《电能与磁》全章复习与巩固——电与磁(提高) 知识讲解
- 格式:doc
- 大小:782.50 KB
- 文档页数:9
《电能与磁》全章复习与巩固——电功率(提高)【学习目标】1、从能的转化的角度认识电源和用电器的作用并能够进行电能的计算;2、理解电功率和电流、电压之间的关系并能进行电功率的计算。
能区别实际功率和额定功率;3、串并联电路电能电热电功率的分配关系;4、知道在电流一定时,导体消耗的电功率与导体的电阻成正比。
5、掌握测量小灯泡电功率的方法。
6、简单了解电热的相关知识,知道焦耳定律; 【知识网络】【要点梳理】 要点一、电功1.定义:电流所做的功叫做电功。
2.计算:普遍适用公式W=UIt=Pt(适用于所有电路) ,即电流通过导体做的电功等于导体两端的电压、通过导体的电流和通电时间的乘积。
电压的单位用V ,电流的单位用A ,时间的单位用s,电功的单位就是J 。
推导公式:22U W I Rt t R==(适用于纯电阻电路) 3.单位:国际单位是焦耳,简称焦,符号J ,11V A J s =⋅⋅。
常用的单位是度,即千瓦时,符号kW ·h ,1kW ·h =3.6×106J 4.电能表:(1)作用:测量用电器在一段时间内消耗的电能。
(2)计算方法:电能表的示数由四位整数和一位小数组成。
电能表的计量器上前后两次读数之差,就是这段时间内用电的度数。
但要注意电能表的示数的最后一位是小数。
(3)重要参数的意义: “220V ”:表示电能表应该在220V 的电路中使用;“10(20A)”:表示这个电能表的标定电流为10A,在短时间应用时电流可超过10A,但不能超过20A;“50Hz”:表示它在50赫的交流电路中使用;“600revs/kW·h”:表示接在这个电能表上的用电器,每消耗1千瓦时的电能,电能表上的转盘转过600转。
根据电能表转盘转动的转数进行计算.如果电能表标有“600revs/kW·h”,当转盘转过n圈时,消耗的电能为;(4)新型电能表:IC卡电能表;没有铝盘,靠内部的电子电路计算电能。
初中物理《电与磁》知识点(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中物理《电与磁》知识点(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中物理《电与磁》知识点(word版可编辑修改)的全部内容。
初中物理《电与磁》知识点总结。
引言概述:电与磁是物理学的基本知识,广泛应用于科学、工程和日常生活中。
本文将对电与磁的知识点进行总结,包括电荷、电场、电流、磁场和电磁感应等主要内容。
通过深入理解这些知识点,我们能够更好地理解电子设备的工作原理,以及电和磁在各种应用中的作用。
正文内容:1.电荷:1.1原子结构中的电子与质子1.2电子的带电性质和电荷的量子化1.3电荷守恒定律和库仑定律1.4电磁力和静电场2.电场:2.1电场的概念和性质2.2电场强度和电场线2.3电势和电势差2.4高斯定律和电场能2.5电容和电场中的电介质3.电流:3.1电流的概念和电流密度3.2电阻和欧姆定律3.3环路定律和基尔霍夫定律3.4电源和电动势3.5电功和功率4.磁场:4.1磁场的概念和性质4.2磁感应强度和磁场线4.3洛伦兹力和磁场能4.4磁场中的电流和安培定律4.5磁介质和磁感应强度的量子化5.电磁感应:5.1法拉第电磁感应定律和互感器5.2感生电动势和感应电流5.3洛伦兹力和电磁铁5.4电磁感应中的自感和互感5.5麦克斯韦方程组和电磁波总结:电与磁是物理学中非常重要的知识点,本文总结了电荷、电场、电流、磁场和电磁感应等方面的内容。
通过深入了解这些知识,我们能够更好地理解电子设备的工作原理,如电路中的电流流动和元器件中的电荷分布;同时,我们还能够理解电和磁在医学成像、通信技术和能源转换等领域中的应用。
