图形的旋转同步练习(含答案)
- 格式:docx
- 大小:101.48 KB
- 文档页数:6
中考数学复习图形的旋转一、选择题1.下列图形中是中心对称图形的有( B )A.1个B.2个C.3个D.4个2.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,连结AD.下列结论一定正确的是( C )A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC,第2题图),第3题图) 3.如图,在平面直角坐标系中,点B,C,E在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是( A )A.△ABC绕点C顺时针旋转90°,再向下平移3个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移1个单位D.△ABC绕点C逆时针旋转90°,再向下平移3个单位4.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为( A )A.10 B.2 2 C.3 D.25【解析】∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD=BE2+DE2=10.故选A.,第4题图),第5题图) 5.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(-2,5)的对应点A′的坐标是( B )A.(2,5) B.(5,2) C.(2,-5) D.(5,-2)【解析】∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′-∠COA′=∠COC′-∠COA′,∴∠AOC=∠A′OC′.∴△ACO≌△A′C′O,∴AC=A′C′,CO=C′O.∵A(-2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故选B.6.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连结AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是( D ) A.0个B.1个C.2个D.3个【解析】∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE =∠BCA=60°,A C=CD=DE=CE,∴∠ACD=120°-60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.二、填空题7.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是__60°__.,第7题图),第8题图) 8.如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:__将△COD绕点C顺时针旋转90°,再向左平移2个单位长度得到△AOB(答案不唯一).__.9.如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A恰好落在AC上的点A′处,连结CC′,则∠ACC′=__110°__.【解析】∵∠A=70°,AC=BC,∴∠BCA=40°,根据旋转的性质,AB=BA′,BC=BC′,∴∠α=180°-2×70°=40°,∵∠CBC′=∠α=40°,∴∠BCC′=70°,∴∠ACC′=∠ACB+∠BCC′=110°.10.如图,在正方形ABCD中,AD=23,把边BC绕点B逆时针旋转30°得到线段BP,连结AP并延长交CD于点E,连结PC,则△PCE的面积为__9-53__.【解析】∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP =60°,AP=AB=23,∵AD=23,∴AE=4,DE=2,∴CE=23-2,PE=4-23,过P作PF ⊥CD 于F ,∴PF =32PE =23-3,∴△PCE 的面积为12CE ·PF =12×(23-2)×(23-3)=9-5 3.故答案为9-5 3.,第10题图) ,第11题图)11.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,则DE 2+BG 2=__2a 2+2b 2__.【解析】连结BD ,EG ,如图所示,∴DO 2+BO 2=BD 2=BC 2+CD 2=2a 2,EO 2+OG 2=EG 2=CG 2+CE 2=2b 2,则BG 2+DE 2=DO 2+BO 2+EO 2+OG 2=2a 2+2b 2.三、解答题12. 如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A ,B ,C 的坐标分别是A (-2,3),B (-1,2),C (-3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1.(1)在正方形网格中作出△A 1B 1C 1;(2)在旋转过程中,点A 经过的路径AA 1︵的长度为__132π__;(3)在y 轴上找一点D ,使DB +DB 1的值最小,并求出D 点的坐标.,题图),答图)解:(1)如图所示: (2)在旋转过程中,点A 经过的路径AA 1︵的长度为90×π×13180=132π (3)∵点B ,B 1在y 轴两旁,连结BB 1交y 轴于点D ,设D′为y 轴上异于D 的点,显然D′B +D′B 1>DB +DB 1,∴当点D 是BB 1与y 轴交点时,DB +DB 1最小.设直线BB 1的解析式为y =kx +b ,依据题意得⎩⎨⎧-k +b =2,2k +b =1,解得⎩⎨⎧k =-13,b =53,∴y =-13x +53,∴D (0,53) 13.如图,已知正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:△DEF ≌△DMF ;(2)若AE =1,求FM 的长.解:(1)∵△DAE 逆时针旋转90°得到△DCM ,∴∠FCM =∠FCD +∠DCM =180°,∴F ,C ,M 三点共线,∴DE =DM ,∠EDM =90°,∴∠EDF +∠MDF =90°,∵∠EDF=45°,∴∠MDF =∠EDF =45°,在△DEF 和△DMF 中,∵⎩⎨⎧DE =DM ,∠EDF =∠MDF ,DF =DF ,∴△DEF ≌△DMF (SAS ) (2)由(1)得EF =MF ,设EF =MF =x ,∵AE =CM =1,且BC =3,∴BM =BC +CM =3+1=4,∴BF =BM -MF =BM -EF =4-x ,∵EB =AB -AE =3-1=2,在Rt △EBF 中,由勾股定理得EB 2+BF 2=EF 2,即22+(4-x )2=x 2,解得x =52,∴FM =5214.如图①,将一个边长为2的正方形ABCD 和一个长为2,宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′,旋转角为α.(1)当点D ′恰好落在EF 边上时,求旋转角α的值;(2)如图②,G 为BC 中点,且0°<α<90°,求证:GD ′=E ′D ;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,△DCD ′与△CBD ′能否全等?若能,直接写出旋转角α的值;若不能,请说明理由.解:(1)∵DC ∥EF ,∴∠DCD ′=∠CD′E =α,∵sin α=CE CD′=CE CD =12,∴α=30° (2)∵G 为BC 中点,∴GC =CE′=CE =1.∵∠D′CG =∠DCG +∠DCD′=90°+α,∠DCE ′=∠D′CE′+∠DCD′=90°+α,∴∠D ′CG =∠DCE′.又∵CD′=CD ,∴△GCD ′≌△E ′CD (SAS ),∴GD ′=E′D (3)能.α=135°或α=315°。
