第一章《数与式》复习说明
- 格式:doc
- 大小:48.50 KB
- 文档页数:6
2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。
2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。
★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
数轴 1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。
福鼎七中数学(北师大)初三复习教案周克锋福鼎七中数学(北师大)初三复习教案周克锋福鼎七中数学(北师大)初三复习教案 周克锋【解答】甲净收入=12000.4 ×(4.8-0.5)=(元);乙净收入=12000.3×(3.6-0.4)=(元) 丙净收入=12000.2 ×(2.5-0.3)=(元)所以正确答案是C 。
【相应习题】1.(06宁波)若家用电冰箱冷藏室的温度是4ºC ,冷冻室的温度比冷藏室的温度低22ºC ,则冷冻室的温度是( )A 、18ºCB 、-26ºC C 、-22ºCD 、-18ºC2.(05日照)在“五·一”黄金周期间,某超市推出如下购物优惠方案:(1)一次性购物在100元(不含100元)以内时,不享受优惠;(2)一次性购物在100元(含100元)以上, 300元(不含300元)以内时,一律享受九折的优惠;(3)一次性购物在300元(含300元)以上时,一律享受八折的优惠.王茜在本超市两次购物分别付款80元、252元.如果王茜改成在本超市一次性购买与上两次完全相同的商品,则应付款( )A 、332元B 、316元或332元C 、288元D 、288元或316元考点7 利用计算器进行估值或探求规律例9.(05广州)用计算器计算22-12-1 ,32-13-1 ,42-14-1 ,52-15-1 ,……根据你发现的规律、判断P =n 2-1n -1 ,与Q =(n 2-1)-1(n -1)-1,(n 为大于1的整数)的值的大小关系为( )A 、P<QB 、P =QC 、P>QD 、与n 的取值有关 【相应习题】1.用计算器比较大小:317 - 6 ____0(填“>”“=”“<”)考点8 定义新运算例10.(05海淀区)用“”、“”定义新运算:对于任意实数a ,b ,都有ab=a 和a b=b ,例如32=3,32=2。
初三数学复习 数与式 第一课时 实数的有关概念【知识要点】(一)实数的有关概念 (1)实数的分类当然还可以分为:正实数、零、负实数。
有理数还可以分为:正有理数,零,负有理数 (2)数轴:数轴是研究实数的重要工具,是在数与式的学习中,实现数形结合的载体,数轴的三要素:原点、正方向和单位长度,实数与数轴上的点是一一对应的,我们还可以利用这种一、一对应关系来比较两个实数的大小。
(3)绝对值绝对值的代数意义:||()()()a a a a a a =>=-<⎧⎨⎪⎩⎪0000 绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离。
(4)相反数、倒数实数的相反数记为-,非零实数的倒数记为,零没有倒数。
a a a 1a 若a 、b 两个数为互为相反数,则a+b=0。
若m 、n 两个数互为倒数,则m·n=1。
(5)三种非负数: ||()a a a a ,,都表示非负数。
20≥“几个非负数的和等于零,则必定每个非负数都同时为零”的结论常用于化简,求值。
(6)平方根、算术平方根、立方根的概念。
如果一个数的平方等于a ,这个数就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;0有 一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.一个正数a 的正的平方根,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧—无限不循环小数—无理数负分数正分数分数负整数零正整数整数有理数实数叫做a 的算术平方根.a(a≥0)的算术平方根记作 .(7)科学计数法、有效数字和近似值的概念。
1.近似数: 一个近似数,四舍五入到那一位,就说这个近似数精确到哪一位.2.有效数字: 一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.3.科学记数法: 把一个数用 (1≤ <10,n 为整数)的形式记数的方法叫科学记数法.【典型例题:】P2例1、(2012贵州六盘水,5,3分),13,π,cos 45︒,0.32中无理数的个数是( ▲ )A .1 B .2C .3D .4点评:此题主要考查了无理数的定义,其中:(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数.(2)无理数是无限不循环小数,其中有开方开不尽的数.(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不环小数不能化为分数,它是无理数.P2例4、(2012·湖北省恩施市,题号16 分值 4)观察下表:根据表中数的排列规律,B+D=_________.