微分的定义公式
- 格式:docx
- 大小:13.20 KB
- 文档页数:1
微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。
可以理解为小步长地移动拟合函数,接近曲线本身。
可以表示为\frac{dy}{dx} 或f'(x) 。
2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。
可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。
它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。
4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。
可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。
5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。
6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。
微积分的公式大全一、极限公式1.无穷小量定义:若当x→0时,Δx是x的函数之一,且满足Δx/x→0,则称Δx为x的一个无穷小量。
2.极限的基本性质:-函数f(x)的极限即为f(x)的左极限和右极限存在且相等的值。
-函数的极限与函数的值在有限点无关,只与趋向于该点的方式有关。
-函数有界,且极限存在,则函数必定有极大值和极小值。
3.基本极限:-极限的四则运算规则:设x→x0时有f(x)→A,g(x)→B,则f(x)±g(x)→A±B,f(x)g(x)→AB,f(x)/g(x)→A/B。
- 幂函数极限:若m是正整数,则lim(x→a) (x^m) = a^m。
- e 的指数函数极限:lim(x→∞) (1+1/x)^x = e。
- 自然对数函数极限:lim(x→0) (ln(1+x)/x) = 1-三角函数极限:- lim(x→0) (sinx/x) = 1- lim(x→0) (cosx-1)/x = 0。
四、导数公式1. 基本定义:函数 y=f(x) 在 x0 处可导,当且仅当函数在 x0 处存在极限lim(x→x0) (f(x)-f(x0))/(x-x0),即导数 f'(x0) 存在。
2.基本导数:- 常数函数的导数为 0:d/dx(c) = 0。
- 幂函数的导数:d/dx(x^n) = nx^(n-1)。
- 指数函数的导数:d/dx(e^x) = e^x。
- 对数函数的导数:d/dx(loga(x)) = 1/(xln(a))。
-三角函数的导数:- d/dx(sin(x)) = cos(x)。
- d/dx(cos(x)) = -sin(x)。
- d/dx(tan(x)) = sec^2(x)。
-反三角函数的导数:- d/dx(arcsin(x)) = 1/√(1-x^2)。
- d/dx(arccos(x)) = -1/√(1-x^2)。
- d/dx(arctan(x)) = 1/(1+x^2)。
第二节 微分 §2.1 微分的概念一、微分概念的引入在实际测量中,由于受到仪器精度的限制,往往会产生误差。
例如x 0为准确数,实际测量出是x *=x 0+Δx 为x 0的近似数,由此产生的误差为Δx 相应产生的函数值的误差Δy =f(x 0+Δx)-f(x 0),往往需要估计Δy 的值。
如果f(x 0+Δx),f(x 0)计算很复杂。
因此计算Δy 也很麻烦或者实际中只知道近似数x *与误差|Δx |≤δ,又如何估计Δy? 假设f ′(x)存在,则0x lim →∆x )x (f )x x ("f 00∆-∆+=0x lim →∆xy ∆∆=f ′(x 0),有 xy ∆∆=f ′(x 0)+α,0x lim →∆α=0,于是 Δy =f ′(x 0)Δx +αΔx ,而0x lim →∆xx ∆∆∂=0 (1) 即 αΔx =0(Δx)(Δx →0)因此,当|Δx |很小时,Δy ≈f ′(x 0)Δx在实际中如果不知道x 0,只知道x *,由x 0,x *相差很小,则Δy ≈f ′(x *)Δx ,从而可以估计出Δy 。
从(1)式我们看到,f ′(x 0)相对Δx 是一个常数,αΔx 是Δx 的高阶无穷小,如果Δy =A Δx +0(Δx)(Δx →0),则Δy ≈A Δx ,由此得到微分的概念。
二、微分的概念定义 设y =f(x)在x 0的某领域U(x 0)内有定义,若Δy =f(x +Δx)-f(x)可表示为Δy =A Δx +o(Δx) (Δx →0)其中A 是写Δx 无关的常数,A Δx 称为Δy 的线性部。
则称y =f(x)在点x 处可微,称线性部A Δx 为y =f(x)在点x 处的微分,记为dy ,即dy =A Δx 。
三、可微与可导的关系从概念的引入,我们可以看到可导必可微,反之也是正确的。
因此有定理 函数y =f(x)在点x 可微的充要条件是函数y =f(x)在点x 处可导。
