多级离心泵的设计
- 格式:doc
- 大小:31.00 KB
- 文档页数:5
多级离心泵:功用特点与结构分析多级离心泵是一种常见的离心泵类型,它由多个离心叶轮和几个
导向叶片构成,每个叶轮和导向叶片组合形成一个级别。
多级离心泵
适用于高扬程、中小流量场合,其故障率较低,效率较高,使用寿命
较长等优点。
一、结构组成
1.叶轮:叶轮是离心泵中转换水能的元件。
多级离心泵中由多个
叶轮组合成不同级数,其叶片数量和角度大小会在不同级别产生变化。
2.导向叶片:导向叶片是多级离心泵中控制流量方向和调节进出
口压力的重要部件,在泵内安装在叶轮之间。
3.泵壳:泵壳是多级离心泵的主体部件之一,由前壳体和后壳体
组成,在泵的安装和维修时都是非常重要的部件。
二、工作原理
多级离心泵主要通过叶轮的高速旋转产生离心力,将液体加速向
外运动,然后由导向叶片来转变流向,将高速液体变成高压液体并送出。
三、应用领域
多级离心泵适用于高层建筑、城市供水、农田灌溉、工业循环水
等领域,其高扬程和高效率的特点使其广受欢迎。
同时,在化工、制
药及油田开采等行业也有广泛应用。
四、建议选择
在选择多级离心泵时,应根据具体工况选择泵的扬程、流量、材质、密封方式和马力等参数。
同时,在购买前应该注意检查泵的质量、噪音和温度,避免潜在故障的发生。
立式多级离心泵技术要求首先是泵的设计原则。
立式多级离心泵的设计应符合流体力学原理,具有合理的流道设计、适宜的叶片形状和角度以及正确的叶轮安装间隙等。
尤其是在多级叶轮设计时,应合理确定各级叶片数目、叶轮直径、流道宽度和轴向间隙等参数,以提高泵的效率和性能。
其次是泵的材料选择。
立式多级离心泵工作环境一般较为复杂,介质可能含有腐蚀性物质、高温或低温介质等,因此要选择适合的材料以保证泵的耐腐蚀性、耐磨性和耐高温性。
常用的材料有不锈钢、镍基合金等,对于特殊工况下的泵,还需要进行防腐处理或涂层加工。
再者是泵的尺寸和重量限制。
立式多级离心泵一般是垂直布置的,需要安装在固定的基座上进行运行。
因此,泵的尺寸和重量要满足现场布置的要求,同时要考虑到方便维护和检修的需要。
在设计过程中,应充分考虑泵的轴向和径向尺寸,以保证泵能够顺利安装并具有稳定的运行性能。
此外,还有泵的密封和冷却系统的设计。
由于立式多级离心泵运行时需要对介质进行密封,因此泵的密封系统设计尤为重要。
常用的密封方式有填料密封、机械密封等,需要根据介质特性和工艺要求进行选择。
同时,为了保证泵的稳定工作,还需要设计合适的冷却系统,以控制泵的温度,避免泵的轴承和密封部件过热。
最后,是泵的运行可靠性和维护性。
立式多级离心泵在运行中需要具有可靠的性能和操作特性,能够保证长时间的连续运行。
同时,由于泵的密封和轴承等部件容易磨损,需要进行定期的维护和保养,因此泵的维护性设计也是一个重要的技术要求。
总之,立式多级离心泵的技术要求包括泵的设计原则、材料选择、尺寸和重量限制、密封和冷却系统设计以及运行可靠性和维护性等方面。
只有在满足这些要求的基础上,才能够设计出高效、安全、可靠的立式多级离心泵,满足不同工况下的需求。
多级离心泵的结构图,多级离心泵工作原理从总体上看,多级离心泵是若干个叶轮安装在同一泵轴上,叶轮的外侧是液体导流装置及泵壳。
然而,如何将叶轮组安装在泵体内或者从泵体内取出呢?无外乎两个办法,一个是将泵体及导流装置沿泵轴的轴线水平剖分,使其成为上下两部分,这叫水平剖分式多级离心泵;另一个办法是将泵体及液体导流装置沿泵轴方向在叶轮之间以垂直于泵轴的平面剖切成若干个段,这叫分段式多级离心泵。
图3 1水平剖分式多级离心泵结构图1泵盏,2泵体,3轴承体;4-轴套;5一叶轮;6泵轴;7一轴头油泵下面分别对水平剖分式和分段式多级离心泵的结构加以介绍。
1水平剖分式多级离心泵的结构图3 1所示为水平剖分式多级离心泵结构图。
这种泵采用蜗壳形泵体,每个叶轮的外围都有相应的蜗室,相当于将几个单级蜗壳泵装在同一根轴上串联工作,所以又叫蜗壳式多级泵。
由于泵体是水平剖分式,吸入口和排出口都直接铸在泵体上,检修时很方便,只需把泵盖取下,即可暴露整个转子,在检修转子时,需将整个转子吊出时,不必拆卸连接管路。
这种泵的叶轮通常为偶数对称布置,大部分轴向力得到平衡,因而不需要安装轴向平衡装置。
水平剖分式多级泵流量范围为450~1500m'/h,最高扬程可达1800mHz0。
由于叶轮对称布置,泵壳内有交叉流道,如图3 2所示,所以它比同性能的分段式多级泵体积大,铸造工艺复杂,泵盖和泵体的定位要求高,在压力较高时,泵盖和泵体的结合面密封难度大。
2.分段式多级离心泵的结构在压力较高时,通常采用多级离心泵。
这种泵是一种垂直剖分多级泵,它有一个前段、一个尾段和若干个中段组成,用四个长杆螺栓连接为一个整体。
安装在泵轴上的叶轮的个数就代表离心泵的级数,中段的每个叶轮配一个导轮,导轮的作用基本上同蜗壳相同,主要是将动能转化为静压能。
叶轮一般为单吸的,吸人口都朝向一个方向。
为了平衡轴向力,在末段后面装有平衡盘,并用平衡管和前段进口相连通。
其转子在工作过程中可以沿轴向左右窜动,靠平衡盘的推力平衡叶轮组的轴向力,将转子维持在平衡位置附近。
