几种常用的电子仪器的使用方法
- 格式:doc
- 大小:27.50 KB
- 文档页数:10
一、实验目的1. 学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的主要性能、技术指标及正确使用方法。
2. 初步掌握使用双踪示波器观察信号波形和测量波形参数的方法。
2、实验设备与器件函数信号发生器双踪示波器交流毫伏表三、实验原理在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。
它们和万用表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。
在实验中,各种电子仪器要进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接通常如图1-1所示。
为防止外界干扰,各仪器的公共接地端应连接在一起,称共地。
信号发生器和交流毫伏表的连接线通常用屏蔽线或专用电缆线,示波器的连接线使用专用电缆线,直流电源的连接线用普通导线。
图1-1 模拟电子电路中常用电子仪器布局图1. 示波器示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种基本参数的测量,其基本功能和主要使用方法如下:(1)寻找扫描光迹将示波器Y轴显示方式置“Y1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:① 适当调节亮度旋钮。
② 触发方式开关置“自动”。
③ 适当调节垂直、水平“位移”旋钮,使扫描光迹位于屏幕中央。
(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。
)(2)双踪示波器一般有五种显示方式,即“Y1”、“Y2”、“Y1+Y2”三种单踪显示方式和“交替”、“断续”二种双踪显示方式。
“交替”显示方式一般适宜于输入信号频率较高时使用,“断续”显示一般适宜于输入信号频率较低时使用。
(3)为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的Y通道。
常用电子测量仪器的使用电子测量仪器是用于测量和记录电工参数的工具。
它们通常用于电子工程、电力系统、电工维修、制造业等领域。
下面将介绍一些常用的电子测量仪器以及它们的使用方法。
数字万用表(DMM)数字万用表是电子工程师和电工常用的工具之一、它可以测量电压、电流、电阻、频率等多种电工参数。
使用数字万用表时,需要将测量导线正确连接到被测电路上,并选择合适的量程和测量模式。
在测量直流电压时,应将表笔连接到电路的正负极。
测量电流时,将电表的测量导线与电路断开,通过表笔穿过测量线圈,再与电路相连。
测量阻值时,先将电路断开,然后将表笔依次连接到电阻的两端。
示波器示波器是一种用于显示电信号的波形的仪器。
它可以测量和显示电压、电流、频率等参数。
示波器分为模拟示波器和数字示波器两种类型。
在使用示波器时,首先需要连接被测电路到示波器的输入端(通常是通过测试夹或插头连接)。
然后,调整显示屏上的水平和垂直控制,以便观察和测量信号的波形。
信号发生器信号发生器是一种用于生成模拟信号的仪器。
它可以产生不同频率和幅度的信号,用于测试和校准其他电子设备。
在使用信号发生器时,需要设置所需的频率和幅度,并将输出信号连接到被测电路或设备。
可以通过示波器或其他仪器来验证信号质量和特性。
频谱分析仪频谱分析仪是一种用于测量信号频谱分布的仪器。
它可以显示信号频率和功率的分布情况。
在使用频谱分析仪时,需要将被测信号连接到仪器的输入端,并设置所需的频率范围和分辨率。
