浙教版七年级数学上册有理数的减法测试题及答案-2019年学习文档
- 格式:doc
- 大小:15.01 KB
- 文档页数:4
浙教新版七年级上学期《2.2 有理数的减法》同步练习卷一.选择题(共1小题)1.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a+b ﹣c的值为()A.0B.2C.﹣2D.2或﹣2二.填空题(共4小题)2.若x与﹣3的差为1,则x的值是.3.某市某天最高气温是﹣1℃,最低气温是﹣5℃,那么当天的最大温差是℃.4.A,B,C三地的海拔高度分别是﹣50米,﹣70米,20米,则最高点比最低点高米.5.若|a|=3,|b|=2,则a﹣b的绝对值为.三.解答题(共35小题)6.若|a|=8,|b|=5,且a+b>0,那么a﹣b的值是多少?7.已知|a|=5,|b|=7,且|a+b|=a+b,求a﹣b的值.8.若实数a,b满足|a|=4,|b|=6,且a﹣b<0,求a+b的值.9.计算:﹣﹣(﹣)+(﹣).10.如图1,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A到B记为:A→B(+1,+3);从C到D记为:C→D(+1,﹣2)[其中第一个数表示左右方向,第二个数表示上下方向].(1)填空:A→C(,);C→B(,)(2)若甲虫的行走路线为:A→B→C→D→A,请计算甲虫走过的路程.(3)若这只甲虫去Q处的行走路线依次为:A→M(+2,+2),M→N(+2,﹣1),N→P(﹣2,+3),P→Q(﹣1,﹣2),请依次在图2上标出点M、N、P、Q 的位置.11.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣3,+11,﹣6,﹣8,+6,+15.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车行驶每千米耗油量为a升,求这次养护小组的汽车共耗油多少升?12.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为a升/千米,则这次养护共耗油多少升?13.下表是某一周某种股票每天的收盘价(收盘价:股票每天交易结束时的价格)(1)填表,并回答哪天收盘价最高?哪天收盘价最低?(2)最高价与最低价相差多少?14.河里水位第一天上升8cm,第二天下降7cm,第三天又下降了9cm,第四天又上升了3cm,经测量此时的水位为62.6cm,试求河里初始水位值.15.若用A、B、C、D分别表示有理数a、b、c,0为原点如图所示.已知a<c <0,b>0.(1)化简|a﹣c|+|b﹣a|﹣|c﹣a|;(2)|﹣a+b|﹣|﹣c﹣b|+|﹣a+c|16.有两个冰柜,第一个冰柜内温度为﹣18℃,第二个冰柜内温度为﹣10℃,哪个冰柜温度低?低多少度?17.识图理解:请认真观察如图给出的未来一周某市的每天的最高气温和最低气温,直接回答后面提出的问题:(1)这一周该市的最高气温和最低气温分别是多少?(2)这一周中,星期几的温差最大?是多少?18.已知|a|=3,|b|=2且a<b,求a﹣b的值.19.若x的相反数是3,|y|=5,且x<y,求y﹣x的值.20.某地一天中午12时的气温是6℃,傍晚5时的气温比中午12时下降了4℃,凌晨4时的温度比傍晚5时还低4℃,问傍晚5时的气温是多少?凌晨4时的气温是多少?21.已知|m|=4,|n|=6,且|m+n|=m+n,求m﹣n的值.22.若有理数x,y满足|x|=5,|y|=3,且x<y,求x﹣y的值.23.计算:(1)(﹣9)﹣(﹣7)+(﹣6)﹣(+4)﹣(﹣5);(2)4﹣(+3.85)﹣(﹣3)+(﹣3.15).24.已知|m|=4,|n|=1,且|m﹣n|=m﹣n,求m﹣n的值.25.已知|m|=15,|n|=25,|m+n|≠m+n,求m﹣n的值.26.已知|x|=16,|y|=9,且|x+y|=﹣(x+y),求x﹣y的值.27.某储蓄所,某日办理了7项储蓄业务:取出9.6万元,存入5万元,取出7万元,存入12万元,存入22万元,取出10.25万元,取出2.4万元,求储蓄所该日现金增加多少万元?28.已知|a|=8,|b|=6.(1)若a,b同号,求a+b的值;(2)若|a﹣b|=b﹣a,求a+b的值.29.早晨6:00的气温为﹣4℃,到下午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温较早晨6:00的气温是上升了还是下降了?上升或下降了多少?30.已知x=5,|y|=6且x>y,求2x﹣y的值.31.河里水位第一天上升8cm,第二天下降7cm,第三天又下降了9cm,第四天又上升了3cm,最后水位上升了还是下降了?多少厘米?32.“新华超市”在2015年1~3月平均每月盈利20万元,4~6月平均每月亏损15万元,7~10月平均每月盈利17万元,11~12月平均每月亏损19万元.问“新华超市”2015年总的盈亏情况如何?33.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则+=(要求写出计算过程)34.若|a|=3,|b|=5,求a﹣b的值.35.已知|a|=5,|b|=3,且|a﹣b|=b﹣a,求a+b的值.36.某次数学单元检测,708班A1小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,成绩记录如下:+10,﹣2,+15,+8,﹣13,﹣7.(1)本次检测成绩最好的为多少分?(2)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?(3)本次检测小组成员中得分最高与最低相差多少分?37.全班学生分成五个组进行游戏,每个组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束时,各组的分数如下;(1)第一名超出每二名多少分?(2)第一名超出第五名多少分?38.某支股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“﹣”表示股票比前一天下跌)(1)周一至周五这支股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了?39.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)(1)在第次纪录时距A地最远.(2)求收工时距A地多远?(3)若每km耗油0.3升,每升汽油需7.2元,问检修小组工作一天需汽油费多少元?40.某支股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“﹣”表示股票比前一天下跌)(1)周一至周五这支股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了?.(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?.浙教新版七年级上学期《2.2 有理数的减法》同步练习卷参考答案与试题解析一.选择题(共1小题)1.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a+b ﹣c的值为()A.0B.2C.﹣2D.2或﹣2【分析】由a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,可分别得出a、b、c的值,代入计算可得结果.【解答】解:根据题意知a=1,b=﹣1,c=0,则a+b﹣c=1﹣1+0=0,故选:A.【点评】本题主要考查有理数的概念的理解,能正确判断有关有理数的概念是解题的关键.二.填空题(共4小题)2.若x与﹣3的差为1,则x的值是﹣2.【分析】根据题意知x=1+(﹣3)=﹣2.【解答】解:根据题意知x﹣(﹣3)=1,则x=1+(﹣3)=﹣2,故答案为:﹣2.【点评】本题主要考查有理数的减法,解题的关键是根据题意列出算式并熟练掌握运算法则.3.某市某天最高气温是﹣1℃,最低气温是﹣5℃,那么当天的最大温差是4℃.【分析】根据有理数的减法法则:减去一个数,等于加上这个数的相反数,即可得出结果.【解答】解:当天的最大温差是﹣1﹣(﹣5)=﹣1+5=4(℃),故答案为:4.【点评】本题考查了有理数减法法则:减去一个数,等于加上这个数的相反数.其中:两变:减法运算变加法运算,减数变成它的相反数.一不变:被减数不变.4.A,B,C三地的海拔高度分别是﹣50米,﹣70米,20米,则最高点比最低点高90米.【分析】根据题意列出算式,计算即可求出值.【解答】解:根据题意得:20﹣(﹣70)=20+70=90,则最高点比最低点高90米,故答案为:90【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.5.若|a|=3,|b|=2,则a﹣b的绝对值为5或1.【分析】根据绝对值的性质求出a、b的值,将a、b的值代入求出|a﹣b|的值即可.【解答】解:∵|a|=3,|b|=2,∴a=±3,b=±2,当a=﹣3,b=﹣2时,|a﹣b|=|﹣3+2|=1;当a=﹣3,b=2时,|a﹣b|=|﹣3﹣2|=5;当a=3,b=2时,|a﹣b|=|﹣2|=1;当a=3,b=﹣2时,|a﹣b|=|3+2|=5;a﹣b的绝对值为5或1.故答案为:5或1.【点评】主要考查了绝对值的性质,要求会灵活运用该性质解题.要牢记以下规律:(1)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.(2)|a|=﹣a时,a≤0;|a|=a时,a≥0.(3)任何一个非0的数的绝对值都是正数是解题的关键.三.解答题(共35小题)6.若|a|=8,|b|=5,且a+b>0,那么a﹣b的值是多少?【分析】先根据绝对值的性质求出a、b的值,再根据有理数的减法运算法则进行计算即可得解.【解答】解:∵|a|=8,|b|=5,∴a=±8,b=±5,∵a+b>0,∴a=8,b=±5,∴a﹣b=8﹣5=3,或a﹣b=8﹣(﹣5)=8+5=13,所以,a﹣b的值是3或13.【点评】本题考查了有理数的减法,绝对值的性质,有理数的加法,熟练掌握运算法则和性质并确定出a、b的值是解题的关键.7.已知|a|=5,|b|=7,且|a+b|=a+b,求a﹣b的值.