21.2 二次函数的图象和性质(2)
- 格式:pptx
- 大小:301.46 KB
- 文档页数:9
21.2 二次函数y =a(x+h)2+k 的图象与性质【教案】一.知识要点:1.如图①,将抛物线y =221x -沿y 轴向下平移1个单位,就得到抛物线y =221x --1. 由图象可知,抛物线y =ax 2+k 与y =ax 2的形状、开口大小和开口方向相同,只是位置不同.抛物线y =ax 2+k 可由抛物线y =ax 2沿y 轴方向平移 k 个单位得到.当k >0时,向上平移;当k <0时,向下平移.2.如图②,将抛物线y =221x -沿x 轴向左平移1个单位,就得到y =2121)(+-x ;向右平移1个单位就 得到y =2121)(--x .由图象可知,抛物线y =a (x +h )2与y =ax 2的形状、开口大小和开口方向相同,只 是位置不同.抛物线y =a (x +h )2可由抛物线y =ax 2沿x 轴方向平移h 个单位得到,当h >0时,向左平 移;当h <0时,向右平移. 3.如图③,将抛物线y =221x -先向下平移1个单位,再向左平移1个单位,就得到y =11212-x -)(+ 由图象可知,抛物线y =a (x +h )2与y = ax 2形状相同,位置不同.抛物线y =a (x +h )2+k 有如下特点: (1)a > 0时,开口向上;a < 0时,开口向下; (2)对称轴是直线x =-h ; (3)顶点坐标是(-h ,k ). 4.抛物线平移法则:(1)平移不改变开口大小和方向,即a 不变; (2)顶点坐标与对称轴发生改变.二.重难点分析:重点是抛物线的平移法则.难点是通过平移掌握抛物线y =a (x +h )2+k 的图象和性质.突破难点的方法, 就是反复画图象作比较,培养动手能力.三.精选例题:1.在同一平面直角坐标系内作出函数y =221x 和y =3212-x 的图象. 【解】列表2.在同一平面直角坐标系内作出函数y =221x 和y =32212--x )(的图象. 【解】列表3.填表.根据图象回答:(1)观察函数y =x 2、y =(x -1)2和y =(x +1)2的图象,它们的开口方向如何? 顶点坐标、对称轴分别是什么?(2)对于同一个y 值,这三个函数对应的x 值之间有什么关系?这三个 函数的图象在位置上有什么关系?(3)当x 分别取何值时,函数y =x 2、y =(x -1)2和y =(x +1)2取得最小值?最小值分别是多少?【解】(1)开口向上、顶点分别为(0,0)、(1,0)、(-1,0);对称轴分别为:y 轴、x =1、x =-1.(2)x 的值依次大1.把抛物线y = (x+1)2向右平移1个单位得到y =x 2;把y =x 2向右平移1个单 位得到y =(x -1)2.(3)当x 分别取0,1,-1时,最小值均为0. 5.抛物线y =2(x +1)2 -3的顶点坐标是( D )A .(1,-3)B .(-1,3)C .(-2,-3)D .(-1,-3) 6.由抛物线y =5x 2 +1平移得到抛物线y =5(x +3)2+1,需把抛物线y =5x 2 +1( C ) A .向上平移3个单位 B .向下平移3个单位 C .向左平移3个单位 D .向左平移3个单位7.将抛物线y =3x 2向上平移3个单位再向左平移2个单位,那么得到的抛物线的解析式为( A ) A .y =3(x +2)2 +3 B .y =3(x -2)2+3 C .y =3(x +2)2 -3 D .y =3(x -2)2 -3.把抛物线把抛物线y =12212--)(-x 经平移得y =221x -,则它是( C ). A .向右平移2个单位,向下平移1个单位 B .向右平移2个单位,向上平移1个单位 C .向左平移2个单位,向上平移1个单位 D .向左平移2个单位,向下平移1个单位.将抛物线y =x 2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是( B ) A .y =(x +2)2 +2 B .y =(x +2)2 -2 C .y =(x -2)2 +2 D .y =(x -2)2 -2.已知二次函数y =2(x -3)2 +1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x =-3;③ 其图象顶点坐标为(3,-1);④当x < 3时,y 随x 的增大而减小.则其中说法正确的有( A ) A .1个 B .2个 C .3个 D .4个。