(国内标准)GB多级离心水泵技术条件GB5659-1985多级离心水泵技术条件GB5659-85Technicalspecificationsformultistagecentrifugalpumps———————————————————————————————————————本标准适用于输送清水或物理及化学性质类似水的其他液体的多级离心水泵。
所输送的液体温度壹般不高于80°C。
用户如对产品有不同于本标准的要求时,按订货单和数据单[附录A(补充件)]执行。
本标准中使用的术语均于GB3216-82《离心泵、混流泵、轴流泵和旋涡泵试验方法》和GB3215-82《炼厂、化工及石油化工流程用离心泵通用技术条件》中有定义。
技术要求1.1泵的性能泵制造厂应确定产品的允许工作范围,且绘出性能曲线(扬程、效率、轴功率、汽蚀余量和流量的关系曲线)。
1.2泵的效率泵的效率应符合JB3560-84《多级离心水泵效率》的规定。
1.3泵的汽蚀余量(NPSH)泵的汽蚀余量应符合JB3562-84《离心泵、混流泵和轴流泵汽蚀余量》的规定。
1.4原动机1.4.1确定原动机功率应考虑下列因素:a.泵的工作点于性能曲线上的位置;b.且联使用的系统中只有壹台泵工作时,可能出现的工况;c.轴封的摩擦损失;d.传动损失;e.现场大气压情况。
图11.4.2原动机功率至少要等于图1所示的泵额定轴功率(横坐标)和纵坐标百分数的乘积。
1.5临界转速1.5.1于刚性轴的情况下,泵的工作转速n必须小于第壹临界转速nc1,应取:n<0.8nc11.5.2于挠性轴的情况下,泵的工作转速n必须大于第壹临界转速nc1,而小于第二临界转速nc1,应取:1.4nc1<n<0.7nc21.6平衡、振动和噪声1.6.1泵的振动测量和评价应符合JB/TQ380-84《泵的振动测量和评价方法》的规定。
通常采用附录B中G6.3级平衡法能够满足要求。
多级离心泵结构图演示摘要:本文将通过演示多级离心泵的结构图,详细说明其工作原理和构成,以及各个部件的功能和作用。
多级离心泵是一种常用的流体输送设备,广泛应用于工业和农业领域。
了解其结构和工作方式对我们理解其运行原理和维护保养至关重要。
1. 引言多级离心泵是一种采用转动叶轮通过离心力将流体抽送到高压或提供高压的设备。
它由多个离心泵级联组成,每个级别都有一个转动的叶轮。
本文将通过结构图演示多级离心泵的运行原理和结构特点。
2. 单级离心泵结构图为了更好地理解多级离心泵的结构,首先我们来了解单级离心泵的结构。
如图1所示,单级离心泵主要由以下几个部分组成:1) 泵体:泵体是离心泵的主要部分,它通常是由铸造或锻造而成的金属材料制成。
泵体内有一个叫做泵腔的空腔,流体经过泵腔被吸入和排出。
2) 叶轮:叶轮位于泵体内,并且与泵轴相连。
叶轮上有若干叶片,当泵叶轮旋转时,离心力将流体抛出。
3) 泵轴:泵轴是连接驱动装置和叶轮的部件,一般是由钢制成。
泵轴需要具备足够的强度和刚性来承受叶轮的旋转力矩和流体的压力。
4) 密封装置:泵的密封装置主要用于防止泵内的流体泄漏。
常见的密封方式有填料密封和机械密封两种。
5) 泵立管和出口管:泵立管和出口管分别用于引导流体从泵体进入和流出。
3. 多级离心泵结构图在单级离心泵的基础上,我们来看看多级离心泵的结构特点。
多级离心泵通常由两个或多个单级离心泵级联而成。
如图2所示,每个级别都有自己的泵体、叶轮和泵轴。
多级离心泵的级别越多,流体在泵内流动的压力就会越高。
在多级离心泵中,每个级别的出口是上一个级别的进口。
当流体通过第一个级别时,它会被推到下一个级别,然后流体经过各个级别的循环,逐渐增加压力。
多级离心泵的设计可以根据具体的需求灵活调整级数和流程布局,以满足不同流体输送的要求。
4. 多级离心泵的工作原理多级离心泵的工作原理基于离心力的作用。
当泵轴驱动叶轮旋转时,叶轮产生离心力将流体从泵的吸入口吸入,并将其推向出口。
cdl多级离心泵标准CDL多级离心泵标准是指针对CDL型多级离心泵的相关标准和规范。
多级离心泵是一种常用的流体加压设备,它具有高效、耐用、稳定的特点,在工业生产和公共设施中起着重要的作用。
CDL多级离心泵标准主要包括以下几个方面:设计要求、产品分类、技术参数、结构特点和材料要求。
CDL多级离心泵的设计要求要符合国内相关的标准和规范。
例如,设计工作点要在泵性能曲线的最高效率点附近,设计寿命要满足设备的使用寿命要求,设计的安全系数要符合压力容器设计的相关标准等。
CDL多级离心泵根据其用途、结构和使用条件的不同,可以分为几个不同的类型。
例如,根据流量和扬程的大小可以分为小型、中型和大型离心泵;根据运行方式可以分为单机和多机组合离心泵等。
CDL多级离心泵的技术参数应该包括以下几个方面:额定流量、额定扬程、额定功率、额定转速、额定效率、轴功率、进口压力、出口压力等。
这些参数是测量和比较不同型号和规格的泵的重要依据。
CDL多级离心泵的结构特点也是需要在标准中进行规定的。
例如,离心泵的主要部件包括叶轮、泵壳、轴承、密封装置等,这些部件的选材和加工要求都需要在标准中进行具体规定。