2020年人教版九年级上册:23.1 图形的旋转同步练习卷一.选择题1.下列运动属于旋转的是()A.火箭升空的运动B.足球在草地上滚动C.大风车运动的过程D.传输带运输的东西的运动2.时间经过25分钟,钟表的分针旋转了()A.150°B.120°C.25°D.12.5°3.下列现象中:①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.属于旋转的有()A.2个B.3个C.4个D.5个4.一辆模型赛车,先前进1m,然后沿原地逆时针方向旋转,旋转角为α(0<α<90°),被称为一次操作,若五次操作后,发现赛车回到出发点,则旋转角α为()A.108°B.120°C.72°D.36°5.如图,该图案绕它的中心至少旋转m度能与自身完全重合,则m的值是()A.45°B.90°C.135°D.180°6.如图,在△ABC中,∠CAB=∠ACB=25°,将△ABC绕点A顺时针进行旋转,得到△AED.点C恰好在DE的延长线上,则∠EAC的度数为()A.75°B.90°C.105°D.120°7.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)8.如图,四边形ABCD中,∠DAB=30°,连接AC,将△ABC绕点B逆时针旋转60°,点C的对应点D重合,得到△EBD,若AB=5,AD=4,则点AC的长度为()A.5B.6C.D.二.填空题9.如图,将△ABC绕点A逆时针旋转50°得△ADE,若∠BAC=20°,则∠BAE的度数是.10.将一副三角板按图所示的方式叠放在一起,使直角的顶点重合于点O,并能绕O点自由旋转,设∠AOC=α,∠BOD=β,则α与β之间的数量关系是.11.如图,将△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,连接BB'.若AC=1,AB=3,则BC′=.12.如图,在平面直角坐标系中,将点P(4,6)绕坐标原点O顺时针旋转90°得到点Q,则点Q的坐标为.13.如图,△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点B旋转得到△A'BC',且点C的对应点C'刚好落在AB上,连接AA'.则∠AA'C'=.14.如图,在平面直角坐标系中,Rt△ABO直角点O在原点,AO在y轴上,BO在x轴上,且AO=4,BO=3,△ABO绕着各顶点向x轴正方向连续翻滚(始终保持一条边在x轴上)得到多个三角形,请问第2020个三角形的直角顶点坐标为.三.解答题(共6小题)15.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A、D、E在同一条直线上,且∠ACB=20°,求∠CAE及∠B的度数.16.在△AMB中,∠AMB=90°,AM=8,BM=6,将△AMB以B为旋转中心顺时针旋转90°得到△CNB.连接AC,求AC的长.17.在正方形ABCD中,∠EDF=45°,求证:EF=AE+CF.18.如图,△ABC是等边三角形,△ABP旋转后能与△CBP′重合.(1)旋转中心是哪一点?(2)旋转角度是多少度?(3)连结PP′后,△BPP′是什么三角形?简单说明理由.19.如图,△ABC逆时针旋转一定角度后与△ADE重合,且点C在AD上.(1)指出旋转中心;(2)若∠B=21°,∠ACB=26°,求出旋转的度数;(3)若AB=5,CD=3,则AE的长是多少?为什么?20.将两个全等的△ABC和△DBE按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于F.(1)求证:AF+EF=DE;(2)若将图1中的△DBE绕点B顺时针旋转角a,且60°<α<180°,其他条件不变,如图2,请直接写出此时线段AF、EF与DE之间的数量关系.参考答案一.选择题1.解:A、火箭升空的运动,是平移,故此选项错误;B、足球在草地上滚动,不是绕着某一个固定的点转动,不是旋转,故此选项错误;C、大风车运动的过程,是旋转,故此选项正确;D、传输带运输的东西的运动,是平移,故此选项错误;故选:C.2.解:如图所示:因为分针每分钟转6°,所以25分钟旋转了6°×25=150度.故选:A.3.解:①地下水位逐年下降,是平移现象;②传送带的移动,是平移现象;③方向盘的转动,是旋转现象;④水龙头开关的转动,是旋转现象;⑤钟摆的运动,是旋转现象;⑥荡秋千运动,是旋转现象.属于旋转的有③④⑤⑥共4个.故选:C.4.解:由题意,得赛车所走路线为正五边形,正五边形外角之和为360°,所以五次旋转角之和为360°,所以α=360°÷5=72°.故选:C.5.解:由题意这个图形是中心旋转图形,m==45°,故选:A.6.解:∵将△ABC绕点A顺时针进行旋转,得到△AED,∴△ABC≌△AED,∴AD=AC,∠BAC=∠EAD=25°,∠ADE=∠ACB=25°,∴∠ADE=∠ACD=25°,∴∠DAC=180°﹣25°﹣25°=130°,∴∠EAC=∠DAC﹣∠DAE=130°﹣25°=105°,故选:C.7.解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4).故选:D.8.解:∵△EBD是由△ABC旋转得到,∴BA=BE,∠ABE=60°,AC=DE,∴△ABE是等边三角形,∴∠EAB=60°,∵∠BAD=30°,∴∠EAD=90°,∵AE=AB=5,AD=4,∴DE===,故选:D.二.填空题9.解:由题意可得,∠CAE=50°,∵∠BAC=20°,∴∠BAE=∠CAE﹣∠BAC=50°﹣20°=30°,故答案为:30°.10.解:∵使直角的顶点重合于点O,并能绕O点自由旋转,∴∠BOC=∠AOD,∵∠BOC+∠AOC=90°,∴∠AOD+∠AOC=90°,∵α+β=∠AOC+∠BOD=∠AOC+∠BOC+∠AOC+∠AOD=180°,∴α+β=180°,故答案为:α+β=180°.11.解:∵△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,∴AC′=AC=1,∴BC′=AB﹣AC′=3﹣1=2.故答案为2.12.解:作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,,∴△PMO≌△ONQ(AAS),∴PM=ON,OM=QN,∵P点坐标为(4,6),∴Q点坐标为(6,﹣4),故答案为(6,﹣4).13.解:根据旋转可知:∠A′BC=∠ABC=30°,A′B=AB,∴∠BA′A=∠BAA′=(180°﹣30°)=75°,∵∠BA′C=∠BAC=60°,∴∠AA'C'=∠BA′A﹣∠BA′C=75°﹣60°=15°.故答案为:15°.14.解:∵点A(0,4),B(3,0)∴OA=4,OB=3∴AB==5,∴三角形(3)的直角顶点坐标为:(12,0),∵每3个三角形为一个循环组依次循环,∵2020÷3=673…1,∴第2020个三角形是第674组的第一个直角三角形,其直角顶点与第673组的最后一个直角三角形顶点重合,∵673×12=8076,∴第2020个三角形的直角顶点的坐标是(8076,0).故答案为(8076,0).三.解答题15.解:根据旋转的性质可知CA=CE,且∠ACE=90°,所以△ACE是等腰直角三角形.所以∠CAE=45°;根据旋转的性质可得∠BDC=90°,∵∠ACB=20°.∴∠ACD=90°﹣20°=70°.∴∠EDC=45°+70°=115°.所以∠B=∠EDC=115°.16.解:在Rt△AMB中,根据勾股定理可得AB=.根据旋转的性质可知AB=BC,∠ABC=90°,∴AC=.17.证明:∵四边形ABCD为正方形,∴DA=DC,∠A=∠ADC=90°,把Rt△DAE绕点D逆时针旋转90°得到Rt△DCG,如图,∴AE=CG,DE=DG,∠EDG=90°,∠DCG=∠A=90°,而∠DCF=90°,∴点G在BC的延长线上,∴FG=FC+CG,∵∠EDF=45°,∴∠FDG=∠EDG﹣∠EDF=45°,在△DFE和△DFG中,,∴△DFE≌△DFG(SAS),∴EF=FG,∴EF=FC+CG=FC+AE.18.解:(1)∵△ABP旋转后能与△P'BC重合,点B是对应点,没有改变,∴点B是旋转中心;(2)AB与BC是旋转前后对应边,旋转角=∠ABC,∵△ABC是等边三角形,∴∠ABC=60°,∴旋转角是60°;(3)连结PP′后,△BPP′是等边三角形,理由:∵旋转角是60°,∴∠PBP′=60°,又∵BP=BP′,∴△BPP′是等边三角形.19.解:(1)旋转中心为点A;(2)∵∠B=21°,∠ACB=26°,∴∠BAC=180°﹣21°﹣26°=133°,∴旋转的度数为133°;(3)由旋转性质知:AE=AC,AD=AB,∴AE=AB﹣CD=2.20.证明:(1)连接BF,∵△ABC≌△DBE∴BC=BE,DE=AC,AB=BD,∵BE=BC,BF=BF∴Rt△BCF≌Rt△BEF(HL)∴EF=CF∴DE=AC=AF+CF=AF+EF (2)连接BF,∵△ABC≌△DBE∴BC=BE,DE=AC,AB=BD,∵BE=BC,BF=BF∴Rt△BCF≌Rt△BEF(HL)∴EF=CF∴AF=AC+CF=DE+EF。
MB' A'C A B 图5 图4 《图形的旋转》测试题一、选择题:1、在右边四个图形中,既是轴对称图形又是中心对称图形的是( )DA .①②③④B .①②③C .①③D .③2、如图1为旋转对称图形,要使它旋转后与自身重合,应将它绕中心逆时针方向旋转的度数至少为( )度. CA 、30 oB 、45 oC 、60 oD 、90 o图1 图2 图33、如图2,边有两个边长为4cm 的正方形,其中一个正方形的顶点在另一个正方形的中心上,那么图中阴影部分的面积是( ).A(A)4cm2 (B)8cm2 (C)16cm2 (D)无法确定4、如图4, △DEF 是由△ABC 绕着某点旋转得到的, 则这点的坐标是( B )A. (1,1)B. (0,1)C. (−1,1)D. (2,0)二、填空题5、点a 4(,)与3b (,)关于原点对称,则a b += .-76、如图3,把三角形△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若∠A 'DC=900,则∠A 的度数是__________。