例题补充、(2012河北省17,3分)17、某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报⎪⎭⎫ ⎝⎛+111,第2位同学报⎪⎭⎫ ⎝⎛+121,…这样得到的20个数的积为_________________.第二课时:实数的运算及比较大小【知识要点】一、实数的运算1.加法: 同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法: 减去一个数等于加上这个数的相反数.3.乘法: 几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法: 除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)a n所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数. (2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方. (3)零指数与负指数二、实数大小的比较 1.对于数轴上的任意两个点,靠右边的点所表示的数较大. 2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小. 3.对于实数a、b,若a-b>0 a>b; a-b=0 a=b; a-b<0 a<b. 4.对于实数a,b,c,若a>b,b>c,则a>c. 5.无理数的比较大小: 利用平方转化为有理数:如果a>b>0,a2>b2 则a>b ; 或利用倒数转化:如比较与.三、实数运算顺序 加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.四、实数的运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc) 乘法分配律:(a+b)c=ac+bc【典型例题:】P3例3(2012山东省聊城,10,3分)如右图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数是3和-1,则点C所对应的实数是()A. 1+3B. 2+3C. 23-1D. 23+1P4例 4(2012广东汕头,21,7分)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5= = ;(2)用含有n的代数式表示第n个等式:a n= = (n为正整数);(3)求a1+a2+a3+a4+…+a100的值.分析:(1)(2)观察知,找第一个等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1.(3)运用变化规律计算.第三课时:整式与因式分解(1):【整式知识梳理】 代数式的分类幂的乘方,底数不变,指数相乘。
第一章数与式知识点归纳第一章数与式一、数的分类数可以分为正整数、负整数、零、正分数、负分数、正有理数、负有理数、正无理数、负无理数和实数。
其中有理数是可以比较大小的数,可以是有限小数或无限循环小数,而无理数是无限不循环小数。
二、数轴数轴有三个要素:原点、正方向和单位长度。
数轴上的点与实数是一一对应的,利用数轴可以比较数的大小,理解实数的相反数和绝对值等概念。
三、绝对值数a的绝对值表示数轴上表示a的点与原点的距离,可以用几何定义或代数定义来表示。
四、相反数和倒数两个数互为相反数当且仅当它们的和为0,互为倒数当且仅当它们的积为1.在非负数的情况下,平方根和立方根的概念也很重要。
五、非负数的性质几个非负数之和为0时,这几个数也必须为0.同时,非负数的平方大于等于0,非负数的倒数也必须是非负数。
六、幂和算术平方根an表示a的n次幂,其中a为底数,n为指数。
算术平方根和立方根的概念也很重要。
七、运算顺序和律运算顺序包括同级从左到右和不同级从高到低,有括号时要从里到外计算。
运算律包括交换律、结合律和分配律。
八、运算法则加法法则包括两数相加和相减,乘法法则包括两数相乘和相除。
减法可以转化为加法,除法可以转化为乘法。
九、a>0的性质当a>0时,(-a)的偶次幂为正,奇次幂为负。
十、有理式有理式是由有理数和变量构成的式子,可以进行加减乘除等运算。
单项式是只有一个变量的代数式,它有一个次数和一个系数。
整式是由多个单项式相加或相减而成的代数式,它有一个最高次数和一个项数。
有理式是整式的分式形式,分式有分子和分母,分母不为零。
多项式是整式的一种,它只有加减运算,没有乘除运算。
乘法公式是代数中常用的公式,包括平方差公式和完全平方公式。
平方差公式是指两个数的平方差等于它们的积,即(a+b)(a—b)=a2-b2.完全平方公式是指一个二次多项式可以写成两个一次多项式的平方和,即(a±b)2=a2±2a b+b2.分式是有理式的一种,它由分子和分母组成,分母不为零。
第一章 数与式第一讲 实数【基础知识回顾】 一、实数的分类: 1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。