2.二次函数y=ax2+bx+c的图象和性质第1课时二次函数y=ax2+k的图象和性质教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。
2、让学生经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
重点难点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系是教学重点。
正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系是教学的难点。
教学过程:一、提出问题1.二次函数y=2x2的图象是____,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=ax2与x=______时,取最______值,其最______值是______。
2.二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、分析问题,解决问题问题1:对于前面提出的第2个问题,你将采取什么方法加以研究?(画出函数y=2x2和函数y=2x2的图象,并加以比较)问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。
(3)连线:用光滑曲线顺次连接各点,得到函数y=2x2和y=2x2+1的图象。
问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?教师引导学生观察上表,当x依次取-3,-2,-1,0,1,2,3时,两个函数的函数值之间有什么关系,由此让学生归纳得到,当自变量x取同一数值时,函数y=2x2+1的函数值都比函数y=2x2的函数值大1。
教师引导学生观察函数y=2x2+1和y=2x2的图象,先研究点(-1,2)和点(-1,3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:反映在图象上,函数y=2x2+1的图象上的点都是由函数y=2x2的图象上的相应点向上移动了一个单位。
《二次函数的图象和性质》教学设计执教者学情分析一、学生的年龄特点和认知特点初三年级的学生性格比较开朗活泼,对新鲜事物比较敏感,有自己的个人判断,因此,在教学过程中创设问题情景,留给他们动手实践、观察思考、自主探究、合作交流、归纳猜想的时间和空间.让他们经历获取知识的过程.二、学生已具备的基本知识与技能学生在八年级已经初步积累了函数知识和利用函数解决问题的经验.初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识.学生具有也一定的数学分析、理解能力.学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力.因此,在本课中,应多让学生动手实践、自主探究、合作交流,从而更好的体会到二次函数的特征.效果分析这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。
通过充分的过程探究,学生容易得出也是最早得出了图象的性质,借助直观图象的性质而得到二次函数图像的性质。
真正的形成往往来源于真实的自主探究。
只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。
在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。
首先,要设计适合学生探究的素材。
教材对二次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。
当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。
但是能让学生理解和接受的知识才是最好的。
如果牵强的引出来,不一定是好事。
其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的过程。
探究教学是追求教学过程的探究和探究过程的自然和本真。
只有这样探究才是有价值的,真知才会有生长性。