【分析】直接利用绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵|a|=5,|b|=7,∴a=±5,b=±7,∵|a+b|=a+b,∴a+b≥0,∴a=±5,b=7,则a﹣b=﹣12或﹣2.【点评】此题主要考查了有理数的加减运算,正确分类讨论是解题关键.8.若实数a,b满足|a|=4,|b|=6,且a﹣b<0,求a+b的值.【分析】根据绝对值的性质求出a、b,再根据a﹣b<0判断出a、b的对应情况,然后相加即可得解.【解答】解:∵|a|=4,|b|=6,∴a=±4,b=±6,∵a﹣b<0,∴a<b,∴①a=﹣4,b=6,则a+b=2,②a=4,b=6,则a+b=10,综上所述,a+b的值等于2或10.【点评】本题考查了有理数的加法,绝对值的性质,有理数的减法,确定出a、b的值是解题的关键.9.计算:﹣﹣(﹣)+(﹣).【分析】先将减法转化为加法,再利用加法的交换律和结合律计算可得.【解答】解:原式=﹣+﹣=(+)﹣(+)=1﹣=【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的加减法的运算法则.10.如图1,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A到B记为:A→B(+1,+3);从C到D记为:C→D(+1,﹣2)[其中第一个数表示左右方向,第二个数表示上下方向].(1)填空:A→C(+3,+4);C→B(﹣2,﹣1)(2)若甲虫的行走路线为:A→B→C→D→A,请计算甲虫走过的路程.(3)若这只甲虫去Q处的行走路线依次为:A→M(+2,+2),M→N(+2,﹣1),N→P(﹣2,+3),P→Q(﹣1,﹣2),请依次在图2上标出点M、N、P、Q 的位置.【分析】(1)根据题意,向上向右为正,向下向左为负,进而得出答案;(2)根据甲虫的行走路线,借助网格求出总路程即可;(3)结合各点变化得出其位置,进而得出答案.【解答】解:(1)根据题意得出:A→C(+3,+4);C→B(﹣2,﹣1)故答案为:+3,+4;﹣2,﹣2;(2)∵甲虫的行走路线为:A→B→C→D→A,∴甲虫走过的路程为:1+3+2+1+1+2+2+4=16;(3)如图2所示:【点评】此题主要考查了新概念,利用定义得出各点变化规律求出是解题关键.11.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣3,+11,﹣6,﹣8,+6,+15.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车行驶每千米耗油量为a升,求这次养护小组的汽车共耗油多少升?【分析】(1)求得这组数据的和,结果是正数则最后到达的地点在出发点的东边,相反,则在西边;(2)求得每个记录点的位置,即可确定;(3)求得这组数据的绝对值的和,即是汽车行驶的路程,乘以a,即可求得总耗油量.【解答】解:(1)18﹣9+7﹣14﹣3+11﹣6﹣8+6+15=+17.则养护小组最后到达的地方在出发点的东边,17千米处;(2)养护过程中,最远处离出发点是18千米;(3)(18+9+7+14+3+11+6+8+6+15)a=97a.答:这次养护小组的汽车共耗油97a升.【点评】本题考查了有理数的混合运算,以及正负数表示一对具有相反意义的量,是一个基础题.12.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为a升/千米,则这次养护共耗油多少升?【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)求出每个记录点得记录数据,绝对值最大的数对应的点就是所求的点;(3)所走的路程是这组数据的绝对值的和,然后乘以a,即可求得耗油量.【解答】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16=+15(千米).则在出发点的东边15千米的地方;(2)最远处离出发点有17千米;(3)(17+9+7+15+3+11+6+8+5+16)a=97a(升).答:这次养护共耗油97a升.【点评】本题考查了有理数的加减运算,以及正负数表示一对具有相反意义的量.13.下表是某一周某种股票每天的收盘价(收盘价:股票每天交易结束时的价格)(1)填表,并回答哪天收盘价最高?哪天收盘价最低?(2)最高价与最低价相差多少?【分析】(1)收盘价最高说明加号后面的数越大,收盘价最低说明负号后面的数越大,从而求解;(2)由(1)将两数相减即可.【解答】解:(1)由图中数据可知:∵收盘价:股票每天交易结束时的价格收盘价:星期二:13.4﹣0.02=13.38,星期三:13.44,星期五:13.15涨跌:星期四:﹣0.04收盘价∴收盘价星期三最高为13.44,收盘价星期五最低为13.15(2)∴13.44﹣13.15=0.29.最高价与最低价相差为0.29.【点评】此题是一道应用题,主要考查有理数加减的运算法则,计算要仔细,是一道基础题.14.河里水位第一天上升8cm,第二天下降7cm,第三天又下降了9cm,第四天又上升了3cm,经测量此时的水位为62.6cm,试求河里初始水位值.【分析】根据题意列出算式,计算即可求出值.【解答】解:根据题意得:62.6﹣(8﹣7﹣9+3)=62.6+5=67.6cm.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.15.若用A、B、C、D分别表示有理数a、b、c,0为原点如图所示.已知a<c <0,b>0.(1)化简|a﹣c|+|b﹣a|﹣|c﹣a|;(2)|﹣a+b|﹣|﹣c﹣b|+|﹣a+c|【分析】(1)先依次判断出正负情况,然后去掉绝对值号,再根据整式的加减进行计算即可得解;(2)根据数轴判断出a、b、c的绝对值的大小,再依次判断出正负情况,然后去掉绝对值号,再根据整式的加减进行计算即可得解.【解答】解:(1)∵a<c<0,b>0,∴a﹣c<0,b﹣a>0,c﹣a>0,∴|a﹣c|+|b﹣a|﹣|c﹣a|,=c﹣a+b﹣a﹣(c﹣a),=c﹣a+b﹣a﹣c+a,=b﹣a;(2)由图可知,|a|>|c|>|b|,所以,﹣a+b>0,﹣c﹣b>0,﹣a+c>0,所以,|﹣a+b|﹣|﹣c﹣b|+|﹣a+c|,=﹣a+b﹣(﹣c﹣b)+(﹣a+c),=﹣a+b+c+b﹣a+c,=﹣2a+2b+2c.【点评】本题考查了整式的加减,绝对值的性质,准确判断出各式子的正负情况是解题的关键,也是本题的难点.16.有两个冰柜,第一个冰柜内温度为﹣18℃,第二个冰柜内温度为﹣10℃,哪个冰柜温度低?低多少度?【分析】根据两个负数相比较,绝对值大的反而小判断,再根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:∵|﹣18|=18,|﹣10|=10,∴﹣18<﹣10,∴第一个冰柜温度低,(﹣10)﹣(﹣18),=﹣10+18,=8℃.答:第一个冰柜温度低,低8℃.【点评】本题考查了有理数的减法,有理数的大小比较,熟练掌握减去一个数等于加上这个数的相反数是解题的关键.17.识图理解:请认真观察如图给出的未来一周某市的每天的最高气温和最低气温,直接回答后面提出的问题:(1)这一周该市的最高气温和最低气温分别是多少?(2)这一周中,星期几的温差最大?是多少?【分析】(1)依据图形可作出判断;(2)用最高气温减去最低气温即可.【解答】解:(1)最高气温和最低气温分别是9°C和﹣4°C;(2)这一周中,星期四的温差最大,温差是:4﹣(﹣4)=8°C.【点评】本题主要考查的是有理数的减法,熟练掌握有理数的减法法则是解题的关键.18.已知|a|=3,|b|=2且a<b,求a﹣b的值.【分析】根据绝对值的性质求出a、b的值,再根据a、b的关系确定出a、b,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:∵|a|=3,∴a=±3,∵|b|=2,∴b=±2,∵a<b,∴a=﹣3,b=±2,所以,a﹣b═﹣3﹣2=﹣5,或a﹣b=﹣3﹣(﹣2)=﹣3+2=﹣1.【点评】本题考查了有理数的减法,绝对值的性质,熟记运算法则是解题的关键,难点在于准确确定出a、b的值.19.若x的相反数是3,|y|=5,且x<y,求y﹣x的值.【分析】根据相反数的定义求出x的值,根据绝对值的性质求出y的值,然后代入代数式进行计算即可得解.【解答】解:∵x的相反数是3,∴x=﹣3,∵|y|=5,且x<y,∴y=5,∴y﹣x=5﹣(﹣3)=5+3=8.【点评】本题考查了有理数的减法,相反数的定义,绝对值的性质,熟记概念与性质并准确确定出x、y的值是解题的关键.20.某地一天中午12时的气温是6℃,傍晚5时的气温比中午12时下降了4℃,凌晨4时的温度比傍晚5时还低4℃,问傍晚5时的气温是多少?凌晨4时的气温是多少?【分析】直接利用有理数加减运算法则计算得出答案.【解答】解:由题意可得,傍晚5时的气温是:6﹣4=2(℃),凌晨4时的气温是:2﹣4=﹣2(℃),答:傍晚5时的气温是2℃,凌晨4时的气温是﹣2℃.【点评】此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.21.已知|m|=4,|n|=6,且|m+n|=m+n,求m﹣n的值.【分析】根据绝对值等于一个正数的数有两个可得m、n的值,根据|m+n|=m+n 可得m+n≥0,进而可确定m、n的值,然后计算m﹣n即可.【解答】解:∵|m|=4,|n|=6,∴m=±4,n=±6,∵|m+n|=m+n,∴m+n≥0,∴m=±4,n=6,∴当m=4,n=6时,m﹣n=﹣2,当m=﹣4,n=6时,m﹣n=﹣10,综上:m﹣n=﹣2或﹣10.【点评】此题主要考查了有理数的加法和绝对值,关键是掌握绝对值的性质:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.22.若有理数x,y满足|x|=5,|y|=3,且x<y,求x﹣y的值.【分析】直接利用绝对值的性质结合分类讨论分析得出答案.【解答】解:∵|x|=5,|y|=3,∴x=±5,y=±3,当x=﹣5,y=3,解得x﹣y=﹣8,当x=﹣5,y=﹣3,解得:x﹣y=﹣2.【点评】此题主要考查了有理数的加减运算,正确分类讨论是解题关键.23.计算:(1)(﹣9)﹣(﹣7)+(﹣6)﹣(+4)﹣(﹣5);(2)4﹣(+3.85)﹣(﹣3)+(﹣3.15).