5507、如图5, △ABC 中, (ACB = 90(, (B = 30(, BC = 6, 三角板绕C 逆时针旋转, 当点A的对应点A' 落在AB 边上时即停止转动, 则BM 的长为 3 .8、如图6,△ABC 中, 已知∠C=90°, ∠B=50°, 点D 在边BC 上, BD=2CD. 把△ABC 绕着点D逆时针旋转m (0(<m<180()度后, 如果点B 恰好落在初始Rt △ABC 的边上, 那么m = _______. 80(或.O A B C D E F x y2 3图6 A C BD三、解答题9、作图题(1)如图7,画出△ABC 绕点O 顺时针旋转60°所得到的图形.图7 图8(2)如图8,在直角坐标系中,点P 的坐标为(3,4),将OP 绕原点O 逆时针旋转90°得到线段OP ′,(1)在图中画出线段OP ′;(2)P ′的坐标为 ______. (-4,3)1、如图,在△ABC 中,∠B=900,∠C=300,AB=1,将△ABC 绕顶点 A 旋转1800,点C 落在C1处,则C C1的长为( )A .24B .4C .32D .522、如图,△ABC 中,∠ACB=1200,将它绕着点C 旋转300 后得到△DCE ,则∠ACE=∠A+∠E=3、如图,在Rt △ABC 中,∠ACB=90°,∠A=35°,以直角顶点C•为旋转中心,将△ABC 旋转到△A ′B ′C 的位置,其中A ′、B ′分别是A 、B 的对应点,且点B 在斜边A ′B ′上,直角边CA ′交AB 于D ,求∠BDC 的度数.E DC BA B A C O ABC B C4,如图,正方形ABCD 中,E 在BC 上,F 在AB 上且∠FDE=45°,•△DEC 按顺时针方向转动一个角度后成为△DGA .(1)图中哪一个点是旋转中心?(2)旋转了多少度?(3)指出图中的对应点,对应线段和对应角;(4)求∠GDF 的度数.5、已知如图,正方形ABCD 中,E 为CD 边上一点,F 为BC 边上一点,CE=CF:(1)EBC FDC ∠∠与相等吗?(2)△DCF 能与△BCE 重合吗?(3)试判断BE 与DF 的位置关系并说明理由,6.如图所示,四边形ABCD 中,∠BAD=∠C=90°,AB=AD ,AE ⊥BC 于E ,△BEA 旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5cm ,求四边形ABCD 的面积.7,如图,K 是正方形ABCD 内一点,以AK 为一边作正方形AKLM ,使L ,M ,D 在AK 的同旁,连结BK 和DM ,试用旋转的思想说明线段BK 与DM 的关系. C FEDB A,8,.如图所示,等边△ABC中,D是AB边上的动点(不与A、B重合),以CD为一边,向上作等边△EDC。
中考数学真题《图形的旋转》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(30题)一 、单选题1.(2023·江苏无锡·统考中考真题)如图,ABC 中 55BAC ∠=︒ 将ABC 逆时针旋转(055),αα︒<<︒得到ADE DE 交AC 于F .当40α=︒时 点D 恰好落在BC 上 此时AFE ∠等于( )A .80︒B .85︒C .90︒D .95︒2.(2023·天津·统考中考真题)如图,把ABC 以点A 为中心逆时针旋转得到ADE 点B C 的对应点分别是点D E 且点E 在BC 的延长线上 连接BD 则,下列结论一定正确的是( )A .CAE BED ∠=∠B .AB AE =C .ACE ADE ∠=∠D .CE BD =3.(2023·四川宜宾·统考中考真题)如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 把ADE 以A 为中心顺时针旋转 点M 为射线BD CE 的交点.若3AB 1AD =.以下结论: ①BD CE = ①BD CE ⊥ ①当点E 在BA 的延长线上时 33MC -=①在旋转过程中 当线段MB 最短时 MBC 的面积为12. 其中正确结论有( )A .1个B .2个C .3个D .4个4.(2023·山东聊城·统考中考真题)如图,已知等腰直角ABC 90ACB ∠=︒ 2AB = 点C 是矩形ECGF 与ABC 的公共顶点 且1CE = 3CG = 点D 是CB 延长线上一点 且2CD =.连接BG DF 在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中 当线段BG 达到最长和最短时 线段DF 对应的长度分别为m 和n 则,mn的值为( )A .2B .3C 10D 13二 填空题5.(2023·江苏连云港·统考中考真题)以正五边形ABCDE 的顶点C 为旋转中心 按顺时针方向旋转 使得新五边形A B CD E ''''的顶点D 落在直线BC 上则,正五边ABCDE 旋转的度数至少为______°.6.(2023·湖南张家界·统考中考真题)如图,AO 为BAC ∠的平分线 且50BAC ∠=︒ 将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C ''' 且100OAC '∠=︒则,四边形ABOC 旋转的角度是______.7.(2023·湖南常德·统考中考真题)如图1 在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = D 是AB 上一点 且2AD = 过点D 作DE BC ∥交AC 于E 将ADE 绕A 点顺时针旋转到图2的位置.则图2中BDCE的值为__________.8.(2023·江苏无锡·统考中考真题)已知曲线12C C 、分别是函数2(0),(0,0)ky x y k x x x=-<=>>的图像 边长为6的正ABC 的顶点A 在y 轴正半轴上 顶点B C 在x 轴上(B 在C 的左侧) 现将ABC 绕原点O 顺时针旋转 当点B 在曲线1C 上时 点A 恰好在曲线2C 上则,k 的值为__________.9.(2023·辽宁·统考中考真题)如图,线段8AB = 点C 是线段AB 上的动点 将线段BC 绕点B 顺时针旋转120°得到线段BD 连接CD 在AB 的上方作Rt DCE ∆ 使90,30DCE E ∠=∠= 点F 为DE 的中点 连接AF 当AF 最小时 BCD ∆的面积为___________.10.(2023·江西·统考中考真题)如图,在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为_______.11.(2023·上海·统考中考真题)如图,在ABC 中 35C ∠=︒ 将ABC 绕着点A 旋转(0180)αα︒<<︒ 旋转后的点B 落在BC 上 点B 的对应点为D 连接AD AD ,是BAC ∠的角平分线则,α=________.12.(2023·湖南郴州·统考中考真题)如图,在Rt ABC △中 90BAC ∠=︒ 3cm AB = =60B ∠︒.将ABC 绕点A 逆时针旋转 得到AB C ''△ 若点B 的对应点B '恰好落在线段BC 上则,点C 的运动路径长.....是___________cm (结果用含π的式子表示).13.(2023·内蒙古·统考中考真题)如图,在Rt ABC △中 90,3,1ACB AC BC ∠=︒== 将ABC 绕点A 逆时针方向旋转90︒ 得到AB C ''△.连接BB ' 交AC 于点D 则,ADDC的值为________.14.(2023·黑龙江绥化·统考中考真题)已知等腰ABC 120A ∠=︒ 2AB =.现将ABC 以点B 为旋转中心旋转45︒ 得到A BC ''△ 延长C A ''交直线BC 于点D .则A D '的长度为_______. 15.(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起 边BC 与EF 重合 CD 与AB 相交于点G (如图1) 此时线段CG 的长是___________ 现将DEF 绕点()C F 按顺时针方向旋转(如图2)边EF 与AB 相交于点H 连结DH 在旋转0︒到60︒的过程中 线段DH 扫过的面积是___________.三 解答题16.(2023·北京·统考中考真题)在ABC 中 ()045B C αα∠=∠=︒<<︒ AM BC ⊥于点M D 是线段MC 上的动点(不与点M C 重合) 将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1 当点E 在线段AC 上时 求证:D 是MC 的中点(2)如图2 若在线段BM 上存在点F (不与点B M 重合)满足DF DC = 连接AE EF 直接写出AEF ∠的大小 并证明.17.(2023·四川自贡·统考中考真题)如图1 一大一小两个等腰直角三角形叠放在一起 M N 分别是斜边DE AB 的中点 2,4DE AB ==.(1)将CDE 绕顶点C 旋转一周 请直接写出点M N 距离的最大值和最小值(2)将CDE 绕顶点C 逆时针旋转120︒(如图2) 求MN 的长.18.(2023·四川达州·统考中考真题)如图,网格中每个小正方形的边长均为1 ABC 的顶点均在小正方形的格点上.(1)将ABC 向下平移3个单位长度得到111A B C △ 画出111A B C △ (2)将ABC 绕点C 顺时针旋转90度得到222A B C △ 画出222A B C △ (3)在(2)的运动过程中请计算出ABC 扫过的面积.19.