电与磁的研究也为我们提供了深刻的物理现象和规律,推动了科学技术的发展。
因此,对于电与磁的研究和理解是非常有价值的。
希望通过本文的总结,读者能够加深对电与磁的认识,提高对这一领域的兴趣,并将这些知识应用于实际生活和工作中。
八年级下第一章电与磁知识点第一节:指南针为什么能指方向1、磁性:磁铁能吸引铁、钴、镍等物质,磁铁的这种性质叫做磁性。
2、磁体:具有磁性的物质叫做磁体.3、磁极;磁体各部分的磁性强弱不同,磁体上磁性最强的部分叫做磁极,它的位置在磁体的两端。
可以自由转动的磁体,静止后恒指南北。
为了区别这两个磁极,我们就把指南的磁极叫南极,或称S极;另一个指北的磁极叫北极,或称N极.4、磁极间的相互作用是:同名磁极互相排斥,异名磁极互相吸引。
5、磁体可分为天然磁体和人造磁体,通常我们看到和使用的磁体都是人造磁体,它们都能长期保持磁性,通称为永磁体。
6、磁化:使原来没有磁性的物体得到磁性的过程。
铁棒被磁化后,磁性容易消失,称为软磁体。
钢被磁化后,磁性能够长期保持,称为硬磁体或永磁体,钢是制造永磁体的好材料。
人造磁体就是永磁体。
7、磁场:磁场的基本性质:它对放入其中的磁体产生磁力的作用,磁体间的相互作用是通过磁场而发生的。
磁场的方向:在磁场中某一点,小磁针静止时北极所指的方向就是该点的磁场方向。
8、磁感线:为了形象地描述磁体周围的磁场,英国物理学家法拉第引入了磁感线:依照铁屑排列情况,画出一些带箭头的曲线。
方向都跟放在该点的磁针北极所指的方向一致,这些曲线叫磁感应线、简称磁感线.9、磁感线的特点:(1)在磁体外部,磁感线由磁体的北极(N极)到磁体的南极(S极)。
(2)磁感线的方向就是该点小磁针北极受力的方向,也就是小磁针静止后北极所指的方向。
(3)磁感线密的地方表示该点磁场强,即磁感线的疏密表示磁场的强弱。
(4)在空间每一点只有一个磁场方向,所以磁感线不相交。
10、地磁场地磁场:地球产生的磁场。
地磁北极在地理南极附近,地磁南极在地理北极附近。
地球南北极与地磁的南北极并不重合,它们之间存在的一个50夹角,叫磁偏角。
小磁针的南极始终指向地理南极的原因就是:在地理南极附近,存在着地磁场的北极或 N极。
第二节.电生磁11、奥斯特实验现象:导线通电,周围小磁针发生偏转;通电电流方向改变,小磁针偏转方向相反.结论:通电导线周围存在磁场;磁场方向与电流方向有关.12、直线电流的磁场直线电流的磁场的分布规律:以导线上各点为圆心的一个个同心圆,离直线电流越近,磁性越强,反之越弱。
第四章电与磁知识点复习与巩[第一节指南针为什么能指南一、磁体1.磁性、磁极和磁体%1把物体能吸引等物质的性质叫做磁性。
%1具有磁性的物体叫做O%1磁体上磁性最强的部分叫做。
一个小磁针在地面上静止不动时,指向北面的一端叫极或极,指向南面的一端叫极或极。
2.磁极之间的相互作用规律:同名磁极相互;异名磁极相互。
3.磁化:使原来没有磁性的物体得到的过程叫做磁化。
二、磁场1.磁场的方向性:小磁针的极所指的方向就是其所处点的磁场方向;磁体周围的磁感线总是从磁体的极出发回到磁体的极。
2、磁场的基本性质:____________________________________________2.地磁场:地球产生的磁场叫做场。
地磁场的北极或N极,在地理极。
第二节电生磁一、奥斯特实验:证明了通电直导线周围存在着。
二、通电螺线管的磁场1.磁感线形状:通电螺线管周围的磁场与的磁场很相似。
2.右手螺旋定则:用右手握螺线管,让四指弯向螺线管中的电流方向,大拇指所指的那一端就是通电螺线管的极。
3.影响电磁铁磁性大小的主要因素是:通过探究实验证明:电磁铁越多,通过线圈的越大,线圈的磁性越强;插入,线圈的磁性大大增强。