第二节 微分§2.1 微分的概念一、微分概念的引入在实际测量中,由于受到仪器精度的限制,往往会产生误差。
例如x 0为准确数,实际测量出是x *=x 0+Δx 为x 0的近似数,由此产生的误差为Δx 相应产生的函数值的误差Δy =f(x 0+Δx)-f(x 0),往往需要估计Δy 的值。
如果f(x 0+Δx),f(x 0)计算很复杂。
因此计算Δy 也很麻烦或者实际中只知道近似数x *与误差|Δx |≤δ,又如何估计Δy?假设f ′(x)存在,则0x lim→∆x )x (f )x x ("f 00∆-∆+=0x lim →∆x y∆∆=f ′(x 0),有 xy∆∆=f ′(x 0)+α,0x lim →∆α=0,于是Δy =f ′(x 0)Δx +αΔx ,而0x lim →∆xx∆∆∂=0(1)即 αΔx =0(Δx)(Δx →0)因此,当|Δx |很小时,Δy ≈f ′(x 0)Δx在实际中如果不知道x 0,只知道x *,由x 0,x *相差很小,则Δy ≈f ′(x *)Δx ,从而可以估计出Δy 。
从(1)式我们看到,f ′(x 0)相对Δx 是一个常数,αΔx 是Δx 的高阶无穷小,如果Δy =A Δx +0(Δx)(Δx →0),则Δy ≈A Δx ,由此得到微分的概念。
二、微分的概念定义 设y =f(x)在x 0的某领域U(x 0)内有定义,若Δy =f(x +Δx)-f(x)可表示为Δy =A Δx +o(Δx) (Δx →0)其中A 是写Δx 无关的常数,A Δx 称为Δy 的线性部。
则称y =f(x)在点x 处可微,称线性部A Δx 为y =f(x)在点x 处的微分,记为dy ,即dy =A Δx 。
三、可微与可导的关系从概念的引入,我们可以看到可导必可微,反之也是正确的。
因此有定理 函数y =f(x)在点x 可微的充要条件是函数y =f(x)在点x 处可导。
§ 5 微分一. 微分概念:由导数定义 xx f x x f x f x ∆-∆+='→∆)()(lim)(000利用第三章讲过的极限与无穷小量之间的关系,上式可写为)()()()(000x o x x f x f x x f y ∆+∆'=-∆+=∆即函数在 0x 处的改变量y ∆可表示成两部分:x ∆的线性部分x x f ∆')(0 与 x ∆ 的高阶无穷小部分 )(x o ∆。
当 x ∆充分小时,函数的改变量可由第一部分近似代替x x f y ∆'≈∆)(0例 正方形面积的测问题。
设 正方形的实际边长为 0x ,由于测量 不可能绝对准确,设边长测量的最大 误差为 x ∆,试问由于边长测量不准 造成的面积误差最多有多大?20220)(2)(x x x x x x A ∆+∆=-∆+=∆即面积误差由两部分组成:第一部分 x x ∆02 是 x ∆ 的线性部分;第二部分 2)(x ∆ 是 x ∆ 的高阶无穷小,所以 x x A ∆≈∆02二 微分定义Th ( 可微与可导的关系 ).2x=由微分的定义 )(x o dy y ∆+≈∆ 当 x ∆ 充分小时dy y ≈∆ 即 x x f x f x x f ∆'+≈∆+)()()(000这后一式中的近似号若换成等号就是过 ))(,(00x f x 点的切线方程,所以这种近似计算的实质是“以直代曲”。
用这种方法近似计算时,要注意它的前提:x ∆ 应充分小!这一点可以从图(d52)看得很清楚。
三 微分的几何意义例1 求 ()x d 3sin 2和 .darctgx二. 微分运算法则: 法则1—4 只证2. 一阶微分形式不变性. 利用微分求导数. 微商.例2 ,cos ln 22x x x y += 求 dy 和 .y '例3 ,)sin(b ax ey += 求 dy 和 .y '四 微分的应用:1.建立近似公式: 原理: ,dy y ≈∆ 即).)(()()(000x x x f x f x f -'+≈特别当 00=x 时, 有近似公式 .)0()0()(x f f x f '+≈ 具体的近似公式如:x 1e x,n11x 1 x,sinx x n+≈+≈+≈ 等. 2. 作近似计算:原理: .)()()(00.0x x f x f x x f ∆'+=∆+ 例 求29sin 的近似485.0)180(6cos6sin)1806sin(29sin ≈-+=-=πππππ提问:这里能用度作单位近似计算吗?为什么? 例 求 97.0 和 3127的近似值. 3. 估计误差:绝对误差估计: ,)(0x x f y ∆'≈∆相对误差估计: ),(ln ln ),0( )(⇒=>=x f y x f y.)(ln x f d ydyy y =≈∆ 例2 设已测得一根圆轴的直径为cm 43,并知在测量中绝误差不超过 cm 2.0. 试求以此数据计算圆轴的横截面面积时所产生的误差.4 求速度:原理: .)(,)( ),(dtdxx f dt dy dx x f dy x f y '='== 例7 球半径R 以sec 2.0cm 的速度匀速增大. 求cm R 4=时, 球体积增大的 速度. 在初等数学中“直”就是“直”,“曲”就是“曲”,二者是不会等同的,微分概念的建立冲破了初等数学的狭隘界限,在“直”和“曲”之间架起了一个桥梁。