【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用减法法则变形,结合后相加即可得到结果.【解答】解:(1)(﹣9)﹣(﹣7)+(﹣6)﹣(+4)﹣(﹣5)=﹣9﹣6﹣4+7+5=﹣19+12=﹣7;(2)4﹣(+3.85)﹣(﹣3)+(﹣3.15)=4+3+(﹣3.85﹣3.15)=8﹣7=1.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.24.已知|m|=4,|n|=1,且|m﹣n|=m﹣n,求m﹣n的值.【分析】先根据绝对值的性质判断出m、n的大小,然后求出m、n的值,再代入代数式进行计算即可得解.【解答】解:∵|m﹣n|=m﹣n,∴m﹣n≥0,∴m≥n,∵|m|=4,|n|=1,∴m=4,n=±1,∴m﹣n=4﹣1=3,或m﹣n=4﹣(﹣1)=4+1=5.【点评】本题考查了有理数的减法,绝对值的性质,熟记运算法则和性质是解题的关键,难点在于判断出m、n的值.25.已知|m|=15,|n|=25,|m+n|≠m+n,求m﹣n的值.【分析】根据绝对值的性质求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:∵|m|=15,|n|=25,∴m=±15,n=±25,∵|m+n|≠m+n,∴m+n<0,∴m=±15,n=﹣25,∴m﹣n=15﹣(﹣25)=15+25=40,或m﹣n=﹣15﹣(﹣25)=﹣15+25=10.【点评】本题考查了有理数的减法,绝对值的性质,有理数的加法,熟记运算法则和性质是解题的关键,难点在于确定出m、n的值.26.已知|x|=16,|y|=9,且|x+y|=﹣(x+y),求x﹣y的值.【分析】根据绝对值的定义求得x=±16,y=±9;然后由已知条件|x+y|=﹣(x+y)推知x+y≤0,据此确定x、y的值;从而求得x﹣y的值.【解答】解:∵|x|=16,|y|=9,∴x=±16,y=±9;又∵|x+y|=﹣(x+y),∴x+y≤0;①当x=16,y=9,则x+y=25>0,不合题意,舍去;②当x=16,y=﹣9时,x+y=7>0,不合题意,舍去;③当x=﹣16,y=9时,x+y=﹣7<0,则x﹣y=﹣16﹣9=﹣25;④当x=﹣16,y=﹣9时,x+y=﹣25<0,则x﹣y=﹣16+9=﹣7;综上所述,x﹣y=﹣25或x﹣y=﹣7.【点评】本题考查了绝对值.解答此题需要分类讨论,以防漏解.27.某储蓄所,某日办理了7项储蓄业务:取出9.6万元,存入5万元,取出7万元,存入12万元,存入22万元,取出10.25万元,取出2.4万元,求储蓄所该日现金增加多少万元?【分析】根据有理数的加法、有理数的减法的运算方法,用3次一共存入的钱数减去4次一共支出的钱数,求出储蓄所该日现金增加多少万元即可.【解答】解:(5+12+22)﹣(9.6+7+10.25+2.4)=39﹣29.25=9.75(万元)答:储蓄所该日现金增加9.75万元.【点评】此题主要考查了有理数的加法、有理数的减法,要熟练掌握,解答此题的关键是要明确:(1)同号相加,取相同符号,并把绝对值相加.(2)绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.(3)减去一个数,等于加上这个数的相反数.28.已知|a|=8,|b|=6.(1)若a,b同号,求a+b的值;(2)若|a﹣b|=b﹣a,求a+b的值.【分析】(1)先依据绝对值的性质得到a、b的值,然后再依据有理数的加法法则进行计算即可;(2)依据|a﹣b|=b﹣a可得到b≥a,然后再分类计算即可.【解答】解:∵|a|=8,|b|=6,∴a=±8,b=±6.(1)因为a,b同号,所以a=8,b=6或者a=﹣8,b=﹣6.①当a=8,b=6时a+b=14.当a=﹣8,b=﹣6时a+b=﹣14.所以,当a,b同号时a+b等于14或﹣14;(2)由题意得b>a所以a=﹣8,b=6,或者a=﹣8,b=﹣6.①当a=﹣8,b=6时,a+b=﹣2;②当a=﹣8,b=﹣6时,a+b=﹣14.所以,当|a﹣b|=b﹣aa时,a+b等于﹣2或者﹣14.【点评】本题主要考查的是绝对值的性质,有理数的加法,熟练掌握相关法则是解题的关键.29.早晨6:00的气温为﹣4℃,到下午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温较早晨6:00的气温是上升了还是下降了?上升或下降了多少?【分析】根据题意列出正确的算式,计算得到结果,即可作出判断.【解答】解:根据题意得:﹣4+8﹣9﹣(﹣4)=﹣13+8+4=﹣1(℃),则晚上10:00的气温较早晨6:00的气温是下降了,下降了1℃.【点评】此题考查了有理数的加减混合运算,列出正确的算式是解本题的关键.30.已知x=5,|y|=6且x>y,求2x﹣y的值.【分析】先根据|y|=6,x=5,x>y确定y的值,再计算2x﹣y的值.【解答】解:∵|y|=6,y=±6,又∵x>y∴x=5,y=﹣6当x=5,y=﹣6,2x﹣y=10﹣(﹣6)=16.【点评】本题考查了绝对值的意义、有理数的减法计算,根据x>y确定y的值,是解决本题的关键.31.河里水位第一天上升8cm,第二天下降7cm,第三天又下降了9cm,第四天又上升了3cm,最后水位上升了还是下降了?多少厘米?【分析】把上升的水位记作正数,下降的水位记作负数,运用加法计算即可.【解答】解:设上升的水位为正数,下降的水位为负数,根据题意,得8+(﹣7)+(﹣9)+3=11+(﹣16)=﹣5(cm).故最后水位下降了5厘米.【点评】本题考查了有理数的加法和正负数表示相反意义的量,是一个基础的题目.32.“新华超市”在2015年1~3月平均每月盈利20万元,4~6月平均每月亏损15万元,7~10月平均每月盈利17万元,11~12月平均每月亏损19万元.问“新华超市”2015年总的盈亏情况如何?【分析】把盈利记作正,亏损记作负,根据题意列式求出一年的盈利与亏损的和,进一步根据计算结果判定即可.【解答】解:20×3﹣15×3+17×4+(﹣19)×2=45>0答:这个公司去年盈利45万元.【点评】此题考查有理数的混合运算实际运用,理解题意,列出算式是解决问题的关键.33.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则+=0(要求写出计算过程)【分析】根据题中的新定义化简,计算即可得到结果.【解答】解:根据题意得:1﹣2+3+4+6﹣5﹣7=0.故答案为:0【点评】此题考查了有理数的加减混合运算,弄清题中的新定义是解本题的关键.34.若|a|=3,|b|=5,求a﹣b的值.【分析】根据绝对值的意义,可得a、b的值,根据有理数的减法,可得答案.【解答】解:若|a|=3,|b|=5,得a=±3,b=±5.当a=3,b=5时,a﹣b=3﹣5=3+(﹣5)=﹣2;当a=3,b=﹣5时,a﹣b=3﹣(﹣5)=3+5=8;当a=﹣3,b=5时,a﹣b=﹣3﹣5=﹣3+(﹣5)=﹣8;当a=﹣3,b=﹣5时,a﹣b=﹣3﹣(﹣5)=﹣3+(+5)=2;综上所述:a﹣b=±2,或a﹣b=±8.【点评】本题考查了有理数的减法,利用绝对值的意义求出a、b的值,有理数的减法时要分类讨论.35.已知|a|=5,|b|=3,且|a﹣b|=b﹣a,求a+b的值.【分析】根据绝对值的性质求出a、b,再判断出a、b的对应情况,然后相加即可得解.【解答】解:∵|a|=5,|b|=3,∴a=±5,b=±3,∵|a﹣b|=b﹣a,∴a=﹣5时,b=3或﹣3,∴a+b=﹣5+3=﹣2,或a+b=﹣5+(﹣3)=﹣8,所以,a+b的值是﹣2或﹣8.【点评】本题考查了有理数的减法,有理数的加法和绝对值的性质,难点在于确定a、b的值的对应情况.36.某次数学单元检测,708班A1小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,成绩记录如下:+10,﹣2,+15,+8,﹣13,﹣7.(1)本次检测成绩最好的为多少分?(2)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?(3)本次检测小组成员中得分最高与最低相差多少分?【分析】(1)根据80+15求出成绩最好的即可;(2)求出记录成绩,根据结果的正负即可做出判断;(3)求出最高分与最低分,相减即可得到结果.【解答】解:(1)根据题意得:80+15=95(分),则成绩最好为95分;(2)根据题意得:10﹣2+15+8﹣13﹣7=11(分),则超过11分;(3)根据题意得:最高分为80+15=95(分),最低分为80﹣13=67(分),则最高分与最低分相差为95﹣67=28(分).【点评】此题考查了有理数的加减混合运算,以及正数与负数,弄清题意是解本题的关键.37.全班学生分成五个组进行游戏,每个组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束时,各组的分数如下;(1)第一名超出每二名多少分?(2)第一名超出第五名多少分?【分析】(1)用最高的第四组的分数减去第二组的分数,然后根据有理数的减法运算进行计算即可得解;(2)用最高的第四组的分数减去第三组的分数,根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:(1)第一名为第四组,第二名为第二组,350﹣150=200(分);(2)第一名为第四组,第五名为第三组,350﹣(﹣400)=350+400=750(分).【点评】本题主要考查了有理数的减法运算,熟记运算法则是解题的关键.38.某支股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“﹣”表示股票比前一天下跌)(1)周一至周五这支股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了?【分析】(1)根据每天涨跌的情况,分别列出算式并计算;(2)根据(1)的计算结果,分别回答问题.【解答】解:(1)周一收盘价是:10+0.28=10.28元;周二收盘价是:10.28﹣2.36=7.92元;周三收盘价是:7.92+1.80=9.72元;周四收盘价是:9.72﹣0.35=9.37元;周五收盘价是:9.37+0.08=9.45元;(2)由(1)可知,本周末的收盘价比上周末收盘价是下跌了.【点评】本题考查了有理数的混合运算的实际应用,关键是理解题意,列出算式.39.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)(1)在第五次纪录时距A地最远.(2)求收工时距A地多远?(3)若每km耗油0.3升,每升汽油需7.2元,问检修小组工作一天需汽油费多少元?【分析】(1)分别计算每次距A地的距离,进行比较即可;(2)收工时距A地的距离等于所有记录数字的和的绝对值;(3)所有记录数的绝对值的和×0.3升,就是共耗油数.【解答】解:(1)由题意得,第一次距A地|﹣3|=3千米;第二次距A地﹣3+8=5千米;第三次距A地|﹣3+8﹣9|=4千米;第四次距A地|﹣3+8﹣9+10|=6千米;第五次距A地|﹣3+8﹣9+10+4|=10千米;而第六次、第七次是向相反。