第三节电磁铁的应用1.下列产品没有到电磁铁性质的是:A电铃B电磁起重机C电磁继电器D磁悬浮列车E滑动变阻器2.福安学校的电梯一旦超载,它会自动报警。
现将原理图借你观察。
请你简单地解释它报警的原理:①电梯超载,压电源接通;%1控制电路通路后,电磁铁立即产生性,衔铁被O报警。
③把电路接通,1.通电导体在磁场中而运动第四节电动机一、原理:2.通电线圈在磁场中而转动3.影响受力的因素:①的方向②二、结构:%1磁铁: ②线圈:③换向器(铜制半环):可以改变的方向%1电刷:三、能的转化特点:能转化为能。
第五节磁生电一、电磁感应:1.发现电磁感应的科学家是2.感应电流:%1产生感应电流的条件:a.电路是的b.导体c.导体做磁感线运动%1影响感应电流方向的因素:a.方向b.导体切割磁感线的方向%1影响感应电流大小的因素:a.磁场的b.导体切割磁感线运动的。
《电能与磁》全章复习与巩固——电与磁(提高)【学习目标】1.知道磁感线可用来形象地描述磁场,知道磁感线的方向是怎样规定的。
2.知道通电导体周围存在着磁场;通电螺线管的磁场与条形铁相似;电磁铁的特性和工作原理;了解电磁继电器和扬声器的结构和工作原理。
3.了解磁场对通电导线的作用。
4.知道电能的获得途径;知道电能是二次能源。
5.知道电磁感应现象;知道产生感应电流的条件;知道发电机的原理;能说出发电机为什么能发电;知道什么是交流电;知道发电机发电过程是能量转化的过程。
6.知道远距离输电采用高压的目的,知道高压输电的全过程以及电网的作用和安全运行的重要性。
7.知道无线电波可以在真空中传播,它的速度等于光速;知道无线电波的波长、频率以及它们之间的定性关系。
【知识网络】【要点梳理】要点一、电流的磁场1.磁现象:(1)磁性:物体能够吸引铁、钴、镍等物质的性质叫做磁性。
(2)磁体:具有磁性的物体叫做磁体。
(3)磁极:磁体上磁性最强的部分叫做磁极。
任何磁体都有两个磁极(磁北极和磁南极),将磁体水平悬挂起来,当它静止时,指北的一端叫做磁北极(N极),指南的一端叫做磁南极(S极)。
(4)磁极间的相互作用:同名磁极之间相互排斥,异名磁极之间相互吸引。
(5)磁化:使原来没有磁性的物体获得磁性的过程叫做磁化。
一根没有磁性的大头针,在接近条形磁体下端的N极时,大头针上端就出现了S极,下端出现了N极,也就是说大头针具有了磁性。
2.磁场:(1)磁场的存在:在磁体的周围和通电导体的周围存在着磁场,这可以利用小磁针来检验。
小磁针在一般情况下是指南、北的,若小磁针指向忽然发生变化,则小磁针的周围必定有其它的磁场存在。
(2)磁场的方向:磁场具有方向性,当小磁针放在磁场各点不同处,小磁针N极的指向不同,这说明磁场各点方向是不同的,我们规定:在磁场中的某一点,小磁针静止时北极所指的方向就是这一点的磁场方向。
(3)磁场的性质:磁场的基本性质是它对放入其中的磁体产生磁力的作用,磁体间的相互作用就是通过磁场而产生的。
放在磁场中的小磁针能发生偏转,就是因为磁针受到了磁场的作用。
磁场虽然看不见、摸不着,但我们可以根据它对放在其中的磁体所产生的作用来感知它、认识它。
(4)磁感线:磁感线是形象地研究磁场的一种方法。
在磁场中画一些有方向的曲线,任何一点的曲线方向都是跟放在该点的小磁针北极所指的方向一致的,这样的曲线叫磁感线,磁体周围的磁感线都是从磁体的N极出来回到磁体的S极。
利用这些曲线可以形象地表示磁场中各点的磁场方向和磁场的强弱。
(5)地磁场:地球本身就是一个巨大的磁体,地球周围空间存在的磁场叫做地磁场。
地磁场的N极在地理南极附近,S极在地理北极附近。
地磁的两极与地理的两极并不重合。
3.电生磁:(1)奥斯特实验:①意义:揭示了电现象和磁现象之间的密切联系。
②结论:a.通电导体周围存在磁场;b.电流的磁场方向与电流方向有关。
(2)通电螺线管的磁场:①螺线管:用导线绕成的螺旋形线圈叫做螺线管。