另外,泵的安装方式、冷却方式、轴向力平衡方式等也是需要在标准中进行明确规范的。
CDL多级离心泵的材料要求是指针对泵的主要部件的材料进行规定。
例如,泵的叶轮和泵壳可以采用铸铁、不锈钢、铜合金等材料,这些材料的选择要符合相关的标准和规范,以确保离心泵在使用过程中的可靠性和安全性。
CDL多级离心泵标准是指对CDL型多级离心泵的设计、分类、技术参数、结构特点和材料要求等方面进行规范和标准化的文件。
这些标准和规范的制定可以有效地指导制造商在设计、生产和销售过程中遵循统一的标准,提高产品质量和安全性,并方便用户选择和使用离心泵。
卧式多级离心泵引言卧式多级离心泵是一种常见的工业设备,广泛应用于供水、排水、冷却循环和工业流程等领域。
它具有高效、节能、可靠性强等优点,因此在各个行业中得到了广泛的应用。
本文将对卧式多级离心泵的工作原理、结构特点、应用领域以及维护保养进行详细介绍。
一、工作原理卧式多级离心泵是一种通过叶轮和壳体之间运动的工作介质的动能转变为压力能的设备。
它由多个级别的叶轮和泵壳组成。
当泵的电机启动时,叶轮开始旋转,然后通过离心力将工作介质推出泵出口,从而实现了液体的输送。
在每个级别的叶轮中,液体被压缩,从而增加了泵的扬程和压力。
卧式多级离心泵一般采用平衡或反平衡式结构,以保证泵的稳定运行。
二、结构特点1. 泵壳:卧式多级离心泵的泵壳通常采用铸铁、不锈钢等材料制成,以保证泵的耐腐蚀性和耐用性。
同时,泵壳具有合理的结构设计,以减少泵内的水力损失和能耗。
2. 叶轮:卧式多级离心泵的叶轮一般采用叶片数目多、叶片形状合理的设计,以提高泵的效率和扬程。
叶轮的材质可以根据工作介质的特性进行选择,一般包括不锈钢、铸铁、铜合金等。
3. 机械密封:卧式多级离心泵通常采用机械密封来保证泵的密封性。
机械密封通常包括固定环、活动环、填料和密封润滑液等部分。
它们的合理选择和使用能够有效地防止泵内液体泄漏。
4. 电机:卧式多级离心泵的电机一般采用低噪音、高效率的设计,并且具有过热保护和防水性能等特点。
合适的电机能够提高泵的运行效率和稳定性。
三、应用领域卧式多级离心泵广泛应用于供水、排水、冷却循环和各种工业流程等领域。
具体的应用包括但不限于以下几个方面:1. 给水系统:卧式多级离心泵在城市给水系统中起到重要的作用。
它们能够将水从水源地抽送至各个供水站点,满足城市的日常用水需求。
2. 冷却循环:卧式多级离心泵在冷却循环系统中用于循环冷却介质,从而保持设备和工艺的稳定性。
例如,核电站、石油化工厂等都需要大量的冷却水进行循环。
3. 工业流程:卧式多级离心泵在各种工业流程中用于输送液体介质。
多级离心泵型式与基本参数多级离心泵是一种常见的工业设备,广泛应用于液体输送领域。
本文将介绍多级离心泵的型式和基本参数,并对其工作原理和应用进行探讨。
一、型式和基本参数多级离心泵是由多个离心泵级联而成的泵,适用于输送高扬程液体。
其型式和基本参数主要包括以下几个方面:1. 型式:多级离心泵的型式根据叶轮布置可分为两种类型:轴向分离式和径向分离式。
轴向分离式多级离心泵的各级叶轮沿轴向排列,流体在泵内呈轴向流动;径向分离式多级离心泵的各级叶轮沿径向排列,流体在泵内呈径向流动。
2. 叶轮数量:多级离心泵的叶轮数量决定了其扬程能力。
一般来说,叶轮数量越多,扬程能力越高。
常见的叶轮数量有2、3、4、5个等。
3. 叶轮直径:叶轮直径是多级离心泵的重要参数之一。
叶轮直径越大,泵的扬程能力越高。
叶轮直径的选择需要综合考虑泵的使用场合和输送液体的特性。
4. 流量:流量是指泵每单位时间内输送的液体体积。
多级离心泵的流量大小取决于泵的转速、叶轮直径和叶轮数量等因素。
5. 扬程:扬程是指泵能够克服的液体静压力差。
多级离心泵的扬程能力取决于泵的叶轮数量、叶轮直径、转速等因素。
二、工作原理多级离心泵的工作原理是利用叶轮的旋转产生离心力,使液体产生压力,从而实现液体的输送。
当泵启动后,电机驱动叶轮高速旋转,液体被叶轮吸入并加速,然后被叶轮的离心力推出,产生一定的压力。
多级离心泵的特点是在泵体内设置多个叶轮,每个叶轮都对液体进行一次加速和压力增加,从而实现高扬程的输送。
三、应用领域多级离心泵广泛应用于各个工业领域,特别是需要输送高扬程液体的场合。
其主要应用领域包括以下几个方面:1. 石油化工:多级离心泵在石油化工行业中用于输送原油、炼油产物、化工原料和成品油等。
2. 电力工程:多级离心泵在电力工程中用于输送循环水、冷却水和给水等。
3. 钢铁冶金:多级离心泵在钢铁冶金行业中用于输送冷却水、循环水、工艺水和废水等。
4. 污水处理:多级离心泵在污水处理领域中用于输送污水、污泥和废水等。
GB5659-1985多级离心水泵技术条件GB 5659-85Technical specifications for multistage centrifugal pumps———————————————————————————————————————本标准适用于输送清水或物理及化学性质类似水的其他液体的多级离心水泵。