频谱分析仪将通过计算和显示频率和功率的分布图来分析信号的特性。
电源测试仪电源测试仪是一种用于测试电源的稳定性和质量的仪器。
它可以测量电源的输出电压、电流和波形。
在使用电源测试仪时,需要将测试仪与电源连接,并设置所需的测试参数。
可以通过电源测试仪来测量和记录电源的电压和电流变化情况,以评估电源的性能和稳定性。
逻辑分析仪逻辑分析仪是一种用于分析和测量数字逻辑信号的仪器。
它可以显示和记录多路数字信号的状态和变化。
常用电子仪器的使用实验
课程名称:常用电子仪器的使用实验
实验目的:了解几种常用电子仪器的工作原理,理解其面板结构,熟练掌握几种通用仪器的使用方法
实验器材:模拟万用表、数字万用表,交流毫伏表、信号源、示波器。
实验地点:模拟电子技术实验室
实验步骤:
一,万用表
1、理解面板结构:表笔插孔,档位转盘
2、练习使用方法:
举例如图:用电流表测量R2的电流和电压时,电流表
和电压表的连接方法。
(附图只作参考,画出实际实验
连接图)
3、注意事项:
(1)功能档位必须准确
(2)表笔插孔不得有错
(3)量程必须比实际测量值大
提示:万用表指针停留在满刻度的三分之二左右时
读数误差较小。
二,交流毫伏表
1、理解万用表交流电压档与交流毫伏表的适用范围
2、理解面板结构:三个读数刻度盘、量程转盘、信号线接口、电源开关
3、练习使用方法:接地线——打开电源——调零——调整量程——接信号线——关闭电源——断开信号线——断开地线
三,信号源
1、理解面板结构:电源开关、信号类型按钮、频率粗调按钮和频率微调旋钮、信号幅度调节旋钮、信号幅度衰减按钮。
2、练习使用方法:练习调整频率、练习调整幅度、练习调整波形
四,示波器
1、理解面板结构:
2、练习使用方法:自测校正信号的幅度、周期,同时显示两个信号的调整
五,配套测量练习
用信号源产生正弦信号,用示波器观察波形、测量周期频率、测量峰峰值,用交流毫伏表测量有效值、并与示波器测量值进行比较。
实验总结:总结这些仪器的用途,实验中遇到的问题及解决办法,绘出实验室连接过的电路和测得的典型数据,并分别进行分析。
电路实验常用电子测量仪器的使用电路实验中常用的电子测量仪器有数字万用表、示波器、信号发生器、频谱分析仪和逻辑分析仪等。
这些仪器广泛用于测量电路的电压、电流、频率、相位等参数,有助于分析电路的性能和运行状态。
其中,数字万用表是电子工程中最基本且最常用的仪器之一、它可以用来测量电压、电流、电阻、频率、电容等基本参数。
使用万用表时,需要将测量引线正确连接到需要测量的电路节点上,根据需要选择合适的测量档位,然后读取测量结果。
此外,在进行连续测量时,需要设置仪表的内阻高档位,以避免对被测电路的干扰。
示波器是另一种常用的电路测量仪器。
它可以显示电路中的电压随时间的变化情况,能够直观地观察信号的波形和幅值。
使用示波器时,首先需要将测量引线正确连接到被测电路的信号输入端口,并调整示波器的触发电平、时间基准和增益等参数,以获得清晰的波形显示。
在测量电压时,需要注意选择合适的耦合方式(如AC耦合或DC耦合)和测量通道,以确保准确测量。
信号发生器是用于产生稳定、可调频率和幅度的信号的仪器。
它可以产生各种不同的信号波形,如正弦波、方波、三角波等。
在电路实验中,信号发生器通常用于提供测试信号。
使用信号发生器时,首先需要选择所需的信号波形和频率,然后将输出端正确连接到被测电路中。
在使用信号发生器进行测量时,需要注意设置适当的输出电平和阻抗,以避免对被测电路产生影响。
频谱分析仪是一种测量信号频谱和幅度分布的仪器。
它可以将信号分解成各种频率分量,并显示在频谱图上。
使用频谱分析仪时,需要将被测信号输入频谱分析仪的输入端口,并选择适当的频率范围和分辨率。