(2023·辽宁·统考中考真题)在Rt ABC ∆中 90°ACB ∠= CA CB = 点O 为AB 的中点 点D 在直线AB 上(不与点,A B 重合) 连接CD 线段CD 绕点C 逆时针旋转90° 得到线段CE 过点B 作直线l BC ⊥ 过点E 作EF l ⊥ 垂足为点F 直线EF 交直线OC 于点G .(1)如图,当点D 与点O 重合时 请直接写出线段AD 与线段EF 的数量关系 (2)如图,当点D 在线段AB 上时 求证:2CG BD BC +=(3)连接DE CDE 的面积记为1S ABC 的面积记为2S 当:1:3EF BC =时 请直接写出12S S 的值.20.(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后 刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板ABC 绕点A 逆时针旋转θ到达AB C ''△的位置 那么可以得到:AB AB '=AC AC '= BC B C ''= BAC B AC ''∠=∠ ABC AB C ''∠=∠ ACB AC B ''∠=∠( )刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中 即“变”中蕴含着“不变” 这是我们解决图形旋转的关键 故数学就是一门哲学. 【问题解决】(1)上述问题情境中“( )”处应填理由:____________________(2)如图,小王将一个半径为4cm 圆心角为60︒的扇形纸板ABC 绕点O 逆时针旋转90︒到达扇形纸板A B C '''的位置.①请在图中作出点O①如果=6cm BB '则,在旋转过程中 点B 经过的路径长为__________ 【问题拓展】小李突发奇想 将与(2)中完全相同的两个扇形纸板重叠 一个固定在墙上 使得一边位于水平位置 另一个在弧的中点处固定 然后放开纸板 使其摆动到竖直位置时静止 此时 两个纸板重叠部分的面积是多少呢?如图所示 请你帮助小李解决这个问题.21.(2023·浙江绍兴·统考中考真题)在平行四边形ABCD 中(顶点,,,A B C D 按逆时针方向排列) 12,10,AB AD B ==∠为锐角 且4sin 5B =.(1)如图1 求AB 边上的高CH 的长.(2)P 是边AB 上的一动点 点,C D 同时绕点P 按逆时针方向旋转90︒得点,C D ''. ①如图2 当点C '落在射线CA 上时 求BP 的长. ①当AC D ''△是直角三角形时 求BP 的长.22.(2023·四川南充·统考中考真题)如图,正方形ABCD 中 点M 在边BC 上 点E 是AM 的中点 连接EDEC .(1)求证:ED EC =(2)将BE 绕点E 逆时针旋转 使点B 的对应点B '落在AC 上 连接MB '.当点M 在边BC 上运动时(点M 不与B C 重合) 判断CMB '的形状 并说明理由.(3)在(2)的条件下 已知1AB = 当45DEB ∠'=︒时 求BM 的长.23.(2023·江苏扬州·统考中考真题)【问题情境】在综合实践活动课上 李老师让同桌两位同学用相同的两块含30︒的三角板开展数学探究活动 两块三角板分别记作ADB 和,90,30A D C ADB A D C B C ∠=∠=︒∠''''=∠=︒△ 设2AB =. 【操作探究】如图1 先将ADB 和A D C ''的边AD A D ''重合 再将A D C ''绕着点A 按顺时针...方向旋转 旋转角为()0360αα︒≤≤︒ 旋转过程中ADB 保持不动 连接BC .(1)当60α=︒时 BC =________ 当22BC = α=________︒ (2)当90α=︒时 画出图形 并求两块三角板重叠部分图形的面积(3)如图2 取BC 的中点F 将A D C ''绕着点A 旋转一周 点F 的运动路径长为________. 24.(2023·湖南·统考中考真题)(1)[问题探究]如图1 在正方形ABCD 中 对角线AC BD 、相交于点O .在线段AO 上任取一点P (端点除外) 连接PD PB 、.①求证:PD PB =①将线段DP 绕点P 逆时针旋转 使点D 落在BA 的延长线上的点Q 处.当点P 在线段AO 上的位置发生变化时 DPQ ∠的大小是否发生变化?请说明理由 ①探究AQ 与OP 的数量关系 并说明理由. (2)[迁移探究]如图2 将正方形ABCD 换成菱形ABCD 且60ABC ∠=︒ 其他条件不变.试探究AQ 与CP 的数量关系 并说明理由.25.(2023·湖北随州·统考中考真题)1643年 法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A B C 求平面上到这三个点的距离之和最小的点的位置 意大利数学家和物理学家托里拆利给出了分析和证明 该点也被称为“费马点”或“托里拆利点” 该问题也被称为“将军巡营”问题. (1)下面是该问题的一种常见的解决方法 请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空 ①处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空 ①处填写角度数 ①处填写该三角形的某个顶点)当ABC 的三个内角均小于120︒时如图1 将APC △绕 点C 顺时针旋转60︒得到A P C '' 连接PP '由60PC P C PCP ''=∠=︒, 可知PCP '△为 ① 三角形 故PP PC '= 又P A PA ''= 故PA PB PC PA PB PP A B '''++=++≥由 ① 可知 当B P P ' A 在同一条直线上时 PA PB PC ++取最小值 如图2 最小值为A B ' 此时的P 点为该三角形的“费马点” 且有APC BPC APB ∠=∠=∠= ①已知当ABC 有一个内角大于或等于120︒时 “费马点”为该三角形的某个顶点.如图3 若120BAC ∠≥︒则,该三角形的“费马点”为 ① 点.(2)如图4 在ABC 中 三个内角均小于120︒ 且3430AC BC ACB ==∠=︒,, 已知点P 为ABC 的“费马点” 求PA PB PC ++的值(3)如图5 设村庄A B C 的连线构成一个三角形 且已知4km 23km 60AC BC ACB ==∠=︒,,.现欲建一中转站P 沿直线向A B C 三个村庄铺设电缆 已知由中转站P 到村庄A B C 的铺设成本分别为a 元/km a 元/km 2a 元/km 选取合适的P 的位置 可以使总的铺设成本最低为___________元.(结果用含a 的式子表示)26.(2023·四川·统考中考真题)如图1 已知线段AB AC 线段AC 绕点A 在直线AB 上方旋转 连接BC 以BC 为边在BC 上方作Rt BDC 且30DBC ∠=︒.(1)若=90BDC ∠︒ 以AB 为边在AB 上方作Rt BAE △ 且90AEB ∠=︒ 30EBA ∠=︒ 连接DE 用等式表示线段AC 与DE 的数量关系是(2)如图2 在(1)的条件下 若DE AB ⊥ 4AB = 2AC = 求BC 的长(3)如图3 若90BCD ∠=︒ 4AB = 2AC = 当AD 的值最大时 求此时tan CBA ∠的值.27.(2023·湖北黄冈·统考中考真题)【问题呈现】CAB △和CDE 都是直角三角形 90,,ACB DCE CB mCA CE mCD ∠=∠=︒== 连接AD BE 探究ADBE 的位置关系.(1)如图1 当1m =时 直接写出AD BE 的位置关系:____________(2)如图2 当1m ≠时 (1)中的结论是否成立?若成立 给出证明 若不成立 说明理由. 【拓展应用】(3)当3,7,4m AB DE ===时 将CDE 绕点C 旋转 使,,A D E 三点恰好在同一直线上 求BE 的长.28.(2023·内蒙古赤峰·统考中考真题)数学兴趣小组探究了以下几何图形.如图① 把一个含有45︒角的三角尺放在正方形ABCD 中 使45︒角的顶点始终与正方形的顶点C 重合 绕点C 旋转三角尺时 45︒角的两边CM CN 始终与正方形的边AD AB 所在直线分别相交于点M N 连接MN 可得CMN .【探究一】如图① 把CDM 绕点C 逆时针旋转90︒得到CBH 同时得到点H 在直线AB 上.求证:CNM CNH ∠=∠【探究二】在图①中 连接BD 分别交CM CN 于点E F .求证:CEF CNM △∽△【探究三】把三角尺旋转到如图①所示位置 直线BD 与三角尺45︒角两边CM CN 分别交于点E F .连接AC 交BD 于点O 求EFNM的值.29.(2023·湖南·统考中考真题)问题情境:小红同学在学习了正方形的知识后 进一步进行以下探究活动:在正方形ABCD 的边BC 上任意取一点G 以BG 为边长向外作正方形BEFG 将正方形BEFG 绕点B 顺时针旋转.特例感知:(1)当BG 在BC 上时 连接DF AC ,相交于点P 小红发现点P 恰为DF 的中点 如图①.针对小红发现的结论 请给出证明(2)小红继续连接EG 并延长与DF 相交 发现交点恰好也是DF 中点P 如图① 根据小红发现的结论 请判断APE 的形状 并说明理由 规律探究:(3)如图① 将正方形BEFG 绕点B 顺时针旋转α 连接DF 点P 是DF 中点 连接AP EP AEAPE 的形状是否发生改变?请说明理由.30.