F)——是碳α—Fe中的固溶体。
铁素体为体心立方晶格、具有磁性及良好塑性,硬度低。
用4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的等轴晶粒,亚共折钢中铁素体呈块状分布,当含碳量接近于共折成分时,铁素体则呈现断续的网状分布于珠光体周围。
图1 铁素体(2)渗碳体(FeC)——是铁与碳形成的一种化合物,其碳含量为6.69%,3质硬而脆。
耐腐蚀性强,经4%硝酸酒清溶液浸蚀后,渗碳体呈亮白色,若用苦味酸钢深液浸蚀。
则渗碳体能被染成暗黑色或棕红色,而铁素体仍为白色。
由此可区别铁素体与渗碳体。
按照成分和形成条件的不同,渗碳体可以呈现不同的形态。
一次渗碳体(初生相)是直接由液体中析出的,故在白口铸铁中呈粗大的条片状:二次渗碳体(次生相)是从奥氏体中析出物,往往呈网络状沿奥氏体晶界分布;共晶渗碳体是由液体在发生共晶反应时得到的,呈层片状结构,与铁素体共同构成珠光体。
实验三 碳钢热处理后的显微组织观察一、实验目的1、观察碳钢热处理后的显微组织。
2、了解热处理工艺对钢组织和性能的影响。
二、概述碳钢经热处理后的组织,可以是平衡或接近平衡状态(如退火、正火)的组织,也可是不平衡组织(如淬火组织)。
因此在研究热处理后的组织时,不但要参考铁碳相图,还要利用C 曲线。
铁碳相图能说明慢冷时不同碳含量的铁碳合金的结晶过程和室温下的组织,及相的相对量。
C 曲线则能说明一定成分的铁碳合金在不同冷却条件下的转变过程,及能得到哪些组织。
1、钢冷却时的转变1)共析钢过冷奥氏体连续冷却后的显微组织 为了简便起见,不用C(丁曲线而是用C 曲线来分析。
共析钢在慢冷时(见图16—24中的V 1),将全部得到珠光体。
冷速增大到V 2时,得到片层更细的珠光体,即索氏体或屈氏体。
冷速再增大到V 3时,得到屈氏体和部分马氏体。
而冷却速度增大到V 4,V 5时,奥氏体一下被过冷到马氏体转变始点(Ms)以下,转变成马氏体。
由于共析钢的马氏体转变终点在室温以下(-50℃),所以在生成马氏体的同时保留有部分残余奥氏体。
与C 曲线鼻尖相切的冷速(V 4)称为淬火的临界冷却速度。
2)亚共析钢过冷奥氏体连续冷却后的显微组织 亚共析钢的C 曲线与共析钢的相比,上部多了一条铁素体析出线,如图16—25所示。
当奥氏体缓慢冷却时,(见图16—25中的V 1),转变产物接近于平衡状态,显微组织是珠光体和铁素体。
随着冷却速度的增大,例如由V 1→V 2→V 3时,奥氏体的过冷度越大,析出的铁素体越少,而共析组织(珠光体)的量增加,碳含量减少,共析组织变得更细。
这时的共析组织实际上为伪共析组织。
析出的少量铁素体多分布在晶粒的边界上。
因此,由V 1→V 2→V 3时,显微组织的变化是:铁素体+珠光体→铁素体+索氏体→铁素体+屈氏体。
当冷却速度为V 4时,析出的铁素体极少,最后主要得到屈氏体和马氏体。
当冷却速度超过临界冷却速度后奥氏体全部转变为马氏体。
实验十特殊性能钢的组织观察与检验(验证性)一、实验目的及要求1.观察耐磨钢、耐热钢、不锈钢的显微组织特点。
2.了解耐磨钢、耐热钢、不锈钢所具有的特殊性能与化学成分、组织之间的关系。
3.了解相关检验方法和标准检验技术。
二、实验原理特殊性能钢是指加入了大量合金元素,使钢具有了一些特殊的物理性能和化学性能的钢,根据它们的性能特点,可分为耐磨钢、不锈钢、耐热钢、磁钢等(一)耐磨钢传统耐磨钢为ZGMn13俗称高锰钢。
高锰钢是在过共析钢中增加锰的含量(约11%~14%)使Mn/C之比接近10/1,再经过水淬后得到室温单一奥氏体组织的钢。
在承受载荷和严重摩擦作用下,使钢发生显著硬化。
载荷越大,硬化程度越高,耐磨性能好。
如在静载荷下使用,它的耐磨性反而不高,因此适合制作承受剧烈冲击和在严重摩擦条件下工作的零件。
1、铸态组织由于机加工困难,一般铸造成型。
铸态组织应该为:奥氏体基体+少量珠光体型共析组织+大量分布在晶内和晶界上的碳化物。
(在高温时析出的碳化物在晶界呈网状或者局部呈块状;在较低温度析出的碳化物则在晶内呈针状、片状分布,或者以明显或不明显的渗碳体魏氏组织出现在在奥氏体基体上。
)碳化物较脆,一般不能直接使用。
2、热处理后的组织一般经过水韧处理。
水韧处理:将ZGMn13铸件加热到高温(1000~1100℃)保温一段时间,使铸态组织中的碳化物全部溶入基体奥氏体中,然后迅速淬水快冷使碳化物来不及从过饱和的奥氏体中析出,以获得均匀的单相奥氏体组织,这种处理称为水韧处理。