在测试之前,可能需要进行校准和调整。
逻辑分析仪是一种用于分析逻辑信号的仪器。
它可以捕获和显示多个数字信号的状态和时序关系。
使用逻辑分析仪时,需要将待测数字信号连接到逻辑分析仪的输入端口,并设置适当的采样速率和触发条件。
通过逻辑分析仪可以观察到数字信号的状态转换、时序关系和数据波形,对于分析和调试数字电路非常有帮助。
常用电子仪器的使用电子仪器在我们的日常生活和工作中起着重要的作用。
它们帮助我们进行测量、控制和调试各种电子设备。
本文将介绍几种常用的电子仪器及其正确的使用方法。
一、数字万用表数字万用表是一种用于测量电流、电压和电阻的仪器。
正确使用数字万用表需要注意以下几点:1. 选择正确的量程:根据被测电压、电流或电阻的预估值,选择合适的量程。
如果选择过小的量程,测量结果可能会超出量程而导致错误。
2. 将红表笔连接到测量电压或电流的正极,将黑表笔连接到负极,确保正确的极性。
3. 读取测量值时,注意小数点的位置和单位。
如果测量结果带有单位,应将其附加在测量值后面。
二、示波器示波器用于检测和显示电信号的波形。
正确使用示波器需要遵循以下步骤:1. 连接被测电路:将电路的信号源连接到示波器的输入端口上。
2. 调节水平和垂直缩放:根据被测信号的幅度和频率,适当调整示波器的水平和垂直缩放,使得波形能够完整地显示在屏幕上。
3. 观察和分析波形:通过观察示波器屏幕上的波形,可以了解信号的形状、幅度、频率以及任何可能的干扰或失真。
三、信号发生器信号发生器可以产生不同频率和幅度的电信号。
正确使用信号发生器需要注意以下事项:1. 设置频率和幅度:根据需要,设置适当的频率和幅度。
确保选择的频率和幅度在被测电路的工作范围内。
2. 连接到被测电路:将信号发生器的输出端口连接到被测电路,确保连接正确并紧固。
3. 观察输出信号:通过示波器等其他仪器观察信号发生器产生的输出信号。
可以检查信号的频率、幅度和波形是否与预期一致。
四、频谱分析仪频谱分析仪用于将信号分解为不同频率的成分,并显示其幅度。
正确使用频谱分析仪需要遵循以下步骤:1. 连接信号源:将被测信号源连接到频谱分析仪的输入端口上。
2. 设置频谱范围:根据被测信号的频率范围,设置适当的频谱范围。
确保所设置的范围包含所需观察的频率成分。
3. 观察频谱分析结果:通过频谱分析仪的显示屏观察信号的频谱成分和其幅度。
实验一常用电子仪器的使用常用电子仪器是指在科研实验、工业生产、医疗检测等领域中经常使用的一些基础性电子设备。
它们广泛应用于电子测量、信号处理、电子元器件测试、无线通信等领域。
下面将介绍几种常见的电子仪器的使用方法。
1. 示波器(oscilloscope)示波器是一种用来显示电压随时间变化的仪器。
在使用示波器之前,首先需要将电源连接到示波器上并打开电源开关。
接下来,将待测信号连接到示波器的输入端口上。
调节示波器的触发级别和时间基准,以确保正确显示待测信号。
最后,可以观察并分析示波器上的波形图,从而获取有关信号频率、幅度和相位等信息。
2. 频谱分析仪(spectrum analyzer)频谱分析仪主要用于测量和显示信号的频谱特性。
使用频谱分析仪时,首先需要将待测信号连接到频谱分析仪的输入端口上。
然后,调整频率、带宽和幅度等参数,以使频谱分析仪适应待测信号的特性。
最后,可以观察并分析频谱分析仪上的频谱图,得出有关信号频谱分布的信息。
3. 功率计(power meter)功率计是用来测量信号功率的仪器。
在使用功率计之前,首先需要将待测信号连接到功率计的输入端口上。
接下来,选择适当的功率范围和测量模式,并调整校准和零位。
最后,读取功率计上显示的功率数值,从而获知待测信号的功率大小。
多用途数字示波器是一种集万用表和示波器功能于一体的仪器。