(2023·贵州·统考中考真题)如图① 小红在学习了三角形相关知识后 对等腰直角三角形进行了探究 在等腰直角三角形ABC 中 ,90CA CB C =∠=︒ 过点B 作射线BD AB ⊥ 垂足为B 点P 在CB 上.(1)【动手操作】如图① 若点P 在线段CB 上 画出射线PA 并将射线PA 绕点P 逆时针旋转90︒与BD 交于点E 根据题意在图中画出图形 图中PBE ∠的度数为_______度 (2)【问题探究】根据(1)所画图形 探究线段PA 与PE 的数量关系 并说明理由 (3)【拓展延伸】如图① 若点P 在射线CB 上移动 将射线PA 绕点P 逆时针旋转90︒与BD 交于点E 探究线段,,BA BP BE 之间的数量关系 并说明理由.参考答案一 单选题1.(2023·江苏无锡·统考中考真题)如图,ABC 中 55BAC ∠=︒ 将ABC 逆时针旋转(055),αα︒<<︒得到ADE DE 交AC 于F .当40α=︒时 点D 恰好落在BC 上 此时AFE ∠等于( )A .80︒B .85︒C .90︒D .95︒【答案】B【分析】根据旋转可得B ADB ADE ∠=∠=∠ 再结合旋转角40α=︒即可求解. 【详解】解:由旋转性质可得:55BAC DAE ∠=∠=︒ AB AD = ①40α=︒①15DAF ∠=︒ 70B ADB ADE ∠=∠=∠=︒ ①85AFE DAF ADE ∠=∠+∠=︒故选:B .【点睛】本题考查了几何—旋转问题 掌握旋转的性质是关键.2.(2023·天津·统考中考真题)如图,把ABC 以点A 为中心逆时针旋转得到ADE 点B C 的对应点分别是点D E 且点E 在BC 的延长线上 连接BD 则,下列结论一定正确的是( )A .CAE BED ∠=∠B .AB AE =C .ACE ADE ∠=∠D .CE BD = 【答案】A【分析】根据旋转的性质即可解答. 【详解】根据题意 由旋转的性质可得AB AD = AC AE = BC DE = 故B 选项和D 选项不符合题意=ABC ADE ∠∠=ACE ABCBAC∴=ACE ADEBAC 故C 选项不符合题意=ACB AED =ACB CAECEA=AED CEA BED∴=CAE BED 故A 选项符合题意故选:A .【点睛】本题考查了旋转的性质 熟练掌握旋转的性质和三角形外角运用是解题的关键.3.(2023·四川宜宾·统考中考真题)如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 把ADE 以A 为中心顺时针旋转 点M 为射线BD CE 的交点.若3AB 1AD =.以下结论: ①BD CE = ①BD CE ⊥ ①当点E 在BA 的延长线上时 33MC -=①在旋转过程中 当线段MB 最短时 MBC 的面积为12.其中正确结论有( )A .1个B .2个C .3个D .4个【答案】D【分析】证明BAD CAE ≌即可判断① 根据三角形的外角的性质得出① 证明DCM ECA ∠∠∽得出313-= 即可判断① 以A 为圆心 AD 为半径画圆 当CE 在A 的下方与A 相切时 MB 的值最小 可得四边形AEMD 是正方形 在Rt MBC 中22MC BC MB -21 然后根据三角形的面积公式即可判断①.【详解】解:①ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 ①,,90BA CA DA EA BAC DAE ==∠=∠=︒ ①BAD CAE ∠=∠ ①BAD CAE ≌①ABD ACE ∠=∠ BD CE = 故①正确 设ABD ACE α∠=∠= ①45DBC α∠=︒-,①454590EMB DBC BCM DBC BCA ACE αα∠=∠+∠=∠+∠+∠=︒-+︒+=︒ ①BD CE ⊥ 故①正确当点E 在BA 的延长线上时 如图所示①DCM ECA ∠=∠ 90DMC EAC ∠=∠=︒ ①DCM ECA ∠∠∽①MC CDAC EC= ①3AB = 1AD =.①31CD AC AD =-= 222CE AE AC =+= 313-=①33MC -=故①正确 ①如图所示 以A 为圆心 AD 为半径画圆①90BMC ∠=︒ ①当CE 在A 的下方与A 相切时 MB 的值最小 90ADM DAE AEM ∠=∠=∠=︒①四边形AEMD 是矩形 又AE AD =①四边形AEMD 是正方形 ①1MD AE ==①222BD EC AC AE =- ①21MB BD MD =-= 在Rt MBC 中 22MC BC MB -①PB 取得最小值时 222MC AB AC MB +-()2332121+--①)()1112121222BMCSMB MC =⨯==故①正确 故选:D .【点睛】本题考查了旋转的性质 相似三角形的性质 勾股定理 切线的性质 垂线段最短 全等三角形的性质与判定 正方形的性质 熟练掌握以上知识是解题的关键.4.(2023·山东聊城·统考中考真题)如图,已知等腰直角ABC 90ACB ∠=︒ 2AB = 点C 是矩形ECGF与ABC 的公共顶点 且1CE = 3CG = 点D 是CB 延长线上一点 且2CD =.连接BG DF 在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中 当线段BG 达到最长和最短时 线段DF 对应的长度分别为m 和n 则,mn的值为( )A .2B .3C 10D 13【答案】D【分析】根据锐角三角函数可求得1AC BC == 当线段BG 达到最长时 此时点G 在点C 的下方 且BC G 三点共线 求得4BG = 5DG = 根据勾股定理求得26DF = 即26m = 当线段BG 达到最短时 此时点G 在点C 的上方 且B C G 三点共线则,2BG = 1DG = 根据勾股定理求得2DF 即2n = 即可求得13mn【详解】①ABC 为等腰直角三角形 2AB = ①2sin 4521AC BC AB ==⋅︒== 当线段BG 达到最长时 此时点G 在点C 的下方 且B C G 三点共线 如图:则4BG BC CG =+= 5DG DB BG =+=在Rt DGF △中 22225126DF DG GF =++ 即26m =当线段BG 达到最短时 此时点G 在点C 的上方 且B C G 三点共线 如图:则2BG CG BC =-= 1DG BG DB =-=在Rt DGF △中 2222112DF DG GF =++ 即2n = 故26132m n == 故选:D .【点睛】本题考查了锐角三角函数 勾股定理等 根据旋转推出线段BG 最长和最短时的位置是解题的关键.二 填空题5.(2023·江苏连云港·统考中考真题)以正五边形ABCDE 的顶点C 为旋转中心 按顺时针方向旋转 使得新五边形A B CD E ''''的顶点D 落在直线BC 上则,正五边ABCDE 旋转的度数至少为______°.【答案】72【分析】依据正五边形的外角性质 即可得到DCF ∠的度数 进而得出旋转的角度. 【详解】解:①五边形ABCDE 是正五边形①530726DCF ∠÷=︒=︒①新五边形A B CD E ''''的顶点D 落在直线BC 上则,旋转的最小角度是72︒故答案为:72.【点睛】本题主要考查了正多边形 旋转性质 关键是掌握正多边形的外角和公式的运用.6.(2023·湖南张家界·统考中考真题)如图,AO 为BAC ∠的平分线 且50BAC ∠=︒ 将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C ''' 且100OAC '∠=︒则,四边形ABOC 旋转的角度是______.【答案】75︒【分析】根据角平分线的性质可得25BAO OAC ==︒∠∠ 根据旋转的性质可得50BAC B AC ''∠=∠=︒ 25B AO O AC ''''==︒∠∠ 求得75OAO '∠=︒ 即可求得旋转的角度.【详解】①AO 为BAC ∠的平分线 50BAC ∠=︒①25BAO OAC ==︒∠∠①将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C '''①50BAC B AC ''∠=∠=︒ 25B AO O AC ''''==︒∠∠①1002575OAO OAC O AC ''''∠=∠-∠=︒-︒=︒故答案为:75︒.【点睛】本题考查了角平分线的性质 旋转的性质 熟练掌握以上性质是解题的关键.7.(2023·湖南常德·统考中考真题)如图1 在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = D 是AB 上一点 且2AD = 过点D 作DE BC ∥交AC 于E 将ADE 绕A 点顺时针旋转到图2的位置.则图2中BDCE的值为__________.【答案】45【分析】首先根据勾股定理得到2210AC AB BC += 然后证明出ADE ABC △△∽ 得到AD AEAB AC= 进而得到ADABAE AC = 然后证明出ABD ACE ∽ 利用相似三角形的性质求解即可.【详解】①在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = ①2210AC AB BC +①DE BC ∥①90ADE ABC ∠=∠=︒ AED ACB ∠=∠①ADE ABC △△∽ ①ADAEAB AC = ①ADABAE AC =①BAC DAE ∠=∠①BAC CAD DAE CAD ∠+∠=∠+∠①BAD CAE ∠=∠①ABD ACE ∽ ①84105BD AB CD AC ===. 