②右手螺旋定则:假设用右手握住通电导线,大拇指指向电流方向,那么弯曲的四指就表示导线周围的磁场方向。
假设用右手握住通电螺线管,弯曲的四指指向电流方向,那么大拇指的指向就是通电螺线管内部的磁场方向。
4、电磁铁及其应用:(1)电磁铁:内部有铁心的螺线管叫做电磁铁。
电磁铁在电磁起重机、电铃、发电机、电动机、自动控制上有着广泛的应用。
(2)电磁铁的特点:①电磁铁磁性的有无,完全可以由通断电来控制。
②电磁铁磁性的强弱可以由电流的大小、线圈匝数控制。
③电磁铁产生的磁场方向是由通电电流的方向决定的。
(3)电磁继电器:①结构:具有磁性的电磁继电器由控制电路和工作电路两部分组成。
控制电路包括低压电源、开关和电磁铁,其特点是低电压、弱电流的电路;工作电路包括高压电源、用电器和电磁继电器的触点,其特点是高电压、强电流的电路。
②原理:电磁继电器的核心是电磁铁。
当电磁铁通电时,把衔铁吸过来,使动触点和静触点接触(或分离),工作电路闭合(或断开)。
当电磁铁断电时失去磁性,衔铁在弹簧的作用下脱离电磁铁,切断(或接通)工作电路。
从而由低压控制电路的通断,间接地控制高压工作电路的通断,实现远距离操作和自动化控制。
电磁继电器的作用相当于一个电磁开关。
要点诠释:1.通电螺线管的磁场方向与电流方向满足安培定则即表示电流和电流激发磁场的磁感线方向间关系的定则,也叫右手螺旋定则。
通电直导线中的安培定则(安培定则一):用右手握住通电直导线,让大拇指指向电流的方向,那么四指的指向就是磁感线的环绕方向。
通电螺线管中的安培定则(安培定则二):用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端是通电螺线管的N极。
2.电磁铁是根据电流的磁效应和通电螺线管中插入铁芯后磁场大大增强的原理来工作的。
3.电磁铁的优点是:磁性强弱可控(电流大小、线圈匝数),磁性有无可控(通断电),磁极方向可控,因此把它用在一些自动控制电路中。
4.电磁铁的铁芯是用软铁制成的,而不是用钢制成的,这是因为软铁容易磁化,也容易失去磁性,而钢磁化后不易去磁。
要点二、电能的获得和输送1、电能的获得:(1)电池①伏打电堆:1800年,意大利物理学家伏打发明了伏打电堆,这是人类历史上第一个能持续提供电能的电源。
伏打电堆是将化学能转化为电能的电池。
②各种电池的缺点:都很难提供大功率电动机、电器以及照明所需的电能。
(2)发电机①电磁感应现象:闭合电路的一部分导体,在磁场中做切割磁感线运动时,导体中就产生感应电流,这种现象叫做电磁感应,产生的电流叫感应电流。
a.产生感应电流的条件:第一,导体是闭合电路中一部分,第二,导体在磁场中做切割磁感线的运动,当导体平行于磁感线运动时,不产生感应电流;当导体放入磁场中不运动时,也不会产生感应电流(导体不动、磁场动也能切割—理解运动的相对性)。
b.产生感应电流的方向和磁场方向、导体运动方向有关。
磁场方向、感应电流方向、导体运动方向三者应互相垂直,同时改变其中两个方向另一个方向不变,若首先改变其中一个方向而另一个方向不变,则第三者方向一定改变。
c.在电磁感应现象中,机械能转化为电能。
②发电机的原理:利用了电磁感应现象;③直流电动机的工作过程,就是把电能转化为机械能的过程。
从能量转化的角度看,发电机和电动机的运转互为反过程。
2.电能的输送:(1)高压输电:高压输电可以保证在输送功率不变,减小输电电流来减小输送电的电能损失。
(2)变压器:能把交流电的电压升高或降低发电站都安装了用来升压的变压器,实现高压输电。
但是我们用户使用的是低压电,所以在用户附近又要安装降压的变压器。
高压电输到用电区附近时,要把电压降下来目的:一是为了安全,二是用电器只能用低电压。
(3)家庭电路:由火线和零线组成的双芯电缆把电能引入住户。
下图是一个典型的家庭电路布线图,在供电箱的每一条支路上都装有不同电流大小的自动断路器。