如:2π是 数,不是 数,722是 数,不是 数。
2、0既不是 数,也不是 数,但它是自然数】二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。
2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。
a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。
【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。
1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。
其中a 的取值范围是 。
2、近似数和有效数字:一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。
【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪ ⎨ ⎧ 正无理数 无理数 负分数 零 正整数 整数 有理数 无限不循环小数 ⎧⎨⎩⎧⎨⎩正数正无理数零 负有理数负数 (a >0) (a <0) 0 (a=0)范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。
中考总复习教案 第一章 数与式《数与式》是初中数学的基础知识,是中考命题的重要内容之一,年年考查,北京近三年来在新课标中考试题中“数与式”部分的权重:35%左右,分量之中,不容忽视!一、本章知识要点与课时安排(大致安排五课时左右) (一) 实数(一课时)(二) 整式与因式分解(一至两课时) (三) 分式与二次根式(两课时)(四) 数式规律的探索(可以揉到前面几讲中去讲,也可以单设一课时)说明:您可以根据自己学生的学习程度,合理安排复习内容。
二、课时教案第一课时 实数教学目的1.理解有理数的意义,了解无理数等概念.2.能用数轴上的点表示有理数,掌握相反数的性质,会求实数的绝对值. 3.会用科学记数法表示数.4.会比较实数的大小,会利用绝对值知识解决简单化简问题. 5.掌握有理数的运算法则,并能灵活的运用. 教学重点与难点重点:数轴、绝对值等概念及其运用,有理数的运算.难点:利用绝对值知识解决简单化简问题,实数的大小比较. 教学方法:用例习题串知识(复习时要注意知识综合性的复习). 教学过程(一)知识梳理1.⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧比较大小念平方根、算术平方根概绝对值相反数数轴实数的分类实数 2.⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧科学记数法运算律乘方、开方乘、除法加、减法法则实数的运算(二)例习题讲解与练习例1 在3.14,1-5,0,2π,cos30°,722,38-,0.2020020002…(数字2后面“0”的个数逐次多一个)这八个数中,哪些是有理数?哪些是无理数? (考查的知识点:有理数、实数等概念. 考查层次:易)(最基本的知识,由学生口答,师生共同归纳、小结) 【归纳】:(1)整数与分数统称为有理数(强调数字0的特点);无限不循环小数是无理数.注意:常见的无理数有三类①π,… ②3,5,… , (38-不是无理数) ③0.1010010001…(数字1后面“0”的个数逐次多一个).(2)一个无理数加、减、乘、除一个有理数(0除外)仍是无理数(2π是无理数). 注:此题可以以其它形式出现,如练习题中2或12题等例2 (1)已知a -2与2a+1互为相反数,求a 的值;(2)若x 、y 是实数,且满足(x -2)2+3y x +-=0,求(x+y)2的值.(考查的知识点:相反数的性质、二次根式的性质、非负数等概念. 考查层次:易)(这是基础知识,由学生解答,老师总结) 【总结】:(1)对于一个具体的数,要会求它的相反数(倒数、绝对值、平方根与算术平方根),对于一个代数式,也要会求它的相反数.解答是要注意从概念中蕴涵的数学关系入手:a 、b 互为相反数⇔a+b=0;a 、b 互为倒数⇔a ·b=1.(2)非负数概念:例3 (1)若数轴上的点A 表示的数为x ,点B 表示的数为-3,则A 与B 两点间的距离可表示为________________.(2)实数a 、b 在数轴上分别对应的点的位置如图所示,请比较a ,-b ,a-b ,a+b 的大小(用“<”号连接)___________________.(3)①化简=-π5_________;②347-=__________;③估计215-与0.5的大小关系是215- 0.5(填“ > ”、“=”、“<”) . (答案:(1)3x +;(2)a+b<a<-b<a-b ;(3)①7-π;②347-;③ >)(考查的知识点:数轴、绝对值、比较大小等概念,无理数的估算、有理数的运算法则等. 考查层次:中)(这是一组较为基础的题,(1)与(2)题注意数形结合,(3)题注意讲解无理数与有理数大小比较的方法,由学生探讨,老师适当的点拨、总结、归纳,)【归纳】:(1)问题(1)若数轴上的点A 表示的数为x 1,点B 表示的数为x 2,则A 与B 两点间的距离可表示为AB=12x x -,要会由数轴上两点间的距离,上升到坐标平面内两点间的距离(例如练习第10题)——数形结合.