要表现过程的真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。
结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。
2 二次函数y =ax 2+bx +c 的图象和性质第4课时 二次函数y =ax 2+bx +c 的图象和性质教学目标:1.使学生掌握用描点法画出函数y =ax 2+bx +c 的图象。
2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
3.让学生经历探索二次函数y =ax 2+bx +c 的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y =ax 2+bx +c 的性质。
重点难点:重点:用描点法画出二次函数y =ax 2+bx +c 的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。
难点:理解二次函数y =ax 2+bx +c(a ≠0)的性质以及它的对称轴(顶点坐标分别是x =-b 2a 、(-b 2a ,4ac -b24a)是教学的难点。
教学过程: 一、提出问题1.你能说出函数y =-4(x -2)2+1图象的开口方向、对称轴和顶点坐标吗?2.函数y =-4(x -2)2+1图象与函数y =-4x 2的图象有什么关系?(函数y =-4(x -2)2+1的图象可以看成是将函数y =-4x 2的图象向右平移2个单位再向上平移1个单位得到的)3.函数y =-4(x -2)2+1具有哪些性质?(当x <2时,函数值y 随x 的增大而增大,当x >2时,函数值y 随x 的增大而减小;当x =2时,函数取得最大值,最大值y =1)4.不画出图象,你能直接说出函数y =-12x 2+x -52的图象的开口方向、对称轴和顶点坐标吗?5.你能画出函数y =-12x 2+x -52的图象,并说明这个函数具有哪些性质吗?二、解决问题由以上第4个问题的解决,我们已经知道函数y =-12x 2+x -52的图象的开口方向、对称轴和顶点坐标。
根据这些特点,可以采用描点法作图的方法作出函数y =-12x 2+x -52的图象,进而观察得到这个函数的性质。
解:(1)列表:在x 的取值范围内列出函数对应值表;x … -2 -1 0 1 2 3 4 … y … -612 -4 -212 -2 -212 -4 -612…(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。
21.2 二次函数的图象和性质1.二次函数y=ax 2的图象和性质【知识与技能】1.能够利用描点法作出y=x 2的图象,并能根据图象认识和理解二次函数y=x2的性质.2.能作出二次函数y=-x 2的图象,并能够比较与y=x 2的图象的异同,初步建立二次函数表达式与图象之间的联系.【过程与方法】经历画二次函数y=x2的图象和探索性质的过程,获得利用图象研究函数性质的经验.【情感态度】培养学生数形结合的思想,积累数学经验,为后续学习服务.【教学重点】会画y=ax 2的图象,理解其性质.【教学难点】结合图象理解抛物线开口方向、对称轴、顶点坐标及基本性质,并归纳总结出来.一、情景导入,初步认知一次函数y=kx+b 和反比例函数x k y(k ≠0)图象是什么形状?有哪些性质呢?那么二次函数y=ax 2+bx+c (a ≠0)的图象会是什么样?通常怎样画一个函数的图象呢?——引入课题【教学说明】通过创设问题情景,引导学生复习描点法,复习借助图象分析性质的过程中注意分类讨论、由特殊到一般的解决问题的方法,为学习二次函数的图象奠定基础.二、思考探究,获取新知1.试着画出y=x 2的图象.【教学说明】让学生自己经历画y=x2的图象的过程,进一步了解用描点法的方法画图象的基本步骤,为将来画其他函数的图象奠定基础,同时也培养了学生动手操作能力,经历了知识的形成过程.2.观察二次函数y=x 2的图象,回答下列问题.(1)图象是轴对称图形吗?如果是,它的对称轴是什么?(2)图象有最低点吗?如果有,最低点的坐标是什么?(3)当x <0时,随着x 的增大,函数y 如何变化?当x >0时呢?【归纳结论】二次函数y=ax 2的图象是一条关于y 轴对称,过坐标原点并向上伸展的曲线,像这样的曲线叫做抛物线.