一旦电流超过定值,断路器便会自动切断电路,故障排除后只要重新合上开关便可恢复供电。
(4)输送电能的高压输电线路要连接成电网。
大型发电站都必须并网运行,这样电能可以通过电网相互调剂,从而平衡电网中不同区域的用电负荷。
3.电动机:通电直导线在磁场中受到力的作用。
力的方向与磁场方向、导线电流方向有关。
磁场对通电导线和通电线圈作用而运动过程中,把电能转化为机械能,电动机就是从这一理论设计制造出来的。
(1)磁场对电流的作用中磁场方向、电流方向、导体受力方向三者应互相垂直,同时改变其中两个方向另一个方向不变,若首先改变其中一个方向而另一个方向不变,则第三者方向一定改变。
(2)当通电直导线的方向与磁感线的方向平行时(如图甲所示),磁场对通电直导线(图甲中直导线ab )没有力的作用。
当通电直导线的方向与磁感线的方向不平行(斜交)时,磁场对通电直导线(图乙中直导线ab )有力的作用(垂直纸面向内)。
当通电直导线的方向与磁场的方向垂直时,磁场对通电导线(图丙中直导线ab )的作用力最大(方向垂直纸面向内)。
在图丙中,保持磁感线B 的方向不变,而使直导线ab 内电流方向相反时,ab 受力的方向也相反;保持直导线内电流方向不变,而使磁感线B 的方向相反时,ab 受力的方向也相反。
但如果在图丙中,同时使磁感线B 的方向及ab 内电流方向都变为相反,则直导线ab 的受力方向不发生变化。
要点诠释:说明:判定方法中的右手定则和左手定则,在初中物理暂不做要求。
三种电磁现象的重要应用对比如下:要点三、无线电波和无线电通信1.无线电波:无线电波是电磁波的一种,电磁波是由变化的磁场产生的,它的频率范围为30HZ ~1019HZ 。
无线电波、红外线、可见光、紫外线、X 射线都电磁波,但它们处在不同的频率范围。
电磁波在真空中的传播速度c=3×108m/s 。
电磁波与声波一样也有不同的频率,不同的频率(f)对应不同的波长(λ),电磁波的波长、波速和频率间的关系式为:c=λf ,因为波速一定,所以频率越高,波长越短,反之,频率越低,波长越长。
无线电波主要可分为四个波段:长波、中波、短波、微波。
2.不同频率范围的无限电波的传播特点和应用以广播电视为例(如图,与运输货物进行类比):4.信息高速公路:现代“信息高速公路”是微波通信、卫星通信和光纤通信等高速、大容量信息传输通道的俗称。
【典型例题】类型一、基础知识1.要改变直流电动机线圈转动的方向,可行的办法是( )A.改变电流的大小B.改变磁场的强弱C.只改变电流方向D.同时改变电流方向和磁场方向【答案】C【解析】AB、改变电流的大小、改变磁场的强弱可以改变电机的转动速度,不能改变转动方向,不符合题意;C、磁场方向不变时,改变线圈中的电流方向可以改变电动机的转动方向,符合题意;D、同时改变电流方向和磁场方向,线圈转动的方向不改变,不符合题意。
故选C。
【点评】改变通电导体在磁场中的受力方向和转动速度的影响因素很相似,注意区分:通电导体在磁场中的受力方向跟电流方向和磁场方向有关;通电导体的转动速度跟电流大小和磁场强弱有关。
2.平时输送电能中,为了减少电能在线路中的损耗,通常采取的办法是()A.加大输送电流B.用高压输电C.用超导体输电D.减少输送功率【答案】B【解析】由焦耳定律Q=I2Rt可知:在R和t一定时,减小I,可以减小电能的损失,由公式I=P/U可知,当输送电功率一定时,输送电路的电压越大,输送导线的电流越小。
A、加大输送电流,会增大电能在线路中的损耗,故不能采用;B、用高压输电,可以减小输送电线的电流,减少电能在线路中的损耗,也是我们现在采用的输电方式;C、用超导体可以无损耗的输电,但超导材料是我们正在研究的新材料,还不能应用到生活中,故此方法还不现实;D、减少输送功率,会增大输送导线的电路,增大电能的损耗,故此方法不能采用。