(2)问题(2)应先由数轴判断字母所表示的数的符号及绝对值的大小关系,再紧扣实数运算法则进行解答.(3)绝对值的意义:(4)估算一个无理数的方法:平方法、被开方数法.(5)比较大小的方法:数轴图示法、作差法、平方法,其中第(2)小题还可以采用赋值法. 练习一:(供选用)1.21的相反数是_____;-3的倒数是_____;-5的绝对值是_____; 9的算术平方根是____;-8的立方根是____.2.有四张不透明的卡片如图,它们除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为 .2题图3.下列各式中正确的是( )A .2)2(2-=-B .2121-=-C .()()22--=-+D .⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+-2121 4.(1)写出一个小于2-的数: ;(2)绝对值小于5的所有整数的和是_____. 5.下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是( )。
第一章数与式第一节实数的相关概念〖考点精讲〗实数的相关概念实数的分类按定义分有理数(理解)整数:有限小数或无限循环小数分数无理数(了解):○1_______________小数温馨提示:常见几种无理数的形式1、π及化简后含π的数,如π2,π+32、开方开不尽的数,如2,3,53等3、具有特殊结构的数,如0.30300300030000……(两个3之间依次多一个0)4、一些含根式的三角函数值,如sin60o,tan30o等按大小分:正实数、○2_____________、负实数(0既不是正数也不是负数)正负数的意义:正负数可用来表示具有相反意义的量,如规定“零上”为“+”,则“零下”为“-”,“收入”为“+”,则“支出”为“-”,“向东”为“+”,则“向西”为“-”等数轴(理解)1、三要素:- - -3210123原点正方向○3________2、○4_____________和数轴上的点是一一对应的(了解)3、数轴右边的数大于0,左边的数小于0,且右边的数总比左边的数大4、数轴上两点之间的距离总是等于右边的数减去左边的数相反数(掌握)非零实数a的相反数为○5____________;特别地,0的相反数为0a、b互为相反数⇔a+b=○6_____________;只有符号不同的两个数互为相反数几何意义:到原点距离相等的两个点表示的两个数互为相反数绝对值(掌握)a=○7___________(a≥0)注意:非负性:a≥0○8___________(a<0)若x=a,则x=○9_________几何意义:数轴上表示这个数的点到原点的距离,离原点越远的数绝对值越○10_________倒数非零实数a的倒数为○11_________;0没有倒数;倒数等于它本身的数是○12_________实数a、b互为倒数⇔a b=○13_________科学计数法(了解)表示形式:○14_____________a和n的确定1、确定a:1≤a≤102、确定n原数≥10:n为正整数,且等于原数的整数位数减10<原数<1:n为负整数,n的绝对值等于原数左起第一个非零数前所有零的个数(含小数点前的零),或小数点移动的位数温馨提示:对于含有计数(量)单位的数字,需先把计数(量)单位转换为数字,再用科学记数法表示常用的计数单位有:1亿=○15_____________,1万=○16_____________;计量单位有:1mm=10-3,1μm=10-6m,1nm=10-9m〖典型例题〗(一)实数的分类例1:在实数3,π,32,1中,是有理数的是()A. 3B. πC. 32 D. 1变式1:下列实数是无理数的是()A. 23 B.12C. 0 D. -1.010101(二)正负数的意义例2:《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10 ℃记作+10 ℃,则-3 ℃表示气温为()A. 零上3 ℃B. 零下3 ℃C. 零上7 ℃D. 零下7 ℃变式2:在下列选项中,具有相反意义的量是()A.胜二局与负三局B.盈利3万元与支出3万元C.气温升高3℃与气温为﹣3℃D.向东行20米和向南行20米(三)数轴例3:已知实数m、n在数轴上的对应点的位置如图所示,则下列判断正确的是()A. m>0B. n<0C. mn<0D. m-n>0变式3:实数a,b在数轴上对应的点的位置如图所示,计算|a-b|的结果为() A. a+b B. a-b C. b-a D. -a-b(四)相反数、绝对值、倒数例4:已知|a+2|=0,则a=________.变式4:计算:|-2|=________.(五)科学记数法例5:总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯祠,晚上看大雁塔将成为现实,用科学记数法表示647亿为( )A. 647×108B. 6.47×109C. 6.47×1010D. 6.47×1011变式5:改革开放30年以来,成都的城市化推进一直保持着快速、稳定的发展态势.