抛物线与它的对称轴的交点叫做抛物线的顶点.3.在同一平面直角坐标系中,画出函数y=21x 2和y=2x 2的图象. 解:(1)列表.(2)描点、连线.4.探究.(1)观察二次函数y=21x 2和y=2x 2的图象,分别指出它们的开口方向、对称轴和顶点坐标;再指出图象有最高点还是有最低点?图象何时上升、何时下降? (2)你能根据函数y=21x 2和y=2x 2的图象的共同特点,总结出二次函数y=ax 2(a >0)的性质吗? 【归纳结论】二次函数y=ax 2(a >0)的图象及性质为:5.在同一平面直角坐标系中,画出函数y=-x 2、y=-21x 2和y=-2x 2的图象.仿照上面的表格,总结出y=ax 2(a <0)的性质.6.对比函数y=x 2和y=-x 2、y=21x 2和y=-21x 2、y=2x 2和y=-2x 2的图象,指出它们的相同与不同之处.7.思考:(1)a >0与a <0时,函数y=ax 2的图象有什么不同?(2)|a|的大小对函数y=ax 2的图象的开口大小有什么影响?(3)二次函数的图象是什么形状?【归纳结论】1.抛物线y=ax 2(a ≠0)的对称轴是y 轴,顶点是原点;2.a >0时,抛物线y=ax 2的开口向上,顶点是抛物线的最低点,a 越大,抛物线的开口越小;3.a <0时,抛物线y=ax 2的开口向下.顶点是抛物线的最高点,a 越大,抛物线的开口越大.【教学说明】让学生自己去观察分析,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的.三、运用新知,深化理解1.已知函数y=(m-2)x m2-7是二次函数,且开口向下,则m= -3 .【分析】它是二次函数,所以m 2-7=2,得m=±3,且开口向下,所以m-2<0,得m <2.即:m=-3.2.已知抛物线y=ax 2经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,-4)是否在此抛物线上.【分析】(1)把a 的值求出即可;(2)把B 的坐标代入,等式成立则是在此抛物线上,否则不在.解:(1)把(-2,-8)代入y=ax 2中得:a=-2.∴解析式为:y=-2x 2(2)把(-1,-4)代入y=-2x 2中等式不成立,∴点B (-1,-4)不在此抛物线上.3.已知y=(k+2)42-+k k x 是二次函数,且当x >0时,y 随x 的增大而增大.(1)求k 的值;(2)求顶点坐标和对称轴.解:(1)由题意,得解得k=2.(2)二次函数为y=4x 2,则顶点坐标为(0,0),对称轴为y 轴.4.已知正方形周长为Ccm ,面积为Scm 2.(1)求S 和C 之间的函数关系式,并画出图象;(2)根据图象,求出S=1cm 2时,正方形的周长;(3)根据图象,求出C 取何值时,S ≥4cm 2.【分析】此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时,自变量C 的取值应在取值范围内.解:(1)由题意,得S=161C 2(C >0). 列表:描点、连线,图象如图:(2)根据图象得S=1cm2时,正方形的周长是4cm.(3)根据图象得,当C≥8cm时,S≥4cm2.【教学说明】学生独立完成以后,让他们发表自己的看法,教师更正、强调.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题21.2”中第1、2题.本节课的教学过程的设计符合新课程标准和课程改革的要求,通过教学情景创设和优化课堂教学设计,体现了在活动中学习数学,在活动中“做数学”,并利用教具使教学内容形象、直观并具有亲和力,极大地调动了学生的学习积极性和热情,培养了学生学习数学的兴趣.教学过程始终坚持让学生自己去动脑、动手、动口,在分析、练习基础上掌握知识.整个教学过程都较好地落实了“学生的主体地位和教师的主导作用”,让学生体会到学习成功的乐趣.25.2用列举法求概率第1课时用列表法求概率【知识与技能】初步掌握直接列举法计算一些简单事件的概率的方法.【过程与方法】通过用列举法求简单事件的概率的学习,使学生在具体情境中分析事件.计算其发生的概率,解决实际问题.【情感态度】体会概率在生活实践中的应用,激发学习数学的兴趣,提高分析问题的能力.【教学重点】熟练掌握直接列举法计算简单事件的概率.正确理解和区分一次试验中包含两步或两个因素的试验.