所输送的液体温度一般不高于80°C。
用户如对产品有不同于本标准的要求时,按订货单和数据单[附录A(补充件)]执行。
本标准中使用的术语均在GB3216-82《离心泵、混流泵、轴流泵和旋涡泵试验方法》和GB3215-82《炼厂、化工及石油化工流程用离心泵通用技术条件》中有定义。
技术要求1.1泵的性能泵制造厂应确定产品的允许工作范围,并绘出性能曲线(扬程、效率、轴功率、汽蚀余量与流量的关系曲线)。
1.2泵的效率泵的效率应符合JB3560-84《多级离心水泵效率》的规定。
1.3泵的汽蚀余量(NPSH)泵的汽蚀余量应符合JB3562-84《离心泵、混流泵和轴流泵汽蚀余量》的规定。
1.4原动机1.4.1确定原动机功率应考虑下列因素:a.泵的工作点在性能曲线上的位置;b.并联使用的系统中只有一台泵工作时,可能出现的工况;c.轴封的摩擦损失;d.传动损失;e.现场大气压情况。
图11.4.2原动机功率至少要等于图1所示的泵额定轴功率(横坐标)与纵坐标百分数的乘积。
1.5临界转速1.5.1在刚性轴的情况下,泵的工作转速n必须小于第一临界转速nc1,应取:n<0.8nc11.5.2在挠性轴的情况下,泵的工作转速n必须大于第一临界转速nc1,而小于第二临界转速nc1,应取:1.4nc1<n<0.7nc21.6平衡、振动和噪声1.6.1泵的振动测量与评价应符合JB/TQ380-84《泵的振动测量与评价方法》的规定。
通常采用附录B 中G6.3级平衡法可以满足要求。
1.6.2泵的噪声测量与评价应符合JB/TQ381-84《泵的噪声测量与评价方法》的规定。
浅析多级离心泵轴向力平衡装置设计在现代工业生产中,多级离心泵已经广泛被应用到石油开采、水利发电等领域,由于多级离心泵的推广使用,我国工农产业的生产效率都得到了很大提升。
然而,在多级离心泵的运行过程中自然出现的轴向力给离心泵的运行带来了不好的影响。
轴向力使离心泵中的零件损耗速度加快,许多多级离心泵因此在运行过程中发生突然的损坏,降低了生产效率。
因此,相关部门应该做好轴向力平衡装置的设计工作,并对其进行定期的维护和检修工作,提升整个设备的运行稳定性。
下面就简要分析在现代工业生产中多级离心泵轴向力平衡装置的设计工作,并从多角度出发,提出相关的设计方法和理念。
1 多级离心泵轴向力的产生多级离心泵在正常运转时,受到自然因素和运转必需因素的影响,会产生各种性质的轴向力。
以下根据轴向力产生的原因将多级离心泵的轴向力分为四种。
其一,离心泵运转时,叶轮旋转时的程度差异给离心泵的驱动端口和自有端口带来了不同的压力,构件自然产生一种指向驱动端口的弹力来平衡压力,这种弹力是轴向力的一部分。
其二,为了将液体从离心泵的吸入口输送到排出口,离心泵必须改变液体的流动方向,此时液体将对离心泵的叶片产生作用力。
其三,离心泵内的转子本身也具有一定的重力势能,因此也会产生一个向下的轴向力;其四,多级离心泵在运行时,内部的转子处于高速旋转状态,内表面的空气流速提高降低了压强,使外界的大气压强大于内部空间压强,这就使得其内部轴端上会产生一定的压力,这也是离心泵轴向力的一种表现形式。
现代多级离心泵中轴向力的产生原因很多,设计人员在对平衡装置进行设计时一定要多方考虑,设置多方面抵消方式,达到各处轴向力都不对零件造成影响,使离心泵能够安全使用直到使用年限为止。
多级离心泵的相关设计研发工作应该由相关部门牵头,充分重视设计工作,设计人员在设计中要注意理论的探讨和实践的结合,确保设计的多级离心泵在现实中具有较高的可实用性和可操作性,且要注意设备的经济性,既保证多级离心泵良好运行,提高工农业的生产效率,也降低设备的运行成本。
卧式多级离心泵的工作原理卧式多级离心泵是一种常见的工业设备,其工作原理是通过离心力将液体从低压区域抽送到高压区域。
它由多个级别的叶轮和泵壳组成,每个级别都有一个叶轮和一个导流器。
液体从进口进入泵壳,然后经过多个级别的叶轮加速,最终被压入出口。
让我们来了解一下离心泵的基本结构。
卧式多级离心泵通常由泵壳、叶轮、轴、密封装置和电机等组件组成。
泵壳是一个封闭的金属外壳,用于容纳叶轮和导流器。
叶轮是一个旋转的装置,它由多个叶片组成,可以通过电机的驱动旋转。
轴是连接电机和叶轮的部件,它传递电机的动力给叶轮。
密封装置用于防止泵内液体泄漏。
在泵工作时,电机驱动轴和叶轮旋转。
当叶轮旋转时,它会产生离心力,将液体从进口抽入泵壳。
液体经过第一个级别的叶轮后,会被加速并进入导流器。
导流器的作用是将液体引导到下一个级别的叶轮。
液体在每个级别的叶轮中经历同样的过程,逐渐被加速。
最终,液体被压入出口,形成高压。
卧式多级离心泵的工作原理基于离心力的作用。
离心力是一种惯性力,它使物体远离旋转中心。
在离心泵中,叶轮的旋转产生的离心力使液体被抽入泵壳,并通过多个级别的叶轮逐渐加速。
由于离心力的作用,液体在叶轮中获得的动能会转化为压力能,从而使液体被压入出口。
卧式多级离心泵的工作原理具有以下特点:1. 高效率:由于液体在多个级别的叶轮中逐渐加速,泵的效率相对较高。
这意味着泵可以更有效地将液体从低压区域输送到高压区域。