章节测试题1.【答题】﹣2﹣1的结果是()A. ﹣1B. ﹣3C. 1D. 3【答案】B【分析】本题考查有理数的减法.【解答】根据有理数的减法法则可得:原式=-2+(-1)=-3,选B.2.【答题】计算2﹣3的结果是()A. ﹣5B. ﹣1C. 1D. 5【答案】B【分析】本题考查有理数的减法.【解答】2﹣3=2+(﹣3)=﹣1.选B.3.【答题】桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()A. ﹣8℃B. 6℃C. 7℃D. 8℃【答案】D【分析】本题考查有理数的减法.【解答】7﹣(﹣1)=7+1=8℃.选D.4.【答题】五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2015年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是()A. 纽约时间2015年6月16日晚上22时B. 多伦多时间2015年6月15日晚上21时C. 伦敦时间2015年6月16日凌晨1时D. 汉城时间2015年6月16日上午8时【答案】C【分析】本题考查了数轴,解题时要把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.【解答】选项A,由数轴可知,纽约时间比北京早:8+5=13个小时,可得当北京时间2015年6月16日9时,纽约时间是2015年6月15日20时,选项A错误;选项B,由数轴可知,多伦多时间比北京早:8+4=12个小时,可得当北京时间2015年6月16日9时,纽约时间是2015年6月15日21时,选项B错误;选项C,由数轴可知,伦敦时间比北京早:8-0=8个小时,可得当北京时间2015年6月16日9时,伦敦时间是2015年6月16日1时,选项C正确;选项D,由数轴可知,汉城时间比北京晚:9-8=1个小时,可得当北京时间2015年6月16日9时,汉城时间是2015年6月16日10时,选项D错误;选C.5.【答题】与﹣3的差为0的数是()A. 3B. ﹣3C.D.【答案】B【分析】本题考查有理数的减法.【解答】根据题意可得,0+(-3)=-3,∴与﹣3的差为0的数是-3,选B.6.【答题】计算:0﹣7=______.【答案】﹣7【分析】本题考查有理数的减法.【解答】根据有理数的减法法则即可得0﹣7=0+(﹣7)=﹣7.7.【答题】计算:3﹣(﹣1)=______.【答案】4【分析】本题考查有理数的减法.【解答】根据有理数的减法法则可得:原式=3+1=4.8.【答题】计算:=______.【答案】﹣1【分析】本题考查有理数的减法.【解答】3﹣4=3+(﹣4)=﹣1.故答案为﹣1.9.【答题】计算:2000﹣2015=______.【答案】-15【分析】本题考查有理数的减法.【解答】2000﹣2015=﹣15.故答案为﹣15.10.【答题】|﹣7﹣3|=______.【答案】10【分析】本题考查绝对值,有理数的减法.【解答】原式=.11.【答题】(-2)-(-5)=(-2)+(______);0-(-4)=0+(______);(-6)-3=(-6)+(______);1-(+37)=1+(______).【答案】+5 +4 -3 -37【分析】本题考查了有理数的减法法则,解题时利用有理数的减法法则变形,关键是用减去一个数等于加上这个数的相反数变形.【解答】根据有理数的减法法则,减去一个数等于加上这个数的相反数,直接变形即可得到(-2)-(-5)=(-2)+(+5);0-(-4)=0+(+4);(-6)-3=(-6)+(-3);1-(+37)=1+(-37).故答案为:+5,+4,-3,-37.12.【答题】a、b、c在数轴上的位置如图所示:则a-b______0;b-c______0;-b-c______0;a-(-b)______0(填>,<或=)【答案】>>><【分析】本题考查有理数的减法.【解答】根据数轴可知c<b<0<a,因此根据有理数的加减法则可得a-b>0,b-c>0,-b-c=-(b+c)>0,a-(-b)=a+b<0.故答案为:>;>;>;<.13.【答题】一个数加-0.6和为-0.36,那么这个数是()A. -0.24B. -0.96C. 0.24D. 0.96【答案】C【分析】本题考查了有理数的加减法,解题的关键是根据加减法的互逆性,把加法转化为减法,再利用减去一个数等于加上这个数的相反数,即可计算,比较简单.【解答】根据加数+加数=和,可得-0.36-(-0.6)=-0.36+0.6=0.24.选C.14.【答题】下列算式正确的是()A. (-14)-5=-9B. 0-(-3)=3C. (-3)-(-3)=-6D. ∣5-3∣=-(5-3)【答案】B【分析】本题考查有理数的减法.【解答】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(-14)-(+5)=(-14)+(-5)=-19;0-(-3)=0+(+3)=3;(-3)-(-3)=(-3)+3=0;︱5-3︱=5-3=2.选B.15.【答题】较小的数减去较大的数是()A. 零B. 正数C. 负数D. 零或负数【答案】C【分析】本题考查有理数的减法.【解答】根据较小的数减去较大的数,差一定是负数,可知C正确.选C.16.【答题】下列结论中,正确的是()A. 有理数减法中,被减数不一定比减数大B. 减去一个数,等于加上这个数C. 零减去一个数,仍得这个数D. 两个相反数相减得0【答案】A【分析】本题考查的是有理数的减法.解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数.【解答】根据有理数的减法法则依次分析即可判断.A.有理数减法中,被减数不一定比减数大,本选项正确;B.减去一个数,等于加上这个数的相反数,本选项错误;C.零减去一个数,得这个数相反数,本选项错误;D.两个相反数相加得0,本选项错误;选A.17.【答题】把+3-(+2)-(-4)+(-1)写成省略括号的和的形式是()A. -3-2+4-1B. 3-2+4-1C. 3-2-4-1D. 3+2-4-1【答案】A【分析】本题考查了有理数的加减混合运算,注意将一个加减混合运算的式子写成省略加号的和的形式时,必须统一成加法后,才能省略括号和加号.【解答】先把加减法统一成加法,再省略括号和加号,即可将一个加减混合运算的式子写成省略加号的和的形式,可得+3-(+2)-(-4)+(-1)=+3-2+4-1.选A.18.【答题】哈尔滨市4月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差是()A. -2℃B. 8℃C. -8℃D. 2℃【答案】B【分析】本题考查有理数的减法.【解答】根据题意,用最高温度减去最低温度即可得到:5-(-3)=5+3=8.选B.19.【题文】计算:(1);(2);(3);(4);(5);(6);(7);(8);(9);(10);(11);(12);(13);(14);(15).【答案】见解答.【分析】根据有理数的减法法则,减去一个数等于加上这个数的相反数,转化为加法,然后根据异号两数相加和同号两数相加,可直接计算即可.【解答】(1)=(-7)+(-2)=-9;(2)=(-8)+(+8)=0;(3)=0+5=5;(4)=(-9)+(-4)=-13;(5)=5+3=8;(6)=(-3)+(-2)=-5;(7)=(-20)+(+12)=-8;(8);(9);(10)=;(11);(12);(13)=-4+9=5;(14);(15).20.【题文】用有理数的减法解答下列各题:(1)某地白天最高气温是20℃,夜间最低气温是-15℃,夜间比白天最多低多少℃?(2)甲、乙、丙三地海拔高度分别是50米、-10米、-26米,那么最高的地方比最低的地方高多少米?【答案】(1)35℃;(2)76米.【分析】本题考查了列代数式求值,解决此类问题的关键是根据题意正确的列出算式,然后利用法则求解.本题是列代数式求值的问题,首先要根据题意列出代数式,然后利用法则求解.【解答】(1)20-(-15)=35(℃);(2)50-(-26)=76(米).。
七年级数学上册《第二章有理数的减法》练习题及答案-浙教版一、选择题1.计算:﹣3﹣5的结果是( )A.﹣2B.2C.﹣8D.82.计算|﹣2|﹣2的值是( )A.0B.﹣2C.﹣4D.43.若两个数绝对值之差为0,则这两个数( )A.相等B.互为相反数C.都为0D.相等或互为相反数4.如果减数为负数,则( )A.差比被减数小B.差比被减数大C.差为正数D.差为负数5.下列等式正确的是( )A.-3+4-2=(-3)+(+4)-(-2)B.(+9)-(-10)-(+6)=9-10-6C.(-8)-(-3)+(-5)=-8+3-5D.-3+5+6=6-(3+5)6.下列说法正确的是( )A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差不一定小于被减数D.0减去任何数,差都是负数7.下列各式中与a-b-c不相等的是( )A.a-(b-c)B.a-(b+c)C.(a-b)+(-c)D.(-b)+(a-c)8.若|x|=7,|y|=5,且x+y>0,那么x﹣y的值是( )A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12二、填空题9.计算:|﹣9|﹣5=.10.比+6小﹣3的数是.11.某地某天的最高气温是6 ℃,最低气温是﹣4 ℃,则该地当天的温差为________℃.12.河里的水位第一天上升了8cm,第二天下降了7cm,第三天又下降了9cm,第四天上升了3cm,则第四天河水水位比刚开始的水位低____________cm.13.