使用多用途数字示波器时,首先需要选择所需的测试功能(如电压、电流、电阻、频率等)。
然后,将测试探头与被测电路正确连接。
最后,读取多用途数字示波器上显示的测试结果。
5. 信号发生器(signal generator)信号发生器可以产生各种频率、幅度和波形的信号。
在使用信号发生器时,首先需要选择所需的信号参数(如频率、幅度、波形等)。
然后,将信号发生器的输出连接到被测电路或设备上。
最后,调节信号发生器的参数,以产生所需的信号。
6. 锁相放大器(lock-in amplifier)锁相放大器主要用于从噪声中提取出微弱的信号。
常用电子仪器的使用方法[摘要]本文介绍数字万能表、低频函数信号发生器和通用示波器的使用方法。
通过对其使用方法的介绍,不仅要掌握数字万能表、低频函数信号发生器和通用示波器的使用方法,更要注意它们的安全操作。
【关键词】常用;电子仪器;使用方法目前,我国常用的电子仪器为数字万能表、低频函数信号发生器和通用示波器,我们不仅要掌握数字万能表、低频函数信号发生器和通用示波器的使用方法,更要注意它们的安全操作。
1.数字万用表的使用方法1.1欧姆挡的使用使用欧姆挡时,转换开关要在欧姆挡位,红色表笔要在最右侧的插孔中。
若显示屏上出现“1.”的符号说明量程不够,应选大一级的量程。
数字万用表是直读式的仪表,如选“200”时读“×欧”。
选“2K”量程读“×千欧”,选“2M”读“×兆欧”。
使用欧姆挡时,万用表内部电源正极接的是红表笔。
这一点上与指针式万用表不同,请大家注意。
1.2直流电压的测量,测量直流电压时,转换开关要在DCV挡位,红色表笔要在最右侧的插孔中,将数字万用表与被测电路并联,根据被测电压的范围选择量程。
若显示屏上出现“1.”的符号说明量程不够(无论测量什么出现“1.”都是量程不够),应选大一级量程。
如果被测量未知,则先用大量程后用小量程。
若显示屏上显示负的电压,说明万用表红表笔接的是电位低的一端,而黑表笔接的是电位高的一端。
1.3交流电压的测量测量交流电压时,转换开关要在ACV挡位,红色表笔要在最右侧的插孔中,数字万用表与被测电路并联后读取数据。
1.4三极管电流放大倍数的测量根据三极管的类型是PNP还是NPN选择插孔的位置,并将三极管的发射极E、基极B、集电极C对应插入后读出放大倍数。
使用该挡位时表笔无用。
1.5电容测量将被测电容插入电容的专用插孔。
转换开关置F挡位并选择合适的量程后直接读出电容值。
注意单位是微法还是纳法。
1.6直流电流和交流电流的测量直流电流挡和交流电流挡的使用方法基本相同。
一、直流稳压电源使用方法1.YB1718是具有两路输出的直流稳压电源,左边为第一路,右边为第二路。
对应的上方为表头,指示输出电压和电流的值,有A、B键控制。
Amps为电流指示,volts 为电压指示。
2.下面介绍单路电源输出时的方法比如使用一组12V电源时,使啊、A或B键置volts状态,独立跟踪按键置跟踪状态。
正接线柱通常通过红色导线引出,作为电源的正极。
负接线柱通过黑色导线引出,作为电源的负极。
打开电源,调节调压旋钮VOLTAGE,根据表头指示,调到我们所需要的电压值。
3.CURRENT是调流旋钮用来调节输出电流的。
二、交流毫伏表的使用方法1.用来测量正弦信号有效值的交流低频毫伏表2.打开电源,通过输入线将被测信号连接到输入插孔。
3.这是量程选择开关,使用时,根据信号的大小选择适当的量程,量程刻度的读数表示能测量的最大值,不允许选用的量程小于被测电压值。
4.这是表头刻度,指针所指的数就是被测电压值,上面的刻度线对应于1、10、100量程的读数。
下面的刻度线对应于3、30、300量程的读数。