故答案为:45.【点睛】此题考查了相似三角形的性质和判定 解题的关键是熟练掌握相似三角形的性质和判定定理.8.(2023·江苏无锡·统考中考真题)已知曲线12C C 、分别是函数2(0),(0,0)k y x y k x x x=-<=>>的图像 边长为6的正ABC 的顶点A 在y 轴正半轴上 顶点B C 在x 轴上(B 在C 的左侧)现将ABC 绕原点O 顺时针旋转 当点B 在曲线1C 上时 点A 恰好在曲线2C 上则,k 的值为__________.【答案】6【分析】画出变换后的图像即可(画AOB 即可) 当点A 在y 轴上 点B C 在x 轴上时 根据ABC 为等边三角形且AO BC ⊥ 可得3OB OA = 过点A B 分别作x 轴垂线构造相似则,BFO OEA ∽ 根据相似三角形的性质得出3AOE S =△ 进而根据反比例函数k 的几何意义 即可求解.【详解】当点A 在y 轴上 点B C 在x 轴上时 连接AOABC 为等边三角形且AO BC ⊥则,30BAO ∠=︒∴tan tan30BAO ∠=︒=3OB OA = 如图所示 过点,A B 分别作x 轴的垂线 交x 轴分别于点,E FAO BO ⊥ 90BFO AEO AOB ∠=∠=∠=︒∴90BOF AOE EAO ∠=︒-∠=∠∴BFO OEA ∽ ∴213BFO AOE S OB SOA ⎛⎫== ⎪⎝⎭ ∴212BFO S -==∴3AOE S =△∴6k =.【点睛】本题考查了反比例函数的性质 k 的几何意义 相似三角形的性质与判定 正确作出辅助线构造相似三角形是解题关键.9.(2023·辽宁·统考中考真题)如图,线段8AB = 点C 是线段AB 上的动点 将线段BC 绕点B 顺时针旋转120°得到线段BD 连接CD 在AB 的上方作Rt DCE ∆ 使90,30DCE E ∠=∠= 点F 为DE 的中点 连接AF 当AF 最小时 BCD ∆的面积为___________.3【分析】连接CF BF , BF ,CD 交于点P 由直角三角形的性质及等腰三角形的性质可得BF 垂直平分CF 60ABF ∠=︒为定角 可得点F 在射线BF 上运动 当AF BF ⊥时 AF 最小 由含30度角直角三角形的性质即可求解.【详解】解:连接CF BF , BF ,CD 交于点P 如图,①90DCE ∠= 点F 为DE 的中点①FC FD =①30E ∠=①60FDC ∠=︒,①FCD 是等边三角形①60DFC FCD ∠=∠=︒①线段BC 绕点B 顺时针旋转120°得到线段BD①BC BD =①FC FD =①BF 垂直平分CF 60ABF ∠=︒①点F 在射线BF 上运动①当AF BF ⊥时 AF 最小此时9030FAB ABF ∠=︒-∠=︒ ①142BF AB == ①1302BFC DFC ∠=∠=︒ ①90FCB BFC ABF ∠=∠+∠=︒①122BC BF == ①112PB BC == ①由勾股定理得223PC BC PB - ①223CD PC == ①11231322BCD S CD PB =⋅=⨯△3【点睛】本题考查了等腰三角形性质 含30度直角三角形的性质 斜边中线性质 勾股定理 线段垂直平分线的判定 勾股定理 旋转的性质 确定点F 的运动路径是关键与难点.10.(2023·江西·统考中考真题)如图,在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为_______.【答案】90︒或270︒或180︒【分析】连接AC 根据已知条件可得90BAC ∠=︒ 进而分类讨论即可求解.【详解】解:连接AC 取BC 的中点E 连接AE 如图所示①在ABCD 中 602B BC AB ∠=︒=, ①12BE CE BC AB ===①ABE 是等边三角形①60BAE AEB ∠=∠=︒ AE BE =①AE EC = ①1302EAC ECA AEB ∠=∠=∠=︒ ①90BAC ∠=︒①AC CD ⊥如图所示 当点P 在AC 上时 此时90BAP BAC ∠=∠=︒则,旋转角α的度数为90︒当点P 在CA 的延长线上时 如图所示则,36090270α=︒-︒=︒当P 在BA 的延长线上时则,旋转角α的度数为180︒ 如图所示①PA PB CD == PB CD ∥①四边形PACD 是平行四边形①AC AB ⊥①四边形PACD 是矩形①90PDC ∠=︒即PDC △是直角三角形综上所述 旋转角α的度数为90︒或270︒或180︒故答案为:90︒或270︒或180︒.【点睛】本题考查了平行四边形的性质与判定 等边三角形的性质与判定 矩形的性质与判定 旋转的性质 熟练掌握旋转的性质是解题的关键.11.(2023·上海·统考中考真题)如图,在ABC 中 35C ∠=︒ 将ABC 绕着点A 旋转(0180)αα︒<<︒ 旋转后的点B 落在BC 上 点B 的对应点为D 连接AD AD ,是BAC ∠的角平分线则,α=________.【答案】1103⎛⎫︒ ⎪⎝⎭【分析】如图,AB AD = BAD ∠=α 根据角平分线的定义可得CAD BAD α∠=∠= 根据三角形的外角性质可得35ADB α∠=︒+ 即得35B ADB α∠=∠=︒+ 然后根据三角形的内角和定理求解即可.【详解】解:如图,根据题意可得:AB AD = BAD ∠=α①AD 是BAC ∠的角平分线①CAD BAD α∠=∠=①35ADB C CAD α∠=∠+∠=︒+ AB AD =①35B ADB α∠=∠=︒+则在ABC 中 ①180C CAB B ∠+∠+∠=︒①35235180αα︒++︒+=︒ 解得:1103α⎛⎫=︒ ⎪⎝⎭故答案为:1103⎛⎫︒ ⎪⎝⎭【点睛】本题考查了旋转的性质 等腰三角形的性质 三角形的外角性质以及三角形的内角和等知识 熟练掌握相关图形的性质是解题的关键.12.(2023·湖南郴州·统考中考真题)如图,在Rt ABC △中 90BAC ∠=︒ 3cm AB = =60B ∠︒.将ABC 绕点A 逆时针旋转 得到AB C ''△ 若点B 的对应点B '恰好落在线段BC 上则,点C 的运动路径长.....是___________cm (结果用含π的式子表示).3π【分析】由于AC 旋转到AC ' 故C 的运动路径长是CC '的圆弧长度 根据弧长公式求解即可.【详解】以A 为圆心作圆弧CC ' 如图所示.在直角ABC 中 =60B ∠︒则,30C ∠=︒则()2236cm BC AB ==⨯=. ①)22226333cm AC BC AB =--.由旋转性质可知 AB AB '= 又=60B ∠︒①ABB '是等边三角形.①60BAB '∠=︒.由旋转性质知 60CAC '∠=︒.故弧CC '的长度为:()602333cm 3603AC πππ⨯⨯⨯=⨯ 3π【点睛】本题考查了含30︒角直角三角形的性质 勾股定理 旋转的性质 弧长公式等知识点 解题的关键是明确C 点的运动轨迹.13.(2023·内蒙古·统考中考真题)如图,在Rt ABC △中 90,3,1ACB AC BC ∠=︒== 将ABC 绕点A 逆时针方向旋转90︒ 得到AB C ''△.连接BB ' 交AC 于点D 则,AD DC 的值为________.【答案】5【分析】过点D 作DF AB ⊥于点F 利用勾股定理求得10AB根据旋转的性质可证ABB ' DFB △是等腰直角三角形 可得DF BF = 再由1122ADB SBC AD DF AB =⨯⨯=⨯⨯ 得=10AD DF 证明AFD ACB 可得DF AF BC AC = 即3AF DF = 再由=10AF DF 求得10=DF 从而求得52AD = 12CD = 即可求解. 【详解】解:过点D 作DF AB ⊥于点F①90ACB ∠=︒ 3AC = 1BC = ①223110AB +①将ABC 绕点A 逆时针方向旋转90︒得到AB C ''△ ①==10AB AB ' 90BAB '∠=︒①ABB '是等腰直角三角形①45ABB '∠=︒又①DF AB ⊥①45FDB ∠=︒①DFB △是等腰直角三角形①DF BF = ①1122ADB S BC AD DF AB =⨯⨯=⨯⨯ 即=10AD DF ① 90C AFD ∠=∠=︒ CAB FAD ∠=∠①AFD ACB ①DF AF BC AC= 即3AF DF = 又①=10AF DF ①10=DF ①105=10=2AD 51=3=22CD - ①52==512AD CD 故答案为:5.【点睛】本题考查旋转的性质 等腰三角形的判定与性质 相似三角形的判定与性质 三角形的面积 熟练掌握相关知识是解题的关键.14.(2023·黑龙江绥化·统考中考真题)已知等腰ABC 120A ∠=︒ 2AB =.现将ABC 以点B 为旋转中心旋转45︒ 得到A BC ''△ 延长C A ''交直线BC 于点D .则A D '的长度为_______. 【答案】423423+-或【分析】根据题意 先求得23BC = 当ABC 以点B 为旋转中心逆时针旋转45︒ 过点B 作BE A B '⊥交A D '于点E 当ABC 以点B 为旋转中心顺时针旋转45︒ 过点D 作DF BC '⊥交BC '于点F 分别画出图形 根据勾股定理以及旋转的性质即可求解.