-212与-3的和与-5.5的差是____________.14.规定表示运算a-b+c,表示运算m+z-y-w,则+=_________.三、解答题15.计算:(﹣6)﹣9;16.计算:(-12)-(+23);17.计算:(-1615)-(-1014);18.计算:(-479)-(-316)-(+229)+(-616);19.请你借助于数轴,求下列每对数在数轴上对应点之间的距离.(1)5,3;(2)4,8;(3)2,-1;(4)-3,-5.通过计算,你能发现两点间的距离与这两数的差有什么关系吗?你能求出2026与-2026这对数在数轴上对应的两点之间的距离吗?20.在某地有记载的最高温度是56.7 ℃(约合134 ℉,℉是华氏度的单位符号),发生在1913年7月10日.有记载的最低温度是-62.2 ℃(约合-80 ℉),是在1971年1月23日.(1)以摄氏度为单位,有记录的最高温度和最低温度相差多少?(2)以华氏度为单位,有记录的最高温度和最低温度相差多少?21.9月2日早上8点,空军航空开放活动在大房身机场举行,某特技飞行队做特技表演时其中一架飞机起飞0.5千米后的高度变化如表:(1)完成上表;(2)飞机完成上述四个表演动作后,飞机离地面的高度是多少千米?(3)如果飞机平均上升1千米需消耗5升燃油,平均下降1千米需消耗3升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?22.若|a|=7,|b|=9,且|a+b|=-(a+b),求b-a的值.参考答案1.C.2.A3.D.4.B.5.C6.B7.A8.A.9.答案为:4.10.答案为:9.11.答案为:1012.答案为:513.答案为:014.答案为:1015.解:原式=﹣15;16.解:原式=-7 6;17.解:原式=-519 2018.解:原式=-1019.解:(1)2 (2)4 (3)3 (4)2 两点间的距离等于大的数与小的数之差2026-(-2026)=405220.解:(1)依题意得56.7-(-62.2)=118.9(℃).故以摄氏度为单位,有记录的最高温度和最低温度相差118.9℃;(2)依题意得134-(-80)=214(℉).故以华氏度为单位,有记录的最高温度和最低温度相差214℉.21.解:(2)0.5+2.5-1.2+1.1-1.8=1.1(千米).答:飞机完成上述四个表演动作后,飞机离地面的高度是1.1千米.(3)|+2.5|×5+|-1.2|×3+|+1.1|×5+|-1.8|×3=27(升). 答:这架飞机在这4个动作表演过程中,一共消耗了27升燃油.22.解:因为|a|=7,|b|=9所以a=±7,b=±9.又|a+b|=-(a+b)故a+b<0.所以a=±7,b=-9.因此,当a=7,b=-9时,b-a=-9-7=-16;当a=-7,b=-9时,b-a=-9-(-7)=-9+7=-2.。
章节测试题1.【答题】某天的最高气温是7℃,最低气温是-5℃,则这一天的最高气温与最低气温的差是()A. 2℃B. -2℃C. 12℃D. -12℃【答案】C【分析】本题考查了有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.这天的温差就是最高气温与最低气温的差,列式计算.【解答】这天的温差就是最高气温与最低气温的差,即7-(-5)=7+5=12℃.选C.2.【答题】某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A. -10℃B. -6℃C. 6℃D. 10℃【答案】D【分析】本题考查了有理数的意义和实际应用,运算过程中应注意有理数的减法法则.这天的最高气温比最低气温高多少,即是求最高气温与最低气温的差.【解答】∵2-(-8)=10,∴这天的最高气温比最低气温高10℃.选D.3.【答题】比1小2的数是()A. -3B. -1C. 1D. 3【答案】B【分析】本题考查了有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.比1小2的数是多少,即求1与2的差是多少.【解答】1-2=-1.选B.4.【答题】我市某天的最高气温是6℃,最低气温是﹣2℃,那么当天的日温差是______℃.【答案】8【分析】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】6﹣(﹣2)=6+2=8℃.故答案为8.5.【答题】气象部门测定,高度每增加1千米,气温大约下降5℃,现在地面气温是15℃,那么4千米高空的气温是______℃.【答案】-5【分析】本题考查有理数的减法运算.根据题意列出算式,计算即可得到结果.【解答】根据题意得:15﹣4×5=15﹣20=﹣5,则4千米高空的气温是﹣5℃.故答案为﹣5.6.【答题】存折中有2676元,取出1082元,又存入600元,在不考虑利息的情况下,你能算出存折中还有______元.【答案】2194【分析】本题考查有理数的加减混合运算.根据题意列出算式2676﹣1082+600,然后计算即可.【解答】根据题意得:2676﹣1082+600=2194,∴存折中还有2194元.7.【答题】“早穿皮袄午穿纱”这句民谣形象地描绘了新疆奇妙的气温变化现象.乌鲁木齐五月的某天,最高气温17℃,最低气温-2℃,则当天的最大温差是______℃.【答案】19【分析】本题考查有理数的减法运算.【解答】17-(-2)=19(℃).8.【答题】-21-11=______.【答案】-32【分析】本题考查有理数的减法运算.【解答】-21-11=-(21+11)=-32.9.【答题】-22-12=______.【答案】-34【分析】本题考查有理数的减法运算.【解答】-22-12=-(22+12)=-34.10.【答题】-24-14=______.【答案】-38【分析】本题考查有理数的减法运算.【解答】-24-14=-(24+14)=-38.11.【答题】某地某天早上气温为22℃,中午上升了4℃,夜间又下降了10℃,那么这天夜间的气温是______℃.【答案】16【分析】气温上升用加下降用减,列出算式后运用有理数的加减混合运算法则计算.【解答】根据题意列算式得22+4-10=26-10=16(℃).∴这天夜间的气温是16℃.故应填16.12.【答题】一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是______℃.【答案】-3【分析】本题考查用正负来表示具有相反意义的量,做题时一定要注意单位.气温上升为正,下降为负,列出算式求解即可.【解答】根据题意列式为-5+10-8=-13+10=-3(℃).故应填-3.13.【答题】我市某天上午的温度是15℃,中午又上升了3℃,夜间又下降了8℃,则这天夜间的温度是______℃.【答案】10【分析】把温度上升计为正,下降计为负,列出算式后进行有理数的加减混合运算.【解答】根据题意,可列式15+3+(-8)=18-8=10(℃).故应填10.14.【答题】某地上午气温为10℃,下午上升2℃,到半夜又下降15℃,那么半夜的气温为______℃.【答案】-3【分析】本题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.根据题意列出算式,计算即可得到结果.【解答】根据题意得10+2-15=12-15=-3(℃),则半夜的气温为-3℃.故答案为-3.15.【答题】如果崇左市市区某中午的气温是36℃,到下午下降了4℃,那么下午的气温是______℃.【答案】32【分析】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.用中午的温度减去下降的温度,然后根据有理数的减法运算法则进行计算即可得解.【解答】36℃-4℃=32℃.16.【答题】如果崇左市市区某中午的气温是35℃,到下午下降了5℃,那么下午的气温是______℃.【答案】30【分析】本题考查了有理数的减法,熟记运算法则是解题的关键.用中午的温度减去下降的温度,然后根据有理数的减法运算法则进行计算即可得解.【解答】35℃-5℃=30℃.17.【答题】计算:3-(-1)=______.【答案】4【分析】本题考查了有理数加减法则,能理解熟记法则是解题的关键.先根据有理数减法法则,把减法变成加法,再根据加法法则求出结果.【解答】3-(-1)=3+1=4,故答案为4.18.【答题】计算:2000-2015=______.【答案】-15【分析】本题考查了有理数的减法,熟记运算法则是解题的关键.根据有理数的减法运算进行计算即可得解.【解答】2000-2015=-15.故答案为-15.19.【答题】计算:0-7=______.【答案】-7【分析】本题考查了有理数的减法运算,熟练掌握减法法则是本题的关键.根据有理数的减法法则进行计算即可,减去一个数等于加上这个数的相反数.【解答】0-7=-7;故答案为-7.20.【答题】比-1℃低2℃的温度是______℃.(用数字填写)【答案】-3【分析】本题考查了有理数的减法运算,熟记减去一个数等于加上这个数的相反数是解题的关键.用-1减去2,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】-1-2=-1+(-2)=-3.故答案为-3.。