据统计,到2008年底,成都市中心五城区(不含高新区)常住人口已达到4410000人,对这个常住人口数有如下几种表示:① 4.41×105人;② 4.41×106人;③ 44.1×105人.其中是科学记数法表示的序号为________.〖配套练习〗1. 下列实数中为有理数的是( )A. -1B. 5C. π+3D. sin60°2. 在实数:3.14159,364,1.010010001…,π,227中,无理数有( )A. 1个B. 2个C. 3个D. 4个3. 下列各数中,是负数的是( )A. -4B. 23C. -(-2)D. 1.734. 中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么-80元表示( )A. 支出20元B. 收入20元C. 支出80元D. 收入80元5. (2017青岛)-18的相反数是( )A. 8B. -8C. 18D. -186. 如果a 与16互为倒数,那么a 是( )A. 6B. -6C. 16D. -167. (2017锦州)-3的绝对值是( )A. 33B. -33C. 3D.138. (2017天水)若x 与3互为相反数,则|x +3|等于( )A. 0B. 1C. 2D. 39. (2017广州)如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为( )第9题图A. -6B. 6C.0D.无法确定10. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )11. 若数轴上表示-1和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( )A. -4B. -2C. 2D. 412. (2017北京)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )第12题图A.a>-4 B.bd>0 C.|a|>|d| D.b+c>013. (2016山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()A.5.5×107万千米B.5.5×103万千米C.55×106千米D.0.55×108千米14. (2018原创)正修建的成都第二绕城高速全长超过220公里,串起我市二、三圈层以及周边的广汉、简阳等地,总投资达到290亿元,将290亿用科学记数法表示为()A. 2.9×109B. 29×109C. 2.9×1010D. 0.29×101115. (2017天津)据《天津日报》报道,天津市社会保障制度更加成熟完善,截至2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A. 0.1263×108B. 1.263×107C. 12.63×106D. 126.3×10516. (2017河南)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学记数法表示为()A. 74.4×1012B. 7.44×1013C. 74.4×1013D. 7.44×101417. 我市某地区发现了H7N9禽流感病毒.政府十分重视,积极开展病毒防御工作,使H7N9禽流感病毒得到了很好的控制.病毒H7N9的直径为30纳米(1纳米=10-9米),将30纳米用科学记数法表示为________米.18. (2017宁夏)实数a在数轴上的位置如图,则|a-3|=________.第18题图19. (2017福建)已知A,B,C是数轴上的三个点,且C在B的右侧,点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是________.第19题图答案1.A2.B3.A4.C5.C6.A7.C8.A9.B10.C11.D12.C13.B14.C15.B16.B17.3×10-818.3-a19.7。
第一章《数与式》复习要点第一节有理数一、中考要求:1.理解有理数及其运算的意义,并能用数轴上的点表示有理数,会比较有理数的大小.2、借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值3.经历探索有理数运算法则和运算律的过程;掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)理解有理数的运算律,并能运用运算律简化运算.4.能运用有理数及其运算解决简单的实际问题.二、中考卷研究(一)中考对知识点的考查:绝对值,相反数、倒数,有理数的运算(二)中考热点:本章多考查有理数有关的概念、性质、法则等,另外还有一类新情景的探索性、开放性、创造性问题也是本章的热点的考题.三、中考命题趋势及复习对策本章内容是中考命题的重要内容之一,是初中数学的基础知识,在中考中占有一定的比例,它通常以填空、选择、计算的形式出现,这部分试题难度不大,主要是考查了学生对概念的理解及基础知识的运用能力,以后的试题在考查基础知识、基本技能、基本方法的同时,会加强考查运用所学知识的分析能力,解决简单实际问题的能力.