正常组织为过饱和的单相奥氏体,晶粒大小不均匀,也有少量均匀分布的粒状碳化物。
水韧处理后的碳化物有:未溶、析出、或过热碳化物。
3、铸造高锰钢的常见缺陷主要是分散分布的串状或串连成断续网状分布的显微疏松、气孔、非金属夹杂物及沿晶裂纹等。
4、铸造高锰钢的金相检验标准按照GB/T 13925-1992《铸造高锰钢金相》标准进行显微组织、碳化物、晶粒度和非金属夹杂物的评级。
实验二钢铁材料显微组织的观察与分析一、实验目的1、观察铁碳合金显微组织随碳含量的变化,从而加深理解成分、组织与性能之间的相互关系。
2、了解铸铁的显微组织。
二、实验内容:1、根据铁碳合金相图分析各类成分合金的组织形成过程,并通过对铁碳合金平衡组织的观察和分析,熟悉钢和铸铁的金相组织和形态特征,以进一步建立成分与组织之间相互关系的概念。
2、在金相显微镜下对各种试样进行观察和分析,并确定其所属类型。
3、对碳钢(纯铁、20#钢、45#钢、T8钢、T10钢、T12钢)平衡状态下的组织进行观察,分析含碳量不同时的组织变化、并初步绘制出其显微组织图像。
4、观察铸铁(灰口铁、可锻铸铁、球墨铸铁)显微组织中石墨的典型形状。
三、实验要求:1、观察碳钢(纯铁、20#钢、45#钢、T8钢、T10钢、T12钢)平衡状态下的组织。
(1)分析含碳量不同时的组织变化、并初步绘制出其显微组织图像。
要求学生绘制出所观察到的显微组织,并注明材料名称、含碳量、浸蚀剂和放大倍数,显微组织图画在直径为30mm的圆内,并将组织组成物名称以箭头引出标明。
(2)分析亚共析钢中含碳量对组织中珠光体、铁素体的影响;掌握珠光体、铁素体相对量与含碳量的计算式;通过显微组织结构能初步判别碳钢平衡状态下亚共析钢的含碳量。
(3)区分亚共析钢、共析钢、过共析钢。
(一)工业纯铁纯铁在室温下具有单相铁素体组织。
含碳量<0.02%的铁碳合金通常称为工业纯铁,它为两相组织,即由铁素体和少量三次渗碳体组成。
图1所示为工业纯铁的显微组织,其中黑色线条是铁素体的晶界,而白色基底则是铁素体的不规则等轴晶粒,在某些晶界处可以看到不连续的薄片状三次渗碳体。
图1 工业纯铁显微组织(100×)浸蚀剂:4%硝酸酒精溶液(二)钢(1)亚共析钢亚共析钢的含碳量在0.02%~0.8%范围内,其组织由铁素体和珠光体所组成。
随着含碳量的增加,铁素体的数量逐渐减少,而珠光体的数量则相应地增多,两者的相对量可由杠杆定律求得。
实验三铁碳合金金相组织观察一、实验目的1.掌握不同成分铁碳合金在平衡状态下的显微组织特征。
2.理解铁碳合金中成分、组织和性能之间的变化规律。
3.了解Fe-Fe3C相图在铁碳合金组织分析中的作用。
二、实验设备和仪器1.金相显微镜2.典型金相试样一套(见表3-1)表3-1 铁碳合金典型的平衡组织三、实验内容及要求1.在显微镜下观察和分析表3-1中铁碳合金的平衡组织,识别铁碳合金组织形态的特征。
2. 根据Fe-Fe3C相图分析各合金的形成过程.3. 建立成分,组织之间相互关系的概念.4. 绘出所观察的显微组织示意图.四、实验原理及步骤1.实验原理碳钢合金的显微组织是研究钢铁材料性能的基础。
碳钢合金平衡状态的组织是指合金在极为缓慢的冷却条件下(如退火状态)所得到的组织,其相变过程均按图进行,因此可以根据该相图来分析碳钢合金的平衡组织。
如图3-1所示,含碳量小于2.11%的合金为碳钢,含碳量大于2.11%的合金为白口铸铁。
所有碳钢和白口铸铁在室温下的组织均有铁素体(Fe)和渗碳体(Fe3C)这两个基本相所组成。
只是因含碳量不同,铁素体和渗碳体的相对数量及分布形态有所不同,因而呈不同的组织形态。
1、碳钢和白口的基本组织(1)铁素体(F) 是碳在铁中的固溶体。
铁素体为体心立方格。
具有磁性及良好的塑性,硬度较低。
用3%~4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮色的多边形晶粒。
图3-1 Fe-Fe3C状态图(2)渗碳体(Fe3C)是铁与碳形成的一种化合物,含碳量为6.69%。
用3%~4%硝酸酒精溶液浸蚀后,渗碳体呈亮白色,若用苦味酸钠溶液浸蚀,则渗碳体呈黑色而铁素体仍为白色。
(3)珠光体(P) 是铁素体和渗碳体的机械混合物,其组织是共析转变的产物。
由杠杆定律可以求得铁素体与渗碳体的含量比为8︰1。
因此,铁素体厚,渗碳体薄。
(4)莱氏体(Ld)奥氏体和渗碳体的共晶混合物,其中奥氏体在继续冷却时析出二次渗碳体,在727℃以下分解为珠光体。