2.2有理数的减法(2)班级:____________________姓名:____________________一、填空题1.计算: -21+(-31)=____ -21+31=____ 21+31=____ 21-31=____ -31-41=____ -41-(-51)=____ 2.两个相反数之和为_____.3.0减去一个数得这个数的_____.4.两个正数之和为_____,两个负数之和为_____,一个数同0相加得_____.5.某地傍晚气温为-2℃,到夜晚下降了5℃,则夜晚的气温为_____,第二天中午上升了10℃,则此时温度为_____.6.异号两数相加和为正数,则_____的绝对值较大,如和为负数,则_____的绝对值较大,如和为0,则这两个数的绝对值______.7.两个数相加,交换加数的位置和_____,两个数相减交换减数的位置,其得数与原得数的关系是_____.8.已知一个数是-2,另一个数比-2的相反数小3,则这两个数和的绝对值为_____.二、选择题9.下列结论不正确的是[]A.两个正数之和必为正数B.两数之和为正,则至少有一个数为正C.两数之和不一定大于某个加数D.两数之和为负,则这两个数均为负数10.下列计算用的加法运算律是[] -32+3.2-32+7.8 =-31+(-32)+3.2+7.8 =-(31+32)+3.2+7.8 =-1+11=10A.交换律B.结合律C.先用交换律,再用结合律D.先用结合律,再用交换律11.若两个数绝对值之差为0,则这两个数[]A.相等B.互为相反数C.两数均为0D.相等或互为相反数 12.-[0.5-31-(61+2.5-0.3)]等于[]A.2.2B.-3.2C.-2.2D.3.2三、计算题13.计算(1)-31+25+(-69)(2)(-21)-(-31)-(+41) 14.已知两个数的和为-252,其中一个数为-143,求另一个数.15.如果两个数的和的绝对值,等于这两个数差的绝对值,这两个数是什么样的数.16.1984年全国高考数学试题共15个选择题,规定答对一个得4分,答错一个扣1分,不答得0分,某人选对12个,错2个,未选一个,请问该生选择题得多少分?17.弘文中学定于十一月份举行运动会,组委会在整修百米跑道时,工作人员从A 处开工,约定向东为正,向西为负,从开工处A 到收工处B 所走的路线(单位:米),分别为+10、-3、+4、-2、+13、-8、-7、-5、-2,工作人员整修跑道共走了多少路程?参考答案一、1.-65-616561-127-2012.03.相反数4.正数负数这个数5.-7℃+3℃6.正数负数相等7.不变互为相反数8.3 二、9.D10.D11.D12.A三、13.-75-12514.-2013 15.至少有一个数为016.4617.54米。
2.2__有理数的减法__第1课时 有理数的减法法则[学生用书B10]1.[2018·呼和浩特]-3-(-2)的值是( A ) A .-1 B .1 C .5D .-52.下列计算结果正确的是( D ) A .-3-7=-3+7=4 B .4.5-6.8=6.8-4.5=2.3 C .-2-⎝ ⎛⎭⎪⎫-13=-2+13=-213D .-3-⎝ ⎛⎭⎪⎫-12=-3+12=-212【解析】 A 不正确,-3-7=-3+(-7)=-10;B 不正确,4.5-6.8=4.5+(-6.8)=-2.3;C 不正确,-2-⎝ ⎛⎭⎪⎫-13=-2+13=-123;D 正确.故选D.3.[2018·淄博]计算⎪⎪⎪⎪⎪⎪-12-12的结果是( A )A .0B .1C .-1 D.14【解析】 先计算-12的绝对值,再计算结果,原式=12-12=0. 4.[2018·台州]比-1小2的数是( D ) A .3 B .1 C .-2D .-3 【解析】 -1-2=-1+(-2)=-(1+2)=-3.5.[2018·咸宁]咸宁冬季里某一天的气温为-3 ℃~2 ℃,则这一天的温差是( C ) A .1 ℃ B .-1 ℃ C .5 ℃D .-5 ℃【解析】 根据“温差=最高气温-最低气温”,∴这一天的温差为 2 ℃-(-3 ℃)=2 ℃+3 ℃=5 ℃,故选C. 6.0减去任何一个数,一定是( B ) A .这个数本身 B .这个数的相反数 C .这个数的绝对值 D .07.计算:(1)33-(-27)=__60__; (2)0-12=__-12__;(3)[2018·常州]|-3|-1=__2__; (4)[2018·玉林]6-(3-5)=__8__.【解析】 (4)原式=6-(3-5)=6-(-2)=6+2=8.8.世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8 844 m ,吐鲁番盆地的海拔高度大约是-155 m .珠穆朗玛峰与吐鲁番盆地两处高度相差__8__999__m.【解析】 8 844-(-155)=8 844+155=8 999(m). 9.(1)比2 ℃低8 ℃的温度是__-6__℃__; (2)比-3 ℃低6 ℃的温度是__-9__℃__; (3)比0小4的数是__-4__; (4)比0小-4的数是__4__; (5)7.4比8.3小__0.9__; (6)7.4比8.3大__-0.9__. 10.计算: (1)0-(-12); (2)52-(-2.5); (3)⎝ ⎛⎭⎪⎫-34-⎝ ⎛⎭⎪⎫+12;(4)218-312;(5)7.2-(-2.8)+(-5). 解:(1)原式=0+12=12; (2)原式=52+2.5=5;(3)原式=-34+⎝ ⎛⎭⎪⎫-12=-34+⎝ ⎛⎭⎪⎫-24=-114;(4)原式=218-348=-138;(5)原式=7.2+2.8+(-5)=10+(-5)=5. 11.列式计算:(1)412与-314的差的相反数;(2)一个加数是-7,和是-11,则另一个加数是什么? 解:(1)根据题意,得-⎣⎢⎡⎦⎥⎤412-⎝ ⎛⎭⎪⎫-314=-⎝ ⎛⎭⎪⎫412+314=-734; (2)根据题意,得-11-(-7)=-11+7=-4.12.已知两个有理数在数轴上对应的点分别为A ,B ,如图2-2-1所示,则下列说法正确的是( C )图2-2-1A .两数之差大于0B .两数之和小于0C .两数绝对值之和大于0D .两数之差小于0【解析】 根据点A ,B 在数轴上的位置可知两数之和大于0,两数之差可能大于0,也可能小于0,两数绝对值之和大于0.故选C. 13.填空:(1)数轴上表示2和5的两点之间的距离是__3__;(2)数轴上表示-2和-5的两点之间的距离是__3__;(3)数轴上表示1和-3的两点之间的距离是__4__.【解析】(1)|5-2|=|3|=3;(2)|(-5)-(-2)|=|-3|=3;(3)|(-3)-1|=|-4|=4.14.全班学生分为五组进行游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分.游戏结束时,各组的分数如下:(1)第一名超出第二名多少分?(2)第一名超出第五名多少分?解:由上表可以看出,第一名为第四组,第二名为第二组,第五名为第三组.(1)350-150=200(分),即第一名超出第二名200分;(2)350-(-400)=750(分),即第一名超出第五名750分.15.下表是我国一些城市11月份的某一天的平均气温(单位:℃).请结合表格回答下列问题:(1)这一天平均气温最低的城市是哪里?平均气温最高的城市是哪里?(2)平均气温最低的城市比平均气温最高的城市低多少?解:(1)平均气温最低的城市是沈阳,平均气温最高的城市是三亚;(2)-20-22=-42(℃),即沈阳比三亚气温低42 ℃.16.一辆货车从超市出发,向东走了3 km到达小彬家,继续向东走了1.5 km到达小颖家,然后向西走了9.5 km到达小明家,最后回到超市.(1)请你以超市为原点,以向东的方向为正方向,用一个单位长度表示1 km,在数轴上表示出小彬家、小颖家、小明家的位置;(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?解:(1)如答图;第16题答图(2)3-(-5)=8(km),即小明家距小彬家8 km;(3)3+1.5+9.5+5=19(km),即货车一共行驶了19 km.17.已知一个数的绝对值是5,另一个数的绝对值是3,若两数之和的绝对值等于两数之和,则两数之差不可能为(D)A.2 B.8C.-2 D.0【解析】由题意知两数其中一个为5,另一个可能是3或-3,则两数之差为5-3=2,5-(-3)=8,3-5=-2,-3-5=-8.故选D.第2课时 有理数的加减混合运算[学生用书A12]1.[2018秋·永定区校级月考]把(+3)-(+5)-(-1)+(-7)写成省略括号的形式是( C ) A .-3-5+1-7 B .3-5-1-7 C .3-5+1-7D .3+5+1-72.[2018秋·湖里区校级月考]把⎝ ⎛⎭⎪⎫+23+⎝ ⎛⎭⎪⎫-45-⎝ ⎛⎭⎪⎫+15-⎝ ⎛⎭⎪⎫-13-(+1)写成省略括号的形式是( B ) A.23-45+15-13+1 B.23-45-15+13-1 C.23+45-15-13-1 D.23-45+15+13-13.下列各式不成立的是( D )A .20+(-9)-7+(-10)=20-9-7-10B .-1+3+(-2)-11=-1+3-2-11C .-3.1+(-4.9)+(-2.6)-4=-3.1-4.9-2.6-4D .-7+(-18)+(-21)-34=-7-(18-21)-344.[2018秋·南昌期中]计算1-3+5-7+9=(1+5+9)+(-3-7)是运用了( D ) A .加法交换律 B .加法结合律 C .分配律D .加法交换律与结合律5.计算(-3)-(+5)+(-7)-(-5)+213所得的结果是( C ) A .-713B .1213C .-723 D .-12236.计算56-38+⎝ ⎛⎭⎪⎫-278的值为( B )A .-23B .-2512C .-3124D .-141124【解析】 56-38+⎝ ⎛⎭⎪⎫-278=56-⎝ ⎛⎭⎪⎫38+278=56-314=-2512.故选B.7.杭州某企业第一季度盈余2 200万元,第二季度亏损500万元,第三季度亏损1 400万元,第四季度盈余1 100万元.该企业当年的盈亏情况是( A ) A .盈余1 400万元 B .盈余1 500万元 C .亏损1 400万元 D .亏损1 500万元【解析】 2 200-500-1 400+1 100=3 300-1 900=1 400(万元).故选A. 8.计算:(-0.25)-⎝ ⎛⎭⎪⎫-314+2.75-⎝ ⎛⎭⎪⎫+712=__-1.75__.9.-212与-3的和与-5.5的差是__0__.【解析】 列式,得⎝ ⎛⎭⎪⎫-212+(-3)-(-5.5) =-212-3+5.5=-512+5.5 =0.10.某天在8个不同时间测得水池中的水位情况如下(单位:cm):+3,-6,-1,+5,-4,+2,-3,-2(规定上升为正,下降为负),那么这天水池中水位的最终变化情况是__下降6__cm__.【解析】 (+3)+(-6)+(-1)+(+5)+(-4)+(+2)+(-3)+(-2) =3-6-1+5-4+2-3-2 =-6(cm).即下降了6 cm. 11.计算:(1)3-(+63)-(-259)-(-41); (2)(+0.75)+(-2.8)+(-0.2)-1.25; (3)7.5+⎝ ⎛⎭⎪⎫-212-(+22.5)+⎝ ⎛⎭⎪⎫-623.解:(1)原式=(3-63)+(259+41) =-60+300=240;(2)原式=0.75-1.25-2.8-0.2 =-0.5-3=-3.5; (3)原式=7.5-22.5-212-623 =-15-2-6-12-23=-2416.12.