【详解】解:如图所示 过点A 作AM BC ⊥于点M①等腰ABC 120BAC ∠=︒ 2AB =. ①30ABC ACB ∠=∠=︒ ①112AM AB == 223BM CM AB AM =- ①23BC =如图所示 当ABC 以点B 为旋转中心逆时针旋转45︒ 过点B 作BE A B '⊥交A D '于点E①120BAC ∠=︒①60DA B '∠=︒ 30A EB '∠=︒在Rt A BE '中 24A E A B ''== 2223BE A E A B ''-= ①等腰ABC 120BAC ∠=︒ 2AB =. ①30ABC ACB ∠=∠=︒①ABC 以点B 为旋转中心逆时针旋转45︒ ①45ABA '∠=︒①180********DBE ∠=︒-︒-︒-︒=︒ 1804530105A BD '∠=︒-︒-︒=︒ 在A BD '中 1801806010515D DA B A BD ∠=︒-∠-∠=︒-︒-︒=''︒, ①D EBD ∠=∠ ①23EB ED ==①423A D A E DE ''=+=+如图所示 当ABC 以点B 为旋转中心顺时针旋转45︒ 过点D 作DF BC '⊥交BC '于点F在BFD △中 45BDF CBC ∠'=∠=︒ ①DF BF =在Rt DC F '中 30C '∠=︒ ①3'DF ①33BC BF BF ==①33DF BF ==①2623DC DF '==-①6232423A D C D A C ''''=-=-=- 综上所述 A D '的长度为423-423+ 故答案为:43-43+【点睛】本题考查了旋转的性质 勾股定理 含30度角的直角三角形的性质 熟练掌握旋转的性质 分类讨论是解题的关键.15.(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起 边BC 与EF 重合 CD 与AB 相交于点G (如图1) 此时线段CG 的长是___________ 现将DEF 绕点()C F 按顺时针方向旋转(如图2) 边EF 与AB 相交于点H 连结DH 在旋转0︒到60︒的过程中 线段DH 扫过的面积是___________.【答案】6662 1218318π-【分析】如图1 过点G 作GH BC ⊥于H 根据含30︒直角三角形的性质和等腰直角三角形的性质得出3BH GH = GH CH = 然后由12BC =可求出GH 的长 进而可得线段CG 的长 如图2 将DEF 绕点C 顺时针旋转60︒得到11D E F 1FE 与AB 交于1G 连接1D D 1AD 22D E F 是DEF 旋转0︒到60︒的过程中任意位置 作1DN CD ⊥于N 过点B 作1BM D D ⊥交1D D 的延长线于M 首先证明1CDD 是等边三角形 点1D 在直线AB 上 然后可得线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积 求出DN 和BM 然后根据线段DH 扫过的面积111121D DBCD DD DBD D D CD D S SS SS=+=-+弓形扇形列式计算即可.【详解】解:如图1 过点G 作GH BC ⊥于H①3045ABC DEF DFE ∠=︒∠=∠=︒, 90GHB GHC ∠=∠=︒ ①3BH GH = GH CH = ①312BC BH CH GH GH =+=+= ①36GH =①()226366662CG GH ===如图2 将DEF 绕点C 顺时针旋转60︒得到11D E F 1FE 与AB 交于1G 连接1D D 由旋转的性质得:1160E CB DCD ∠=∠=︒ 1CD CD = ①1CDD 是等边三角形①30ABC ∠=︒ ①190CG B ∠=︒ ①112CG BC =①1CE BC =①1112CG CE = 即AB 垂直平分1CE①11CD E 是等腰直角三角形 ①点1D 在直线AB 上连接1AD 22D E F 是DEF 旋转0︒到60︒的过程中任意位置 则线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积 ①12BC EF == ①22DC DB === ①1162DC D D == 作1DN CD ⊥于N 则,132ND NC == ①()()222211623236DN D D ND =-=-过点B 作1BM D D ⊥交1D D 的延长线于M 则,90M ∠=︒ ①160D DC ∠=︒ 90CDB ∠=︒①118030BDM D DC CDB ∠=︒-∠-∠=︒ ①1322BM BD == ①线段DH 扫过的面积112D DBD D D S S =+弓形111CD DD DBCD D S S S=-+扇形(260621123623236022π⋅=-⨯⨯ 1218318π=-故答案为:6662 1218318π-.【点睛】本题主要考查了旋转的性质 含30︒直角三角形的性质 二次根式的运算 解直角三角形 等边三角形的判定和性质 勾股定理 扇形的面积计算等知识 作出图形 证明点1D 在直线AB 上是本题的突破点 灵活运用各知识点是解题的关键.三 解答题16.(2023·北京·统考中考真题)在ABC 中 ()045B C αα∠=∠=︒<<︒ AM BC ⊥于点M D 是线段MC 上的动点(不与点M C 重合) 将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1 当点E 在线段AC 上时 求证:D 是MC 的中点(2)如图2 若在线段BM 上存在点F (不与点B M 重合)满足DF DC = 连接AE EF 直接写出AEF ∠的大小 并证明. 【答案】(1)见解析 (2)90AEF ∠=︒ 证明见解析【分析】(1)由旋转的性质得DM DE = 2MDE α∠= 利用三角形外角的性质求出C DEC α∠=∠= 可得DE DC = 等量代换得到DM DC =即可(2)延长FE 到H 使FE EH = 连接CH AH 可得DE 是FCH 的中位线 然后求出B ACH ∠∠= 设DM DE m == CD n = 求出2BF m CH == 证明()SAS ABF ACH ≅ 得到AF AH = 再根据等腰三角形三线合一证明AE FH ⊥即可.。
五年级上册数学一课一练图形的旋转一、单项选择题1.拧开矿泉水瓶盖是做( )运动。
A. 平衡B. 对称C. 旋转2.下面属于旋转现象的是〔〕A. 用卷笔刀削铅笔B. 从滑梯顶部滑下C. 把晾晒的衣物从绳子的左边推到右边D. 不小心将书掉柱地上3.下面〔〕幅图是旋转得到的。
A. B. C.4.下面〔〕的运动是旋转。
A. 旋转的呼啦圈B. 观光电梯C. 拨算珠5.如图:正三角形ABC怎样运动得到正三角形ADE?〔〕A. 平移B. 旋转C. 轴对称二、判断题6.图形旋转时,对应的每组线段的长度都相等。
7.拉抽屉是旋转现象.8.图形的旋转只能按顺时针方向转。
9.在同一平面内两个完全相同的平面图形,其中一个通过平移、旋转的变换一定可以得到另一个。
三、填空题10.陀螺的转动属于________现象,缆车的运动属于________现象.11.张叔叔在笔直的公路上开车,方向盘的运动是________现象。
升国旗时,国旗的升降运动是________现象。
妈妈用拖布擦地,是________现象。
(填“平移〞或“旋转〞)12.如图,△ABC为等边三角形,D为△ABC•内一点,•△ABD•经过旋转后到达△ACP的位置,那么,〔1〕旋转中心是________;〔2〕•旋转角度是________〔3〕△ADP•是________三角形.13.①图形1绕点O顺时针旋转90°到图形________所在的位置。
②图形2绕点O顺时针旋转180°到图形________所在的位置。
③图形3绕点O顺时针旋转________到图形1所在的位置。
④图形1绕点O________旋转________到图形4所在的位置。
14.旋转是由________和________决定的。
四、解答题15.以下现象哪些是平移?画“△〞;哪些是旋转?画“O〞。
16.是平移现象的画“○〞,是旋转现象的画“√〞。
五、应用题17.指针从B开始,逆时针旋转90°到几点?参考答案一、单项选择题1.【答案】C【解析】【解答】拧开矿泉水瓶盖是做旋转运动。
FB'C'23.1.1图形的旋转1、下列说法正确的是( )A 、平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B 、平移和旋转的共同点是改变图形的位置C 、图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D 、在平移和旋转图形中,对应角相等,对应线段相等且平行2、将一图形绕着点O 顺时针方向旋转700后,再绕着点O 逆时针方向旋转1200,这时如果要使图形回到原来的位置,需要将图形绕着点O 什么方向旋转多少度?( )A 、顺时针方向,500B 、逆时针方向,500C 、顺时针方向,1900D 、逆时针方向,19003、如图,图形旋转一定角度后能与自身重合,则旋转的角度可能是A 、300B 、600C 、900D 、1204、如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C顺时针方向旋转900得到△DCF,连结EF ,若∠BEC=600,则∠EFD 的度数为( )A 、100B 、150C 、200D 、2505、等边三角形至少旋转__________度才能与自身重合。