2. 多级设计:卧式多级离心泵通常由多个级别的叶轮组成,每个级别都可以增加液体的压力。
这种多级设计使得泵可以产生较高的出口压力。
3. 稳定性:卧式多级离心泵由于叶轮和导流器的多级设计,使得泵的运行更加稳定。
这意味着泵可以在较长的时间内保持稳定的工作状态,减少故障和维修次数。
4. 应用广泛:卧式多级离心泵适用于各种工业领域,如石油、化工、电力、冶金等。
它可以用于输送各种液体,如清水、污水、油品等。
尽管卧式多级离心泵在工业应用中具有广泛的用途,但在使用时仍需注意以下问题:1. 泵的选型:根据具体的工作条件和需求,选择合适的卧式多级离心泵。
多级立式离心泵的定子1.引言1.1 概述多级立式离心泵是一种常见的离心泵类型,它是由多级叶轮和定子构成的。
在实际工程应用中,多级立式离心泵被广泛应用于各种工业领域,如化工、石油、冶金等。
其主要作用是将液体通过旋转运动产生的离心力输送至目标位置。
本文将深入探讨多级立式离心泵的定子部分。
在多级立式离心泵中,定子是泵中的固定部分,起到支撑和定位叶轮的作用。
它通常由定子套、叶轮室和导流窗口组成。
定子套是一个管状结构,用于固定和保护叶轮。
叶轮室是定子套的上部,形成了叶轮旋转时所需的流道。
导流窗口位于叶轮室的下部,用于引导流体进入叶轮室后与叶轮发生作用。
多级立式离心泵的定子设计有两个关键因素,即定子内外部的磁场和定子的结构强度。
定子内外部的磁场是通过电磁铁或永磁体等方式产生的。
磁场的设计和控制可以影响离心泵的效率和输出能力。
定子的结构强度是指定子材料的强度和受力情况。
在高速旋转的叶轮作用下,定子需要能够承受较大的离心力和惯性力,因此定子的结构强度非常重要。
总之,多级立式离心泵的定子为泵的固定部分,起到支撑和定位叶轮的作用。
定子的设计不仅关乎泵的效率和输出能力,还与定子的结构强度密切相关。
对于多级立式离心泵的定子进行深入研究,可以为相关工程领域的设计和应用提供有益的参考和指导。
1.2文章结构文章结构部分的内容可以描述文章的主要章节和各章节的内容安排,以帮助读者更好地理解文章的结构和逻辑。
以下是一个可能的内容:在本文中,将以多级立式离心泵的定子为主题,对其原理、结构、优势和应用进行深入研究和探讨。
为了更好地组织和呈现这些内容,本文将分为以下几个章节。
第一章为引言。
首先,我们将简要介绍多级立式离心泵的背景和重要性,引出本文的主题。
然后,我们将概述本文的结构,包括各章节的内容和组织方式。
最后,我们明确本文的目的和意义,以帮助读者更好地理解文章的整体框架。
第二章为正文部分。
首先,我们将详细介绍多级立式离心泵的原理,包括其基本工作原理和流体力学原理。
一种多级自吸离心泵叶轮导叶结构的制作方法【原创版4篇】《一种多级自吸离心泵叶轮导叶结构的制作方法》篇1制作多级自吸离心泵叶轮导叶结构的方法包括以下步骤:1. 确定导叶结构类型:根据泵的用途和性能要求,选择径向式导叶或流道式导叶。
流道式导叶的正向导叶和反向导叶是铸在一起的,中间有一连续流道,使液体在连续的流道内流动,不易形成死角和突然扩散,速度变化比较均匀,水力性能较好,但结构复杂,制造成本高。
2. 确定导叶参数:根据泵的性能要求,计算导叶的流量、扬程、效率等参数。
3. 设计导叶结构:根据确定的导叶类型和参数,设计导叶的结构。
导叶的结构应该满足流体力学原理,使流体在导叶内部形成旋涡,增加压力,提高效率。
4. 制造导叶:根据设计的导叶结构,采用铸造、锻造、焊接等方法制造导叶。
制造过程中应该注意导叶的精度、光洁度和表面质量,以保证泵的性能和寿命。
5. 安装导叶:将制造好的导叶安装在泵的叶轮上,调整导叶的位置和角度,以达到最佳的性能和效率。
在制作多级自吸离心泵叶轮导叶结构时,应该注意导叶的精度、光洁度和表面质量,以保证泵的性能和寿命。
《一种多级自吸离心泵叶轮导叶结构的制作方法》篇2制作多级自吸离心泵叶轮导叶结构的方法包括以下步骤:1. 确定导叶结构类型:根据泵的用途和性能要求,选择合适的导叶结构类型,如径向式导叶或流道式导叶。
2. 测量叶轮尺寸:测量叶轮的尺寸,包括叶轮直径、宽度和厚度等,以确定导叶的尺寸和安装位置。
3. 制造导叶:根据测量结果和导叶结构类型,制造导叶。
通常可以通过铸造、锻造或数控加工等方式制造导叶。
4. 安装导叶:将制造好的导叶安装在叶轮上,并调整导叶的位置和角度,以确保导叶与叶轮之间的间隙合适,并且导叶的流道与叶轮的流道相匹配。
5. 测试性能:安装好导叶后,对泵的性能进行测试,如流量、扬程、效率等,以确定导叶的性能是否符合要求。
在制作多级自吸离心泵叶轮导叶结构时,需要注意导叶的尺寸和形状要与叶轮相匹配,以确保良好的水力性能和机械性能。
多级清水离心泵的结构以及工作原理清水离心泵供吸送清水及物理化学性质类似水不含固体颗粒的液体,广泛适用于工农业及城市、排水、消防供水等。
清水离心泵根据国际标准IS02858所规定的性能和尺寸设计,其技术标准均向国际标准靠拢,达到国际先进水平。
清水离心泵是我国推广的节能泵类产品之一。
清水离心泵为后开式,拆开泵盖和叶轮时不需拆卸吸水和排出管路。