例如,我们要测量幅度为1V左右的信号时,可做如下操作:a、量程先置3V档b、打开电源,当指针稳定后再读数,此时,应读第二条刻度线,即下面的刻度线。
c、读得0.8V。
d、因为该值小于1V,可改用1V档测量,此时应读第一条刻度线,读得0.78V。
可见第二次读数较为准确。
e、因此在使用时,应选择适当的量程,使指针摆动幅度超过1/3为好。
1.三、信号发生器1.打开电源开关按钮,我们用示波器来显示信号发生器的输出波形2.频率显示窗口,显示输出信号的频率。
3.频段选择按钮,可改变输出信号的频率4.频率微调按钮,在频段选定的范围内微调频率的变化5.对称调节旋钮,可改变输出信号的对称性,如果看到输出信号发生偏斜,通过对称输出旋钮可校正信号。
6.直流电平调节旋钮,可改变附加在波形上的直流电压的大小a)在单管放大电路的实验中,通常需要纯交流的函数输入信号,那么,我们如何知道输入的信号中附加了直流电平呢?我们可以根据示波器上的显示信号判断。
兆欧表的使用方法(一)使用前的准备工作1、检查兆欧表是否能正常工作将兆欧表水平放置,空摇兆欧表手柄,指针应该指到。
o处,再慢慢摇动手柄,使L和E两接线桩输出线瞬时短接,指针应迅速指零。
注意在摇动手柄时不得让L和E短接时间过长,否则将损坏兆欧表。
,2、检查被测电气设备和电路,看是否已全部切断电源。
绝对不允许设备和线路带电时用兆欧表去测量。
3、测量前,应对设备和线路先行放电,以免设备或线路的电容放电危及人身安全和损坏兆欧表,这样还可以减少测量误差,同时注意将被测试点擦拭干净。
(二)正确使用1、兆欧表必须水平放置于平稳牢固的地方,以免在摇动时因抖动和倾斜产生测量误差。
2、接线必须正确无误,兆欧表有三个接线桩,“E”(接地)、“L”(线路)和“G”(保护环或叫屏蔽端子)。
保护环的作用是消除表壳表面“L”与“E”接线桩间的漏电和被测绝缘物表面漏电的影响。
在测量电气设备对地绝缘电阻时,“L”用单根导线接设备的待测部位,“E”用单根导线接设备外壳;如测电气设备内两绕组之间的绝缘电阻时,将“L”和“E”分别接两绕组的接线端;当测量电缆的绝缘电阻时,为消除因表面漏电产生的误差,“L”接线芯,“E”接外壳,“G”接线芯与外壳之间的绝缘层。
“L”、“E”、“G”与被测物的连接线必须用单根线,绝缘良好,不得绞合,表面不得与被测物体接触。
3、摇动手柄的转速要均匀,一般规定为120 转/分钟,允许有±20%的变化,最多不应超过±25%。
通常都要摇动一分钟后,待指针稳定下来再读数。
如被测电路中有电容时,先持续摇动一段时间,让兆欧表对电容充电,指针稳定后再读数,测完后先拆去接线,再停止摇动。
若测量中发现指针指零,应立即停止摇动手柄。
4、测量完毕,应对设备充分放电,否则容易引起触电事故。
5、禁止在雷电时或附近有高压导体的设备上测量绝缘电阻。
只有在设备不带电又不可能受其他电源感应而带电的情况下才可测量。
6、兆欧表未停止转动以前,切勿用手去触及设备的测量部分或兆欧表接线桩。
拆线时也不可直接去触及引线的裸露部分。
7、兆欧表应定期校验。
校验方法是直接测量有确定值的标准电阻,检查其测量误差是否在允许范围以内。
1. 在测容性负载阻值时,兆欧表输出短路电流大小与测量数据有什么关系,为什么?兆欧表输出短路电流的大小可反映出该兆欧表内部输出高压源内阻的大小。
当被测试品存在电容量时,在测试过程的开始阶段,兆欧表内的高压源要通过其内阻向该电容充电,并逐步将电压充到兆欧表的输出额定高压值。
显然,如果试品的电容量值很大,或高压源内阻很大,这一充电过程的耗时就会加长。
其长度可由R内和C 负载的乘积决定(单位为秒)。
请注意,给电容充电的电流与被测试品绝缘电阻上流过的电流,在测试中是一起流入兆欧表内的。