针对中考命题趋势,在复习时应夯实基础知识,注重对概念的理解,锻炼计算能力.绝对值是易错点:如绝对值是5的数应为士5,易丢掉-5.第二节实数一、中考要求:1.在经历数系扩张、探求实数性质及其运算规律的过程;从事借助计算器探索数学规律的活动中,发展同学们的抽象概括能力,并在活动中进一步发展独立思考、合作交流的意识和能力.2.结合具体情境,理解估算的意义,掌握估算的方法,发展数感和估算能力.3.了解平方根、立方根、实数及其相关概念;会用根号表示并会求数的平方根、立方根;能进行有关实数的简单四则运算.4.能运用实数的运算解决简单的实际问题,提高应用意识,发展解决问题的能力,从中体会数学的应用价值.二、中考卷研究(一)中考对知识点的考查:平方根、立方根及算术平方根,二次根式的计算,实数的意义及运算(二)中考热点:本章多考查平方根、立方根、二次根式的有关运算以及实数的有关概念,另外还有一类新情境下的探索性、开放性问题也是本章的热点考题.三、中考命题趋势及复习对策本章是初中数学的基础知识,在中考中占有一定的比例,它通常以填空、选择、计算题出现,这部分试题难度不大,主要考查对概念的理解以及运用基础知识的能力,以后的中考试题,会在考查基础知识、基本技能、基本方法的同时,会加强考查运用所学知识的分析能力、解决简单实际问题的能力.针对中考命题趋势,在复习中应、夯实基础知识,注重对概念的理解,培养分析判断能力,提高计。
算能力.平方根是易错点:(1)平方根与算术平方根不分,如64的平方根为士8,易丢掉-8,而求为64的算术平方根;(22.第三节:代数式一、中考要求:1.探索事物之间的数量关系,并用字母与代数式进行表示的过程,建立初步的符号感,发展抽象思维.2.在具体情境中进一步理解用字母表示数的意义,能分析简单问题的数量关系,并用代数式表示.3.理解代数式的含义,能解释一些简单代数式的实际背景或几何意义,体会数学与现实世界的联系.4.理解合并同类项和去括号的法则,并会进行运算.5.会求代数式的值,能解释值的实际意义,能根据代数式的值推断代数式反映的规律.6.进一步熟悉计算器的使用,会借助计算器探索数量关系,解决某些问题.二、中考卷研究(一)中考对知识点的考查:列代数式及其意义,求代数式的值,探索规律列代数式(探索规律列代数式是近几年中考的热点.在解答这类题目时,先根据特例进行归纳、建立猜想,从而列出代数式.)(二)中考热点:本章多考查列代数式或解释代数式意义及求代数式的值,另外探索规律列代数式是在新情景下的探索性问题也是本章的热点考题,如依靠观察分析、直觉思维、推理猜想,以及数形结合问题.三、中考命题趋势及复习对策本章内容是中考命题的重要内容之一,是初中数学的基础知识,在中考中占有一定的比例,它通常以填空、选择、计算的形式出现,这部分试题难度不大,主要考察学生对概念的理解和分析判断能力以及运用基础知识的能力,新情景下的探索性、开放性试题也不少,在考察基础知识、基本方法的同时,会加强考查运用所学知识的分析能力、解决简单实际问题的能力,将会更加注重变换方法的考查和贴近实际、贴近生活的应用性问题的考查.针对中考命题趋势,在复习时应注重概念的理解,培养分析、判断、探索能力,锻炼计算能力.第四节整式一、中考要求:1.经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感.2.经历探索整式运算法则的过程,理解整式运算的算理,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力.3.了解整数指数幂的意义和正整数指数幂的运算性质;了解整式产生的背景和整式的概念,会进行简单的整式加、减、乘、除运算(其中多项式相乘仅限于一次式相乘,整式的除法只要求到多项式除以单项式且结果是整式).4.会推导乘法公式:(a+b)(a-b)=a2+b2,(a±b)2=a2±2ab+b2,了解公式的几何背景,并能进行简单的计算.5.在解决问题的过程中了解数学的价值,发展“用数学”的信心.二、中考卷研究(一)中考对知识点的考查:幂的意义和性质,整式的运算,乘法公式的应用(二)中考热点:本章多考查幂的有关性质及整式的运算,主要包括整式的加、减、乘、除,另外还有一类新情景下的探索性、开放性、创造性问题也是本章的热点考题,如依靠观察分析、直觉思维、推理猜想,以及数形结合的问题.三、中考命题趋势及复习对策本章内容是中考命题的重要内容之一,是初中数学的基础知识,在中考中占有一定的比例,它通常以填空、选择、计算题出现,这部分试题难度不大,主要考察学生对概念的理解以及运用基础知识的能力,在考察基础知识、基本技能、基本方法的同时,会加强考查运用所学知识的分析能力、解决简单实际问题的能力,将会更加注重变换方法的考查和贴近实际、贴近生活的应用性问题的考查.针对中考命题趋势,在复习时应夯实基础知识,注重对概念的理解,培养分析、判断 能力,锻炼计算能力.整式乘法的常见错误:(1)漏乘 如2222)21()5()3b a ab bc a -⋅⋅-(,在最后的结果中漏乘字母c .(2)结果书写不规范 在书写代数式时,项的系数不能用带分数表示,若有带分数一律要化成假分数或小数形式.