悬架内装有两个滚珠轴承,用机器油或润滑脂润滑。
泵通过弹性联轴器由电动机直接驱动。
涡室、脚、进水法兰和出水法兰铸成一个整体。
1、清水离心泵系根据国际标准ISO2858所规定的性能和尺寸设计的,主要由泵体、泵盖、叶轮、轴、密封环、轴套及悬架轴承不见等组成。
2、清水离心泵的泵体和泵盖部分,是从叶轮背面处剖分的,即通常所说的后开门结构形式。
其优点是检修方便,检修时不动泵体,吸入管路,排出管路和电动机,只需拆下加长联轴器的中间联接件,即可退出转子部分进行检修。
3、清水离心泵的壳体(即泵体和泵盖)构成水泵的工作室。
叶轮、轴和滚动轴承等为泵的转子。
悬架轴承部件支撑着泵的转子部分,滚动轴承受泵的径向力和轴向力。
4、清水离心泵为了平衡泵的轴向力,大多数泵的叶轮前、后均设有密封环,并在叶轮后盖板上设有平衡孔,由于有些泵轴向力不大,叶轮背面未设密封环和平衡孔。
5、清水离心泵的轴向密封环是由填料压盖,填料环和填料等组成,以防止进气或大量漏水。
泵的叶轮如有平衡,则装有软填料的空腔与叶轮吸入口相通,如叶轮入口处液体处于真空状态,则很容易沿着轴套表面进气,故在填料腔内装有填料环通过泵盖上的小孔,将清水离心泵室内压力水引至填料环进行密封。
泵的叶轮如没有平衡孔,由于叶轮背面液体压力大于大气压,因而不存在漏气问题,故可不装填料环。
6、清水离心泵为避免轴磨损,在轴通过填料腔的部位装有轴套保护。
轴套与轴之间准有O型密封圈,以防止沿着配合表面进气或漏水。
7、清水离心泵的传动方式是通过加长弹性联轴器与电动机联接的,泵的旋转方向,从驱动端看,为顺时针方向旋转.。
多级离心泵叶轮顺序
多级离心泵通常由多个叶轮( 又称为级)组成,每个叶轮都有自己的吸入口和压出口。
这些叶轮按照一定的顺序排列,形成多级泵。
多级泵的设计旨在通过多级压缩来增加泵的扬程,从而适应更高的抽水高度或压力要求。
通常,多级离心泵的叶轮排列可以分为两种基本方式:
1.串联排列 In-series(arrangement):(在串联排列中,每个叶轮的出口都直接与下一个叶轮的入口相连,形成一个串联的结构。
这种排列方式可以增加总扬程,但相应地也增加了泵的总长度。
这在需要高扬程的情况下比较常见。
2.并联排列 In-parallel(arrangement):(在并联排列中,每个叶轮的出口都与其他叶轮的出口相连,形成一个并联的结构。
这种排列方式通常用于需要更大的流量而不是很高扬程的情况。
多级泵的设计通常根据具体的工程要求和流体力学原理进行优化。
在实际应用中,不同厂家可能采用不同的设计和排列方式,以满足特定的性能和运行需求。
因此,在选择多级离心泵时,需要仔细考虑所需的扬程和流量,以确保选用的泵能够满足工程要求。
1/ 1。
常用D型多级水泵滚动体的形式滚动轴承的材料滚动轴承的内、外圈及滚动体是由高碳铬轴承钢制造,如GCr9、GCr15、GCr15SiMn、G20CrNi2Mo等。
滚动轴承的内、外圈及滚动体必须充分淬硬,并须经磨削和抛光,以提高材料的接触疲劳强度和耐磨性。
保持架一般用低碳素钢板冲压成形,根据用途不同,有的则用有色金属(如黄铜)或塑料(如酚醛夹布胶木)制成。
滚动轴承的游隙、接触角和偏位角滚动轴承的游隙、接触角和偏位角是居拓E轴承工作性能的要素。
1、游隙轴承中的滚动体与内、外圈滚道之间的间隙称为轴承的游隙。
轴承游隙分为径向游隙及轴向游隙两种。
当轴承中的一个座圈固定不动,另一个座圈沿径向(或轴向)从一个极端位置到另一个极端位置的移动量,就称为轴承的径向(或轴向)游隙。
游隙对轴承的工作寿命、温升和噪音等都有很大的影响。
各级精度的轴承的游隙都有标准规定。
2、接触角轴承的接触线与轴承径向平面间的夹角称为接触角。
向心球轴承在未受载荷或受纯径向载荷作用时,其接触角。
二0;而当有轴向载荷作用时,其接触角增大到a,。
轴承接触角变化的大小通常与轴向载荷、游隙、滚道凹槽与球半径的比值以及轴承零件的弹性变形等因素有关。
3、偏位角轴承由于具有径向游隙,因此可以容许由于轴的挠曲变形而引起内、外圈有一定的相对偏斜。
滚动轴承的常用类型滚动轴承的类型很多,并且是标准件,由专业轴承厂大批量生产。
因此我们主要是通过熟悉类型、标准及其应用特点来合理选用。
按照轴承内部结构和能承受外载荷的方式不同,滚动轴承主要可分为:(1)向心轴承主要承受径向载荷,或同时承受较小的轴向载荷。
(2)幼推力轴承只能承受轴向载荷。
(3)向心推力轴承能同时承受径向、轴向载荷。
因为我们就这么一辈子,几十年的光景,无法重来,开心也好,不开心也罢,怎么都是活着,那么何不让自己开开心心的过好每一天呢!生活虽辛苦,但我们一定要笑着过,以积极乐观的心态让日子过得有滋有味,这样才不白来人世走一遭,才会无怨无悔。
由于多级离心泵的特殊性,与单级离心泵相比,多级离心泵在设计、使用和维护维修等方面,有着不同、更高的技术要求,人们往往在一些细节上的疏忽或者考虑不周,使得多级离心泵投用后频繁发生异常磨损、振动、抱轴等故障,以致停机。
1 设计方面1.1 基本结构常用的多级离心泵基本结构有水平中开式和节段式或称多级串联式两种形式。