在小明家网络银行缴付电费的账户中,2019年1月24日至2019年2月24日所反映的数据如下表:那么表格中问号处的数据为( C ) A .111.30 B .129.95 C .-104.72D .-129.95【解析】 601.84-500-206.56=-104.72,故选C.13.根据如图2-2-2所示的程序计算,若输入的值为1,则输出的值为__-5__.图2-2-2【解析】 ∵1-1+2-4=-2>-4, -2-1+2-4=-5<-4,∴输出的值为-5. 14.用较为简便的方法计算下列各题: (1)⎝ ⎛⎭⎪⎫+213-⎝ ⎛⎭⎪⎫+1013+⎝ ⎛⎭⎪⎫-815-⎝ ⎛⎭⎪⎫+325; (2)-8 721+531921-1 279+4221;(3)-⎪⎪⎪⎪⎪⎪-35-⎝⎛⎭⎪⎫-25+⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫-14+⎝ ⎛⎭⎪⎫-12. 解:(1)原式=⎝ ⎛⎭⎪⎫213-1013-⎝ ⎛⎭⎪⎫815+325 =-8-1135=-1935;(2)原式=(-8 721-1 279)+⎝ ⎛⎭⎪⎫531921+4221=-10 000+58 =-9 942;(3)原式=-⎪⎪⎪⎪⎪⎪-15+⎪⎪⎪⎪⎪⎪-34=-15+34 =1120.15.列式计算:(1)-4,-5,+7三个数的和比这三个数的绝对值的和小多少? (2)从-1中减去-512,-78,-34的和,所得的差是多少? 解:(1)(|-4|+|-5|+|7|)-(-4-5+7) =16-(-2) =18;(2)-1-⎝ ⎛⎭⎪⎫-512-78-34=-1-⎝ ⎛⎭⎪⎫-2124 =1124.16.[2018秋·市中区校级月考]淮海中学图书馆上周借书记录如下(超过100册记为正,少于100册记为负):(1)上星期五借出多少册书? (2)上星期四比上星期三多借出几册? (3)上周平均每天借出几册? 解:(1)100+(-12)=88(册), 答:上星期五借出88册书;(2)[100+(+6)]-[100+(-17)]=23(册), 答:上星期四比上星期三多借出23册;(3)100+[(+23)+0+(-17)+(+6)+(-12)]÷5=100(册). 答:上周平均每天借出100册.17.计算:2019秋浙教版七年级数学上册测试:2.2有理数的减法(1)1+2-3-4;(2)1+2-3-4+5+6-7-8+9+10-11-12+…+2 017+2 018-2 019-2 020.解:(1)-4;(2)原式=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+…+(2 017+2 018-2 019-2 020)=-4+(-4)+…+(-4)=-4×505=-2 020.11 / 11。
2.2 有理数的减法第1课时有理数的减法法则知识点1.有理数的减法法则1.用字母表示有理数的减法法则正确的是(B)A.a-b=a+bB.a-b=a+(-b)C.a-b=-a+bD.a-b=a-(-b)2.计算1-(-1)的结果是(A)A.2 B.1C.0 D.-23.计算-10-8所得的结果是(D)A.-2 B.2C.18 D.-184.下列算式:①6-(-6)=0;②(-2)-(+2)=0;③(-7)-|-7|=0;④0-(-12)=12.其中正确的有(A)A.1个B.2个C.3个D.4个5.已知a ,b 在数轴上的位置如图1所示,则a -b 的结果的符号为( B )图1A .正B .负C .0D .无法确定6.计算: (1)1.8-(-2.6); (2)⎝ ⎛⎭⎪⎫-43-⎝ ⎛⎭⎪⎫-23; (3)⎝ ⎛⎭⎪⎫-213-423; (4)312-(-2.5).解:(1)4.4;(2)-23;(3)-7;(4)6. 知识点2.有理数的减法的应用7.某地一天的最高气温是8 ℃,最低气温是-2 ℃,则该地这天的温差是( A ) A .10 ℃ B .-10 ℃ C .6 ℃D .-6 ℃ 【解析】 根据题意得8-(-2)=8+2=10,则该地这天的温差是 10 ℃. 8.比0小1的有理数是( A ) A .-1 B .1 C .0D .2【解析】由题意可得0-1=-1,故比0小1的有理数是-1.9.比2 ℃低5 ℃的温度是__-3__℃;比-2 ℃低5 ℃的温度是__-7__℃.10.某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则:(1)一月份比三月份多获利润__155__万元;(2)第一季度该工厂共获利润__225__万元.11.甲、乙、丙三地的海拔高度分别是20 m,-15 m,-10 m,那么最高的地方比最低的地方高__35__m.12.某日,北京、大连等6个城市的最高温度与最低温度记录如下表,哪个城市温差最大?哪个城市温差最小?分别是多少?解:北京:12-2=10(℃);大连:6-(-2)=8(℃);哈尔滨:2-(-12)=14(℃);沈阳:3-(-8)=11(℃);武汉:18-6=12(℃);长春:3-(-10)=13(℃).∵8<10<11<12<13<14,∴哈尔滨温差最大,为14 ℃,大连温差最小,为8 ℃.【易错点】进行有理数的减法远算时,忘记对减数进行变号.13.下列说法正确的是(B)A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差不一定小于被减数D.0减去任何数,差都是负数第2课时 有理数的加减混合运算知识点1.加减混合算式的读法与写法1.下列式子可读做“负10,负6,正3,负7的和”的是( B ) A .-10+(-6)+(+3)-(-7) B .-10-6+3-7 C .-10-(-6)-3-(-7) D .-10-(-6)-(-3)-(-7)2. 把-2+(+3)-(-5)+(-4)-(+3)写成省略括号的形式,正确的是( D ) A .-2+3-5-4-3 B .-2+3+5-4+3 C .-2+3+5+4-3 D .-2+3+5-4-33.把⎝ ⎛⎭⎪⎫-478-⎝ ⎛⎭⎪⎫-512-⎝ ⎛⎭⎪⎫+318写成省略括号的形式是__-478+512-318__.4.式子“-3+5-7+4”读做__负3加5减7加4__或__负3,正5,负7,正4的和__.知识点2.有理数的加减混合运算5.计算(-25)-(-16)+2的结果是( B ) A .7B .-7C.8 D.-86.计算:1-3+7-5=__0__.7.在()里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(__将减法统一为加法__) =[(-4)+(-13)+(-2)]+[(+18)+(+3)](__加法的交换律、结合律__)=(-19)+(+21)(__有理数加法法则__)=2.(__有理数加法法则__)8.计算:(1)(-9)-(+6)+(-8)-(-10)=__-13__;(2)-14-⎝⎛⎭⎪⎫+134-(-3.75)-0.25+⎝⎛⎭⎪⎫-312=__-2__.9.计算:(1)-5+3-2;(2)-20-(-18)+(-14)+13;(3)5.6+(-0.9)+4.4+(-8.1).解:(1)原式=-7+3=-4;(2)原式=-20+18-14+13=-34+31=-3;(3)原式=(5.6+4.4)+(-0.9-8.1)=10-9=1. 知识点3.有理数的加减混合运算的实际应用10.一天早晨的气温是-7 ℃,中午上升了11 ℃,晚上又下降了9 ℃,晚上的气温是(A)A.-5 ℃B.-6 ℃C.-7 ℃D.-8 ℃【解析】-7+11-9=-7+11+(-9)=-5.11.已知某银行办理了7笔业务:取款8.5万元,存款6万元,取款7万元,存款10万元,存款16万元,取款9.5万元,取款3万元,则这个银行的现金是增加了还是减少了?增加或减少了多少万元?解:规定取出为负,存进为正,由题意可得-8.5+6-7+10+16-9.5-3=4(万元).答:这个银行的现金增加了4万元.【易错点】把减法统一成加法时容易出现符号错误.12.下列等式正确的是(C)A.-3+4-2=(-3)+(+4)-(-2)B.(+9)-(-10)-(+6)=9-10-6C.(-8)-(-3)+(-5)=-8+3-5D.-3+5+6=6-(3+5)。
章节测试题1.【题文】计算(1)2.7-(-3.1)(2)0.15-0.26(3)(-5)-(-3.5)(4);(5);(6) .【答案】(1)5.8 (2)-0.11 (3)-1.5(4)(5)-15 (6)【分析】利用有理数的减法法则:减去一个数等于加上这个数的相反数,即可得出结果.【解答】解:(1)2.7-(-3.1)=2.7+(+3.1)=5.8(2)0.15-0.26=0.15+(-0.26)=-0.11(3)(-5)-(-3.5)=(-5)+(+3.5)=-1.5(4)(5)=-15(6)2.【题文】计算:.【答案】【分析】有理数的加减混合运算,一般应统一成加法运算,再运用运算律进行简化计算,本题利用加法的交换律和结合律把同分母的相结合.【解答】解:原式=﹣﹣﹣+=﹣1﹣=或.3.【题文】计算(1);(2);(3);(4)【答案】(1)(2)(3)(4)【分析】进行有理数加减混合运算时,如果含有分数,可将分母相同的分数结合起来运算,不同分母的分数最后进行通分运算。
含有绝对值的可先计算绝对值里边的再将绝对值去掉进而进行运算。
【解答】解:(1)===(2)==-12 +10 + =(3)===-=(4)==5 -1=4.【题文】计算(1);(2);(3);(4)【答案】(1); (2) ; (3)-17 ; (4)【分析】进行有理数的加减混合运算时,可先统一成加法,再运用加法交换律,结合律进行运算。