【教学难点】能不重不漏而又简洁地列出所有可能的结果.一、情境导入,初步认识1.复习回顾①概率的意义;②对于试验结果是有限等可能的事件的概率的求法.2.多媒体展示扫雷游戏,引入课题.二、典例精析,掌握新知我们在日常生活中,常常会用掷硬币的方式来决定游戏的胜负,下列请同学们思考下面的这种游戏规则是否公平.例老师向空中抛掷两枚同样的硬币,如果落地后一反一正,老师赢;如果落地后都只正面时,同学们赢,请问你们觉得这个游戏公平吗?【教学说明】对“游戏是否公平”实际是看两方出现的概率大小如何.所以解决本题的关键是,分别计算出“一正一反”与“都是正面”的概率各是多少并比较,这里教师要引导学生条理清楚地列举出所有可能的结果,学生思考交流.解:我们利用表格的形式,列举出所有可能的结果.∴这游戏不公平.问:“同时掷两枚硬币”与“先后掷一枚硬币”这两种试验的所有可能一样吗?答案:一样.三、运用新知,深化理解1.在“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:20个商标牌中,有5个商标牌背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻,有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是()2.从甲、乙、丙三人中任意选两名代表参加会议,甲被选中的概率为()3.在一个布袋里装有红、白、黑三种颜色的玻璃球各一个,它们除颜色外,没有其他区别,先从布袋中取出一个球,放回袋中并搅匀,再从袋中取一个球,则两次取出的恰好都是红球的概率是_____.4.袋子中装有红、绿各一个小球,除颜色外无其他差别,随机摸出1个小球后放回,再随机摸出一个.求下列事件的概率;(1)第一次摸到红球,第二次摸到绿球;(2)两次都摸到相同颜色的小球;(3)两次摸到的球中有一个绿球和一个红球.5.在“妙手推推推”的游戏中,主持人出示了一个9位数:258396417,让参与者猜商品价格,被猜的价格是一个4位数,也就是这个9位数中从左到右连在一起的某4个数字.如果参与者不知道商品的价格,从这些连在一起的所有4位数中,任意猜一个,求他猜中该商品的概率.【教学说明】本练习着重演练用列举法求简单事件的概率,可先让学生自主完成,再选派几名学生作答,教师再予以评点.【答案】1.B【解析】所有剩下的商标共20-2=18个,其中有奖的有5-1=4个,所以它第三次翻牌获奖的概率为4/18=2/9.2.C【解析】分析所有的可能结果为(甲、乙),(甲,丙),(乙,甲),(乙,丙),(丙,甲),(丙,乙).事件A包含的结果为(甲、乙),(甲,丙),(乙,甲),(丙,甲)共4个,故P(A)=4/6=2/3.3.1/9【解析】所有可能出现的结果有(红,红)、(红,白)、(红,黑)、(白,红)、(白,白)、(白,黑)、(黑,红)、(黑,白)、(黑,黑)共有9种,所以P(都是红球)=1/9.4.(1)1/4(2)1/2(3)1/25.所有可能结果有:2583,5839,8396,3964,9641,6417,其中只有一种是该商品的价格,所以猜中该商品的概率为1/6.四、师生互动,课堂小结1.本堂课你学到了什么知识,有哪些收获?2.你能不重不漏地列举出事件发生的所有可能吗?3.你能正确求出P(A)=m/n吗?【教学说明】围绕上述问题,教师引导学生交流归纳.用列举法求简单事件概率的一般步骤,重点是要让学生掌握方法.1.布置作业:从教材“习题25.2”中选取.2.完成练习册中本课时练习的“课后作业”部分.1.本节课通过以学生喜闻乐见的扫雷、掷硬币等游戏为载体,充分调动了学生的学习欲望,将学生摆在了真正的主体位置上,充分发挥了他们的主观能动性,从而让学生在趣味中掌握本节课的知识.生活中有许多有关概率的问题,本节课的学习亦能让学生尝试用概率的知识去解决生活中的问题,从而体会到概率知识在生活中的应用价值.2.本节课还通过普通列举法与列表法,对找出包含两个因素的试验结果的对比,让学生感受到列表法的作用与长处,使学生易于接受知识.3.教师引导学生交流归纳知识点,看学生能否会不重不漏地列举出事件发生的所有可能,能否找出事件A中包含几种可能的结果,并能求P(A),教学时要重点突出方法.二次函数说课稿(一)一、教材分析:1、教材所处的地位:二次函数是湘教版初中数学九年级(下册)的内容,在此之前,学生已经学过了函数及一次函数的内容,对于函数已经有了初步的认识。