兆欧表测得的电流不仅有绝缘电阻上的分量,也加入了电容充电电流分量,这时测得的阻值将偏小。
如:额定电压为5000V的兆欧表,若其短路输出电流为80μA(日本共立产),其内阻为5000V/80μA=62MΩ如:试品容量为0.15μF,则时间常数τ=62MΩ×0.15μF≈9 (秒)即在18秒时刻,电容上的充电电流仍有11.3μA。
由此可见,仅由充电电流而形成的等效电阻为5000V/11.3μA=442MΩ,若正常绝缘为1000MΩ,则显示的测得绝缘值仅为306MΩ。
这种试值已不能反映绝缘值的真实状况了,而且试值主要是随容性负载容量的变化而改变,即容量小,测试阻值大;容量大,测试阻值小。
所以,为保障准确测得R15s,R60s的试值,应选用充电速度快的大容量兆欧表。
我国的相关规程要求兆欧表输出短路电流应大于0.5mA、1mA、2mA、5mA,要求高的场合应尽量选择输出短路电流较大的兆欧表。
2. 为什么测绝缘时,不但要求测单纯的阻值,而且还要求测吸收比,极化指数,有什么意义?在绝缘测试中,某一个时刻的绝缘电阻值是不能全面反映试品绝缘性能的优劣的,这是由于以下两方面原因,一方面,同样性能的绝缘材料,体积大时呈现的绝缘电阻小,体积小时呈现的绝缘电阻大。
另一方面,绝缘材料在加上高压后均存在对电荷的吸收比过程和极化过程。
所以,电力系统要求在主变压器、电缆、电机等许多场合的绝缘测试中应测量吸收比-即R60s 和R15s的比值,和极化指数-即R10min和R1min 比值,并以此数据来判定绝缘状况的优劣。
3.在高压高阻的测试环境中,为什么要求仪表接"G"端连线?在被测试品两端加上较高的额定电压,且绝缘阻值较高时,被测试品表面受潮湿,污染引起的泄漏较大,示值误差就大,而仪表"G"端是将被测试品表面泄漏的电流旁路,使泄漏电流不经过仪表的测试回路,消除泄漏电流引起的误差。
4.在校测某些型号绝缘仪表"L"、"E"两端额定输出直流高压时,用指针式万用表DCV档测L、E两端电压,为什么电压会跌落很多,而数字式万用表则不会?用普通的指针式万用表直接在兆欧表"L"、"E"两端测量其输出的额定直流电压,测量结果与标称的额定电压值要小很多(超出误差范围),而用数字万用表则不会。
这是因为指针式万用表内阻较小,而数字万用表内阻相对较大。
指针式万用表内阻较小,兆欧表L-E端输出电压降低很多,不是正常工作时的输出电压。
但是,用万用表直接去测兆欧表的输出电压是错误的,应当用内阻阻抗较大的静电高压表或用分压器等负载电阻足够大的方式去测量。
5.能不能用兆欧表直接测带电的被测试品,结果有什么影响,为什么?为了人身安全和正常测试,原则上是不允许测量带电的被测试品,若要测量带电被测试品,不会对仪表造成损坏(短时间内),但测试结果是不准确的,因为带电后,被测试品便与其它试品连结在一起,所以得出的结果不能真实的反映实际数据,而是与其它试品一起的并联或串联阻值。
6.为什么电子式兆欧表几节电池供电能产生较高的直流高压?这是根据直流变换原理,经过升压电路处理使较低的供电电压提升到较高的输出直流电压,产生的高压虽然较高但输出功率较小。
(如电警棍几节电池能产生几万伏的高压)7.用兆欧表测量绝缘电阻时,有哪些因素会造成测量数据不准确,为什么?A)电池电压不足。
电池电压欠压过低,造成电路不能正常工作,所以测出的读数是不准确的。
B)测试线接法不正确。
误将"L"、"G"、"E"三端接线接错,或将"G"、"L"连线"G"、"E"连线接在被测试品两端。
C)"G"端连线未接。
被测试品由于受污染潮湿等因素造成电流泄漏引起的误差,造成测试不准确,此时必须接好"G"端连线防止泄漏电流引起误差。
D)干扰过大。
如果被测试品受环境电磁干扰过大,造成仪表读数跳动。