【解答】解:(1)==-5+(- )=(2)===-+=(3)==-11+(-6) =-17 (4)===0+3+=5.【题文】小明在计算41-N时,误将“-”看成“+”,结果得13,(1)求N的值;(2)求41-N的值到底是多少?【答案】(1)-28;(2)69【分析】(1)由题意可知N+41=13,可求得N的值;(2)然后再求得41-N的值即可.【解答】解:(1)由题意得:41+N=13,解得:N=-28;(2)41-N=41-(-28)=41+28=69.6.【题文】在一次数学测验中,七年级(4)班的平均分为86分,•如果把高于平均分的部分记作正数,不足平均分的部分记作负数(1)李洋得了90分,应记作多少?(2)刘红的成绩记作-5分,她实际得分是多少?(3)李洋和刘红相差多少分?【答案】(1)+4;(2)81;(3)9.【分析】(1)90-86即可;(2)86-5即可;(3)用李洋的成绩减去刘红的成绩即可.【解答】解:(1)90-86=+4;(2)86-5=81;(3)90-81=9.7.【题文】计算①-+(+)②90-(-3)③-0.5-(-3)+2.75-(+7)④【答案】①-1.3;②93;③-2;④-10.【分析】解:(1)原式利用异号两数相加的法则计算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式运用加法交换律和结合律即可求解;(4)原式运用加法交换律和结合律即可求解.【解答】解:①-+(+)=-()=;②90-(-3)=90+3=93;③-0.5-(-3)+2.75-(+7)==-(=-8+6=-2;④==-7+(-3)=-10.8.【题文】直接写出答案(1)(-2.8)+(+1.9)=,(2)=,(3),(4)【答案】(1)-0.9; (2)4 ;(3)12.19;(4)5【分析】(1)原式利用异号两数相加的法则计算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)先算绝对值,再利用减法法则变形,计算即可得到结果.【解答】解:(1)原式=-(2.8-1.9)-0.9;(2)原式=;(3)原式=0+12.19=12.19;(4)原式=3-(-2)=3+2=5.9.【题文】计算:【答案】-53【分析】原式利用减法法则变形,计算即可得到结果.【解答】解:原式=-32+17-23-15=-15-38=-53.10.【题文】某水泥仓库6天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+20、-25、-13、+28、-29、-16.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付多少元装卸费?【答案】(1)-35,(2)235吨;(3)655元【分析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.【解答】解:(1)+20+(-25)+(-13)+(+28)+(-29)+(-16)=20-25-13+28-29-16=-35,答:仓库里的水泥减少了,减少了35吨;(2)200-(-35)=235(吨)答:6天前,仓库里存有水泥235吨;(3)(|+20|+|-25|+|-13|+|+28|+|-29|+|-16|)×5=131×5=655(元)答:这6天要付655元的装卸费.11.【题文】计算:【答案】【分析】先化简符号,再利用加法结合律进行简算即可.【解答】解:==12.【题文】计算:【答案】【分析】根据有理数的加减法法则依次计算即可.【解答】解:原式= =1- =13.【答题】将算式(﹣8)﹣(﹣10)+(﹣6)﹣(+4)改写成省略加号和括号的形式是:______.【答案】﹣8+10﹣6﹣4【分析】根据有理数的减法法则计算即可.【解答】(﹣8)﹣(﹣10)+(﹣6)﹣(+4)改写成省略加号和括号的形式是:﹣8+10﹣6﹣4;故答案为:﹣8+10﹣6﹣4.14.【答题】小明爸爸手机软件“墨迹天气”显示,2018年元旦某市最高气温7℃,最低气温﹣2℃,那么这天的最高气温比最低气温高______℃.【答案】9【分析】根据有理数的减法法则计算即可.【解答】试题分析:7﹣(﹣2)=7+2=9℃.故答案为:9.15.【答题】计算﹣2﹣(﹣4)的结果是______.【答案】2【分析】根据有理数的减法法则计算即可.【解答】-2-(-4)=-2+4=2.故答案是:2.16.【答题】我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是______℃.【答案】14℃【分析】先用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上它的相反数”计算.【解答】解:(℃).故答案为:14℃.17.【答题】计算:﹣4﹣5=______【答案】﹣9【分析】根据有理数的减法法则计算即可.【解答】﹣4﹣5=-(4+5)=-9.18.【答题】纽约与北京的时差为﹣13h,李伯伯在北京乘坐中午十二点的航班飞行约20h到达纽约,那么李伯伯到达纽约时间是______点.【答案】19【分析】根据有理数的减法法则计算即可.【解答】根据纽约与北京的时差为﹣13h,可列式求解为:12+20﹣13=32﹣13=19,所以李伯伯到达纽约时间是19点,即晚上7点.故答案为:19.19.【答题】某地某天的最高气温为﹣2℃,最低气温为﹣8℃,这天的温差是______℃.【答案】6【分析】根据有理数的减法法则计算即可.【解答】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解:(-2)﹣(﹣8)=-2+8=6℃。
2.2有理数的减法(1)一、基础达标1.一个数加上-3.6,和为-0.36,那么这个数是( )A 、-3.24B 、-3.96C 、3.24D 、3.962.若两个数的差为负数,则这两个数( )A 、都是负数B 、一个是正数,一个是负数C 、减数大于被减数D 、减数小于被减数3.若减数为负数,则 ( )A 、差比被减数小B 、差比被减数大C 、差为正数D 、差为负数4.下列算式,其中正确的是 ( )①()022=-+; ②()()033=+--;③()022=---;④()110=-- .A 、1个B 、2个C 、3个D 、4个5.比0小4的数是 ,比3小7的数是 ,比-6大9,32-与52的差的相反数是 , 比4-小3-的数的绝对值是 .6.月球表面的温度中午是101℃,半夜是153-℃,那么中午的温度比半夜高 。
7.数轴上表示2与7-的两点之间的距离 是 .8.在数轴上,与28-和46的距离相等的数是 。
9.计算下列各式(1)-8-8; (2)(-37)-(-85);(3)1.6-(-2.5); (4)(-3.8)-7;(5)16-(-318)-(+432) 10.在化肥袋上我们经常看到()2.050±㎏的字样,这说明这种袋装化肥最重的比最轻的重 ㎏。
姓 名李嫣 王寅 高雅 张鹏 身 高163 175 身高与平均身高的差 0 7-+15 (2)最高与最矮的同学身高相差多少?12.若│m+2│+│n-5│=0,则m-n 的值( )A 、-7B 、-3C 、3D 、713.已知有理数a,b 在数轴上的对应点位置如图所示,试判断下列各式的符号:b a +)1(; b a -)2(;a b -)3(; b a -)4(二、自主选择14.若,3,4,==-=-n m m n n m 求n m -的值。
15.在数轴上表示–8和24两点之间插入三个点,使这5个点每相邻两点之间的距离相等,求这三个点所表示的数。
浙教版七年级数学上册有理数的减法测试题及
答案
数学上,有理数是一个整数a和一个非零整数b的比,例如3/8,通则为a/b,又称作分数。
接下来我们一起来看看七年级数学上册有理数的减法测试题及答案。
浙教版七年级数学上册有理数的减法测试题及答案
1.冬季的某一天,室内温度是8 ℃,室外温度是-2 ℃,则室内外温度相差(C)
A.4 ℃
B.6 ℃
C.10 ℃
D.16 ℃
2.一个数是10,另一个数比10的相反数小2,则这两个数的和为(B)
A.-18
B.-2
C.18
D.2
3.与(-b)-(-a)相等的式子是(B)
A.(+b)-(-a)
B.(-b)+a
C.(-b)+(-a)
D.(-b)-(+a)
4.下列说法中,正确的是(C)
A.0减去一个数,仍得这个数
B.两个相反数相减得0
C.若减数比被减数大,则差为负数
D.两个负数相减,差为负数
5.比-3小10的数是__-13__,-7比-17大10,-2比-7大
__5__,5 ℃比-2 ℃高__7__℃.
6.上海的东方明珠电视塔高468 m,上海某段地铁高度为-15 m,则电视塔比此段地铁高__483__m.
7.计算下列各题:
(1)-13-+23;
(2)|-7.5|--12;
(3)-12--113;
(4)-112++114+-212-+114.
【解】 (1)原式=-13+-23=-1.
(2)原式=7.5-12=7.
(3)原式=-12++113=56.
(4)原式=-112+-212++114
+-114=-4.
8.若a-1的相反数是2,b的绝对值是3,求a-b的值. 【解】∵a-1的相反数是2,∴a-1=-2,∴a=-1.
∵b的绝对值是3,∴|b|=3,∴b=±3.
当b=3时,a-b=-1-3=-4;
当b=-3时,a-b=-1-(-3)=2.
9.2019年的某一天,哈尔滨等5个城市的最高气温与最低气温记录如下表(单位:℃),哪个城市的温差最大?哪个城市的温差最小?
城市名称哈尔滨长春沈阳北京大连
最高温度(℃) 2 3 3 10 6
最低温度(℃) -12 -10 -8 2 -3
【解】五个城市的温差分别如下:哈尔滨:
2-(-12)=2+(+12)=14(℃);长春:3-(-10)=3+(+10)=13(℃);沈阳:3-(-8)=3+(+8)=11(℃);北京:10-2=8(℃);大连:6-(-3)=6+(+3)=9(℃).故哈尔滨的温差最大,北京的温差最小.
10.计算:5-[(-5)-17]=__27__.
【解】 5-[(-5)-17]=5-[-(5+17)]=5-(-22)=5+22=27. 11.已知a是7的相反数,b比a的相反数大3,则b比a大多少?
【解】由题意,得a=-7,b=7+3=10.
∴b-a=10-(-7)=10+(+7)=17,故b比a大17.
12.列式计算;
(1)求-12的绝对值的相反数与312的差;
【解】 --12-312
=-12-312=-12+312=-4.
(2)求-23的绝对值的相反数与614的相反数的差.
【解】 --23--614
=-23+614
=614-23
=6312-812=5712.
13.三个数-10,-2,+4的和比它们的绝对值的和小多少? 【解】
(|-10|+|-2|+|+4|)-[(-10)+(-2)+(+4)]=(10+2+4)-[-(10+ 2)+4]
=16-(-12+4)=16-(-8)=16+8=24.
七年级数学上册有理数的减法测试题及答案到这里就结束了,希望同学们的成绩能够更上一层楼。