水平中开式的结构特点是上下泵体通过轴心的水平剖分面上对接,进出口管、部分蜗壳及流道铸造在下部泵壳体上,检修维护比较方便,维修时不需拆卸泵的管线便可直接取下泵的上壳体。
节段式的结构特点是每一级由一个位于扩压器壳体内的叶轮组成,扩压器用螺栓和连杆连在一起,各级以串联方式由固定杆固定在一起,好处是耐压高,不易泄漏。
但在维修时必须拆卸进口管道,拆卸装配难度较大。
一般认为,水平中开式多级泵比节段式多级泵刚度好,泵振动值低。
吸入室结构,水平中开式多级泵一般均采用半螺旋形,节段式多级泵大都采用圆环形。
而每级叶轮的压出室,由于蜗壳制造方便、将液体动能转换为压能的效率高,水平中开式多级泵一般采用蜗壳结构;但由于蜗壳形状不对称,易使轴弯曲,在节段式多级泵中只是限于首段和尾段可以采用蜗壳,而在中段则采用导轮装置来进行一级叶轮和次级叶轮之间的能量转换。
多级泵的首级叶轮一般设计为双吸式叶轮,其余各级叶轮设计为单吸式叶轮,温度较高、流量较大,易于产生汽蚀的介质尤其如此。
对于压力非常高的泵,用单层泵的壳体难以承受其压力,常采用双层泵壳体,把泵体制作成简体式的。
筒体式泵体承受较高压力,筒体内安装水平中开式或节段式的转子。
我国有关标准规定,高压锅炉给水泵采用单壳体节段式或双壳体筒式结构,300 MW及其以上发电机组用泵一般应采用双壳体筒式结构。
双壳体的内壳采用节段式或水平中开式结构。
1.2 轴向力平衡1.2.1 常用的轴向力平衡措施多级离心泵轴向力的平衡措施一般有:叶轮对称布置、采用平衡鼓装置、平衡盘装置以及平衡鼓、平衡盘组合装置等几种。
也有采用双平衡鼓平衡机构的,如有的高压锅炉给水泵。
叶轮对称布置或采用平衡鼓装置,轴向力不能完全平衡,仍需安装止推轴承来承受残余轴向力,多级离心泵更多的是采用具有自动调整轴向力作用的平衡盘来平衡轴向力。
在设计多级泵的平衡盘、平衡鼓等装置时,必须配置合适的平衡管路,才能使轴向力平衡装置满足设计要求。
在多级泵的轴承温升过高、轴承烧毁事故中,很多都是因为平衡管过流面积偏小、管路阻力损失过大、平衡能力达不到要求造成的。
文献[1]以平衡鼓装置为例,提出了平衡管管径的计算方法。
王宗明、周龙昌等针对多级离心泵易出现平衡盘与平衡盘座贴合而引起平衡盘及泵损坏的现象,设计出了多级离心泵动力楔防磨平衡盘,如图1所示。
该结构与离心式压缩机的干气密封的原理相似:当平衡盘向平衡盘座靠近时,动力楔可产生巨大的开启力,从而起到防止平衡盘与平衡盘座贴合的作用。
经九个月的运行试验,平衡盘工作正常,工作面无磨损和划痕,可见这种新型动力楔防磨平衡盘可有效防止平衡盘与平衡盘座的贴合。
该动力楔平衡盘不仅能延长平衡盘使用寿命,而且能减小平衡盘间隙泄漏量,节能降耗。
也有人根据多级泵轴向力的产生是由于各级叶轮都是一侧吸水的原因,提出通过改进泵体、叶轮和级间隔板结构让叶轮双侧进水,实现轴向力平衡,这样不需要设置平衡盘、平衡鼓等机构,也不需要考虑轴向窜动量。
1.2.2 平衡盘、平衡鼓机构的局限性(1)变工况:泵启停时,瞬间的轴向力靠平衡盘与平衡盘座的直接接触来承受,摩擦可能会造成平衡盘、座咬死、干烧,甚至发生泵轴被扭断的事故;负荷突变时,轴向力随之变化,转子也轴向窜动,导致平衡盘、座之间间隙突变,易发生汽蚀和振动现象。
(2)液-固两相流介质:进入平衡盘、平衡鼓等平衡机构的介质压力为泵的输出压力,通过节流后的压力为泵的进口压力,介质从高压区向低压区流动时形成喷射冲刷,液-固两相流介质中的固体颗粒会很快磨蚀坏平衡机构的平衡盘、座等动、静零件,最终泵不能正常运行。
1.3 轴挠度多级离心泵泵轴挠度过大,容易引起异常振动、抱轴、机械密封密封面受力不均以致失效等故障,应该从设计上控制径向力的产生,尽量减少泵轴在运行中的挠度值。
在设计方面一般考虑采取如下措施。
(1)采用蜗壳结构进行导流和能量转换的多级泵,蜗壳形状的不对称在运行中容易使轴弯曲,应将相邻两级蜗壳错开180°布置来减少径向力。
(2)泵叶轮的级数不要太多,必要时靠提高每级叶轮的扬程来保证总扬程,这样通过减少泵叶轮级数尽量减短泵轴长度。
(3)选择多级离心泵泵轴材料时,在考虑适合于介质种类、温度等需要的同时,优先选择强度、刚度综合机械性能好的材料。
(4)设计计算泵轴直径时,综合考虑传递功率、起动方法、径向力等因素;同时也考虑在非设计流量工作时可能产生的径向力。
(5)合理选择泵轴的支撑点。
1.4 抗振减振考虑设计多级泵时可以考虑的抗振减振的措施如下。
(1)控制泵轴挠度在规定范围内。
(2)明确要求泵轴、叶轮等进行动、静平衡试验。
(3)要把多级泵的泵轴按刚性轴设计,工作转速应≤0.75倍的一阶临界转速。
(4)叶轮与泵轴单级独立定位,叶轮与泵轴采用过盈配合加热装配,以提高转子组件的刚度和临界转速。
(5)泵轴、叶轮等选材时,选用质量均匀性好的材料。
(6)设计合适的轴的径向间隙,避免因转子与定子非正常摩擦、轴向窜动而引发振动。
(7)采用平衡盘来平衡轴向力的多级泵,合理、正确设计平衡盘机构。
1.5 立式多级泵对于立式多级离心泵,一般设计时考虑了正常运行状况时总的轴向力向下,但在开车初期,由于出口压力还未上升,叶轮前后压差还未建立,存在向上的轴向力,有的就造成轴向上窜起,并伴有机封、轴承部位过热、电机超电流现象,严重时很快跳车。