或指针晃动。
造成读数不准确。
E)人为读数错误。
在用指针式兆欧表测量时,由于人为视角误差或标度尺误差造成示值不准确。
F)仪表误差。
仪表本身误差过大,需要重新校对。
8.KD2678与ZC-37有什么区别,KD2678是如何消除汇水管与机座间泄漏所引起的误差?测水内冷发电机绝缘电阻前有哪些准备工作?发电机绕阻有哪几种接线测试方法?KD2678表要求汇水管机座的阻值大于3kΩ,水阻大于80kΩ测量范围为10000MΩ,读数采用指针式和数字显示两种方式,自动计时,自动显示和储存R15s、R60s、R10min、R60s/R15s、R10min/R1min的读数,无需对水极化电势补偿调节,双刻度量程自动转换,对数刻度读数,可显示输出电压与环境温度,可用Rt键精确读取任一时刻电阻值(数字显示)。
可对被测试品自动放电。
而ZC-37表,要求汇水管对机座的阻值大于30kΩ,水阻大于100kΩ,测量范围为1000MΩ,读数采用指针式显示,人工计时,需在测试前人工对汇水管泄漏电流补偿调节,测试中水极化电势无法调节,人工对被测试品放电。
KD2678表是采用等电位法来消除汇水管泄漏误差的,由电路自动调节使汇水管接口端与E 端(机座)等电位,使流经汇水管法兰盘向机座的电流为零,汇水管测试线采用电流、电压双线来消除汇水管引线电阻引起的误差。
KD2678表测水内发电机绝缘电阻之前准备工作:(1)首先断开发电机所带负载。
(2)将汇水管法兰盘上、下连接褡扣断开,并用导线将法兰盘上端短接在一起,用KD2678专用汇水管线夹在短接处。
(3)用数字万用表电阻档测汇水管与机座之间的绝缘阻值(≥3kΩ)测汇水管与绕组的阻值(≥80kΩ)。
9.高阻绝缘表现场测容性负载时(如主变),指针显示阻值在某一区间突然跌落(不是正常测试时的最大值区间内的缓慢小幅摆动),快速来回摆动,是什么原因?造成该现象主要是试验系统内某部位出现放电打火。
绝缘表向容性被测试品充电中,当容性试品被充至一定电压时,如果仪表内部测试线或被测试品中任一部位有击穿放电打火,就会出现上述现象。
判别办法:(1)仪表测试座不接入测试线,开启电源和高压,看仪表内是否有打火现象发生(若有打火可听到放电打火声)。
(2)接上L、G、E测试线,不接被测试品,L测试线末端线夹悬空,开启高压,看测试导线是否有打火现象发生。
若有打火现象,则检查:a)L、G测试线芯线(L端)与裸露在外的线(G端)是否过近,产生拉弧打火。
b) L端芯线插头与测试座屏蔽环或测试夹子与被测试品接触不良造成打火。
c)测试线与插头、夹子之间虚焊断路,造成间隙放电。
(3)接入被测试品,检查末端线夹与试品接触点附近有无放电打火。
(4)排除以上原因,接好被测试品,开启高压,若仪表仍有上述现象则说明被测试品绝缘击穿造成局部放电或拉弧。
10.为什么不同兆欧表测出示值存在差异?由于高压兆欧表测试电源非理想电压源,内阻Ri不同测量回路串接电阻Rm不同,动态测量准确度不同,以及现场测量操作的不合理或失误等,不同型号兆欧表对同一被测试品的测量结果会存在差异。
实际测量时,应结合兆欧表绝缘试验条件的特殊性尽量降低可能出现的各种测量误差:(1)不同型号的绝缘表测量同一试品时,应采用相同的电压等级和接线方法。
例如在测量电力变压器高压绕组绝缘中,当绕组引出端始终接兆欧表L端钮时,就有: E端钮接低压绕组和外壳,而G端钮悬空的直接法;E端钮接低压绕组,而G端钮接外壳的外壳屏蔽法(低电位屏蔽);G端钮接在高压绕组套管的表面,而E端钮先接低压绕组,然后分别再和外壳相连或不相连的两种套管屏蔽法(高电位屏蔽)。
E端钮接外壳,而G端钮接低压绕组等接线方法。
不同结构、制式的兆欧表,G端钮电位不同,G端钮在套管表面的安放位置也应随之改变。