(3)忽略混合运算中的运算顺序 整式的混合运算与有理数的混合运算相同,“有乘方,先算乘方,再算乘除,最后算加减:如果有括号,先算括号里面的.”(4)运算结果不是最简形式 运算结果中有同类项时,要合并同类项,化成最简形式.(5)忽略符号而致错 在运算过程中和计算结果中最容易忽略“一”号而致错.运用完全平方公式应注意的问题:(1)公式中的字母具有一般性,它可以表示单项式、多项式,只要符合公式的结构特征,就可以用公式计算;(2)在利用此公式进行计算时,不要丢掉中间项“2ab ”或漏了乘积项中的系数积的“ 2”倍;(3)计算时,应先观察所给题目的特点是否符合公式的条件,如符合,则可以直接用公式进行计算;如不符合,应先变形为公式的结构特点,再利用公式进行计算,如变形后仍不具备公式的结构特点,则应运用乘法法则进行计算.第五节分解因式一、中考要求:1.经历探索分解因式方法的过程,体会数学知识之间的整体联系(整式乘法与分解因式).2.了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).3、通过乘法公式22+-=-,222a b a b a b()()±=±+的逆向变形,进一步发展学生观()2a b a ab b察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力.二、中考卷研究(一)中考对知识点的考查:分解因式(二)中考热点:本章多考查团式分解的意义和方法,另外还有一类新情境下的探索性、开放性、创造性问题也是本章的热点考题,如依靠观察分析、直觉思维、推理猜想等问题.三、中考命题趋势及复习对策本章内容是初中数学的基础知识,是分式运算的基础,它通常以填空、选择题出现,这部分试题难度不大,主要考查学生对概念的理解以及方法的运用能力.针对中考命题趋势,在复习时应夯实基础知识,注重对概念的理解,锻炼灵活运用方法的能力.分解因式时常见的思维误区:⑴提公因式时,其公团式应找字母指数最低的,而不是以首项为准.⑵提取公因式时,若有一项被全部提出,括号内的项“1”易漏掉.⑶分解不彻底,如保留中括号形式,还能继续分解等第六节分式一、中考要求:1.经历用字母表示现实情境中数量关系(分式)的过程,了解分式、的概念,体会分式、的模型思想,进一步发展符号感.2.经历通过观察、归纳、类比、猜想、获得分式的基本性质、分式乘除运算法则、分式加减运算法则的过程,发展学生的合情推理能力与代数恒等变形能力.3.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算.4.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题能力和应用意识.5.通过学习,能获得学习代数知识的常用方法,能感受学习代数的价值.二、中考卷研究(一)中考对知识点的考查:分式的运算,分式有意义时字母取值范围,分式值为零时求字母的值,化简求值题。
(二)中考热点:本章多考查分式的意义、性质,运算也是中考热点之一.本章还多考查转化思想以及学生收集和处理信息的能力,获取新知识的能力、分析问题和解决问题的能力.三、中考命题趋势及复习对策本章内容是中考命题的重要内容之一,在中考中占有一定的比例,命题的形式有填空、选择、计算、解答题,占4~12分,主要考查学生对概念的理解和运用基础知识、计算、分析判断的能力.针对中考命题趋势,在复习时应夯实基础知识,锻炼计算能力,还应在方程的应用上多下功夫、加大力度,多观察日常生活中的实际问题.对于化简求值的题型要注意解题格式,要先化简,再代人字母的值求值.关于本章复习几点说明:1.把握有理数运算的要求,有理数的加、减、乘、除、乘方的混合运算“以三步为主”.2.把握式的运算的要求,例如:进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘);提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数);进行有关实数的简单四则运算(不要求分母有理化);只进行简单的分式加、减、乘、除运算.3.符号运算对于数学来说是必不可少的,就现状而言,学生对运算意义的理解、根据问题的需要选择适当的算法和运算工具、估算结果的合理性等意识和能力必须得到加强和提高.为此,复习教学时,一定数量的训练和联系是必要的,但一定要控制在适当的范围内.关于中考复习的几点建议:1.“内容概述”可以让学生课前预习.2.精选例题、习题,可以根据学生情况适当增加、删减复习内容和题目.3.突出学生在复习过程中的自主学习,精讲精练,鼓励学生探索和合作,但学生一定要有保质保量自主练习的时间和空间,突出有效学习.强化复习的个性色彩,使不同的学生都能得到发展.4.强化评价手段.强化学生自评和互评,加强复习的时效性.5要关心爱护学习程度低的学生,既要弥补其知识缺陷,又要培养他们的学习信心,保证独立完成作业的质和量,及时反馈,有效回授,使他们提高计算的准确性、推理的逻辑性和严密性.夯实基础,培养能力,关注改革,促进发展,提高复习教学的实效.教师要提高自己的规范性:①教学的规范性:包括对学生的要求,布置作业,批改作业,关注学生的作业的自主性等;②数学学科的规范性:包括数学语言表达、数学解题的格式等等.。