1999年4月广州乙烯股份有限公司罐区的16台DL型立式多级泵均不同程度地出现过这种情况。
这是由于泵轴组件结构设计上存在问题,应从结构上考虑使轴承轴套和轴相对固定,从而使向上的轴向力也由推力轴承来平衡。
具有自动调整轴向力作用的平衡盘装置由于结构尺寸太大,而且需要一个泄压回水管,在受井径限制的深井潜水泵中无法安装,所以轴向力平衡问题一直是高扬程深井潜水泵设计中的一个难题。
文献[5]推出了一种轴向力平衡方法,将深井潜水泵的叶轮前盖板直径扩大到泵体内壁边缘,使叶轮直径在同样的井径条件下达到极大值,同时叶轮后盖板直径适当减小,使叶轮上的轴向力完全平衡。
文献[6]介绍了另外一种新型轴向力平衡装置,它把一对动静摩擦副装于末级叶轮之后,动环随叶轮旋转,静环则不旋转,端面密封副前面为末级叶轮出口的高压液体,端面密封副之后与大气压或泵进口低压区相通,靠密封形成高、低压差平衡轴向力。
该新型平衡轴封装置,既能平衡轴向力,又基本上无泄漏,主要适用于深井潜水泵和节段式多级泵,采用该装置后,泵总效率可提高3%~6%。
1.6 输送液-固两相流时的多级离心泵1.6.1 轴向力平衡输送灰浆、矿浆等介质的节段式多级渣浆离心泵,浆液的冲刷与磨蚀作用使得泵的转子与定子之间的所有环形密封间隙增大,平衡盘与平衡盘座在轴向力作用下靠在一起,急剧磨损。
整个转子部件轴向窜动,叶轮与中段隔板、密封环等高速碰撞、摩擦,产生碎裂,曾经导致了多次恶性事故的发生。
为了延长这种泵的寿命,减缓密封间隙的磨损速度,某单位在设计上采取了下列措施”。
(1)改进泵的平衡机构,制造一个平衡盘座(平衡板)、两个平衡盘,如图2所示。
这样既可减少该泵运行初期的平衡机构泄漏损失,又可保证该泵运行后期的安全可靠,泵的寿命得以延长。
(2)叶轮、密封环、轴套、导轮套、平衡盘、平衡盘座等采用喷焊处理。
在华鲁恒升国产化大氮肥项目一期工程中,高压灰水泵采用了节段式多级离心泵,轴向力平衡装置采用了“平衡鼓+止推轴瓦”的方式,由于轴向力平衡不好,泵轴的强度设计得也不够,在使用中多次发生过平衡鼓损坏、轴瓦烧坏、抱轴、断轴等事故。
在该公司大氮肥项目二期工程中,高压灰水泵采用了水平中开式多级离心泵,叶轮对称布置,自动平衡了大部分轴向力,残余轴向力由止推轴承承受,没有平衡盘、平衡鼓等平衡机构,现场运行状况良好,各项性能指标完全满足了使用要求,投用10个多月以来,还没出过问题。
1.6.2 级间与轴端密封为了克服和避免液-固两相流介质中的硬性颗粒对旋转件与静止件间的磨蚀,大连深蓝泵业有限公司对多级泵的所有泵体密封环与节流套、密封套采用了反螺旋槽密封结构,降低了颗粒磨蚀。
重庆水泵厂在轴端还采用了无接触迷宫螺旋密封加机械密封的组合密封结构,特别适合于液-固两相流的介质。
1.6.3 流速要从泵的转速、泵的结构等各方面考虑降低介质流速,以减轻液-固两相流介质中的硬性颗粒对多级泵的各处过流部件的冲刷磨蚀。
泵的转速要尽量低,不宜选择1450 r/min以上转速。
2 使用与维护方面2.1 开泵前当被输送的高温液体突然进入多级泵冷的泵体时,泵体的温度会发生很大的变化,由于受热不均、热变形的不统一导致泵体和转子部件变形,耐磨部件间本身只有很小的缝隙从而导致不正常的接触。
若设备在这种情况下启动,则会由于过热而导致振动、咬合、抱轴现象。
所以说,泵用于输送高温液体时,在启动之前,须充分暖泵。
只有在泵体温度达到一致时,才能启动泵。
在冷态下紧急启动多级泵是不允许的。
南化公司8.7 MPa的水煤浆气化装置上用来泵送灰水的高压差多级离心泵,投入运行后多次发生轴瓦和机封损坏故障,就是每次开泵前准备工作不充分,盘泵、排气方法不正确所致。
后来改进盘泵、排气等工作后,没再出现以上问题。
2.2 运行中靠平衡盘、平衡鼓等泵内平衡机构平衡轴向力的多级离心泵,平衡装置内有平衡液体流出,平衡液体通过平衡管接至泵的进口端,为保证泵正常运行。
(1)平衡管绝对不允许堵塞。
(2)平衡管内发生结垢的,应及时清洗、疏通。
(3)平衡管高压侧加装压力表,监测平衡管出口压力。
输送渣浆的多级离心泵,采用平衡盘的,运行时需注入高压密封清水,使平衡盘、平衡盘座在清水中工作,防止渣浆、硬颗粒对平衡盘座、平衡盘的磨损。
多级泵在运行中巡检时应注意对泵的温升、振动、声音等的检查,必要时,为保护泵免受非正常损坏,对多级离心泵的轴向力、温升、振动等设置联锁,超过设定值时自动停泵。
华鲁恒升国产化大氮肥项目一期工程中的高压灰水泵由于设计原因频出事故,工程上又没有设置相应联锁,不得不安排操作工坐在泵旁边昼夜“特护”。
某公司的24级双壳体筒式离心立式氧泵为双壳体泵,正常运行时需要排出由密封处注入的氮气、空腔内气化的部分氧气,同时为保证空腔内不产生气体的积累,还必须排放少量的液氧。
有一次由于操作人员将空腔排放阀开得过小,造成气体在空腔内积累,导致了氧泵严重破坏。
2.3 停泵后当多级离心泵较长时间停止工作时,由于叶轮和转子的重量,使泵轴在一个方向上受力,容易造成轴弯曲。