6、如图,△ABC 以点A 为旋转中心,按逆时针方向旋转600,得△AB'C '则△ABB'是__________三角形。
7、如图,△ABC 绕点B 逆时针方向旋转到△EBD 的位置,若∠A=150,∠C=100,E ,B ,C 在同一直线上,则∠ABC=________,旋转角度是__________。
【拓展探究】8、四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图所示,如果AF=4,AB=7, 求:(1)指出旋转中心和旋转角度(2)求DE 的长度(3)BE 与DF 的位置关系如何?【答案】1、 B ;2、 A ;3、C;4、B;5、120;6、等边;7、155°,25°;8、(1)旋转中心:点A,旋转角度:90°;(2)DE=3;(3)垂直关系.23.2.2中心对称图形基础训练1. 下列图形中,既是轴对称图形又是中心对称图形的是( ). A .角 B .等边三角形 C .线段 D .平行四边形2. 下列说法:(1)中心对称与中心对称图形是两个不同的概念,它们既有区别,又有联系;(2)中心对称图形是指两个图形之间的一种对称关系;(3)中心对称和中心对称图形有一个共同的特点是它们都有且只有一个对称中心;(4)任何一条经过对称中心的直线都将一个中心对称图形分成两个全等的图形,其中说法正确的序号是( )A .(1)(2)B .(1)(2)(3)C .(2)(3)(4)D .(1)(3)(4) 3.国旗上的每个五角星( )A .是中心对称图形而不是轴对称图形B .是轴对称图形而不是中心对称图形C .既是中心对称图形又是轴对称图形D .既不是中心对称图形,又不是轴对称图形4. 下列图形是中心对称图形的是( )5 ) 初中数学资源网能力提升1.如图所示,△ABC 中,点O 是AC 的中点,画出△ABC 关于点O 中心对称的图形△CAD ,其中点B 与点D 是对称点,观察四边形ABCD 的形状,你能说出它的名称吗?2.如图是正六边形ABCDEF ,请找出它的对称中心.3.分别画出下列图形关于点O 对称的图形. (1) (2)4.如下的两个图形是关于某点中心对称的图形吗?如果不是,请说明理由;如果是,找出它们的对称中心,并指出点A 和点B 的对称点.发展创新 1.如图(a ),A B C D的面积被过其对称中心的直线l 直线,使其将图(b )、(c )分成面积相等的两部分.23.2中心对称 23.2.1中心对称 23.2.2中心对称图形 基础训练 1.C 2.D 3.B 4.C 5.B能力提升 1.图略,四边形ABCD 是平行四边形. 2.画两条对角线的交点. 3.图略.4.是关于某点D C FAODCBA(c)(b)(a)O CB ABA中心对称的图形.图略.发展创新23.2.3关于原点对称的点的坐标知识网络:在平面直角坐标系中,两个点关于原点对称时,它们的坐标符号相反,即点P(,x y)关于原点的对称点为P′(,x y--).基础训练1.点A(2,-3)关于原点对称的点的坐标是.点B(-5,0)关于原点对称的点的坐标是.2.如图,⊿DEF是由⊿ABC经过某种变换后得到的图形,观察各顶点的坐标,可知点A和点D 的坐标分别是;点B和点E的坐标分别是;点C和点F的坐标分别是,如果⊿ABC边上任意一点M的坐标为(,x y),则它对应于⊿DEF上点的坐标是.能力提升1.如图,四边形ABCD各顶点坐标分别为A(-5,0),B(-5,2),C(-3,3),D(-1,1),作出与四边形ABCD关于原点O对称的图形。
九年级上册初中数学图形的旋转同步专项练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 在下列现象中:①时针转动,②电风扇叶片的转动,③转呼啦圈,④传送带上的电视机,其中是旋转的有()A.①②B.②③C.①④D.③④2. 如图,点P是正方形ABCD内一点,将△ABP绕着B沿顺时针方向旋转到与△CBP′重合,若PB=3,则PP′的长为()A.2√2B.3√2C.3D.无法确定3. 如图,将Rt△ABC(其中∠B=35∘,∠C=90∘)绕点A顺时针旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于( )A.55∘B.70∘C.125∘D.145∘4. 将如图所示的图形绕中心按顺时针方向旋转60∘后可得到的图形是( )A. B. C. D.5. 在下面A,B,C,D四幅图案中,通过图案逆时针旋转90∘后得到的是()A. B. C. D.6. 如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=33∘,∠B=30∘,则∠ACE的大小是()A.63∘B.58∘C.54∘D.52∘7. 如图,将等腰直角三角尺ABC绕着点C顺时针旋转到A′B′C的位置,使点A,C,B′在同一条直线上,则旋转角的大小为()A.45∘B.90∘C.120∘D.135∘8. 如图,正方形ABCD的边长是3cm,一个边长为1cm的小正方形沿着正方形ABCD的边AB→BC→CD→DA连续翻转(小正方形起始位置在AB边上),那么这个小正方形翻转到DA边的终点位置时,它的方向是()A. B. C. D.9. 如图所示的叙述正确的是()A.由图形的1绕其中心位置按同一方向连续旋转90∘、180∘、270∘前后共四个图形所构4成绕中心位置旋转45∘、90∘、135∘、225∘、270∘、315∘前后的图形共同组成B.由图形的18的的旋转100∘所得C.由图形12D.绕该图形的中心旋转100∘后所得图形还能与原图形重合10. 如图,△AOC≅△ABOD,点C,D是对应点,下列结论中错误的是()A.∠A与∠B是对应角B.∠AOC与∠BOD是对应角C.OC与OB是对应边D.OC与OD是对应边二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 如图,已知∠EAD=32∘,△ADE绕着点A旋转50∘后能与△ABC重合,则∠BAE=________度.12. 时钟的分针每分钟转________度的角,时针每分钟转________度的角.从1时5分到1时35分,时钟的分针转了________度的角,时针转了________度的角.13. 钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了________度.14. 一条线段绕其上一点旋转90∘与原来的线段位置________关系.15. 如图所示,∠BCD=120∘,把△BCD绕C点按顺时针方向旋转60∘到△ACE的位置,则BC旋转到________的位置,∠ACD=________.16. 时钟上的分针匀速旋转一周需要60min,则经过10min,分针旋转了________.17. 钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了________度.A.27018. 如图,将△ABC绕点B逆时针旋转60∘得到△A′C′B,且BC=2,那么CC′的长是________.19. 如图,Rt△ABC中,∠ABC=90∘,AB=BC=2,将△ABC绕点C逆时针旋转60∘,得到△MNC,连接BM,那么BM的长是________.20. 时钟的时针在不停地转动,从上午6时到上午9时,时针旋转的旋转角为________度,从上午9时到下午5时时针旋转的旋转角为________度.三、解答题(本题共计 20 小题,每题 10 分,共计200分,)21. 如果把钟表的时针在任一时刻所在的位置作为起始位置,那么时针旋转出一个平角及一个周角,至少需要多长时间?22. 将两个不全等的直角三角板,Rt△AOB与Rt△DOE叠放在一起,使得两直角∠AOB 与∠DOE的顶点重合,已知∠OAB=∠ODE=30∘,下图是直角三角板△DOE绕顶点O 顺时针旋转三个瞬间的平面图形.(1)在旋转过程中,AD:BE的值是否是定值?请利用图1求出这个定值或说明不是定值的理由;(2)在旋转过程中,AD与BE有什么位置关系?请分别利用图2、图3说明理由.23. 举出现实生活中旋转的一些实例.24. 如图,△ABC中,∠ACB=90∘,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90∘至CE位置,连接AE.求证:AE=BD.25. 如图,把一个直角三角尺绕着30∘角的顶点B顺时钟方向旋转,使得点A与CB延长线上的点E重合,连接CD交AB于F.(1)直角三角尺旋转了多少度?(2)试判断△CBD的形状.(3)求∠AFC的度数.26. 一个时钟的时针长10厘米,时针尖12小时走了多少厘米?27. (1)如图1是两个有一边重合的正三角形,那么由其中一个正三角形绕平面内某一点旋转后能与另一个正三角形重合,平面内可以作为旋转中心的点有________个. 27.(2)如图2是两个有一边重合的正方形,那么由其中一个正方形绕平面内某一点旋转后能与另一个正方形重合,平面内可以作为旋转中心的点有________个.27.(3)如图3是两个有一边重合的正五边形,那么由其中一个正五边形绕平面内某一点旋转后能与另一个正五边形重合,平面内可以作为旋转中心的点有________个.27.(4)如图4是两个有一边重合的正六边形,那么由其中一个正六边形绕平面内某一点旋转后能与另一个正六边形重合,平面内可以作为旋转中心的点有________个.27.(5)拓展探究:两个有一边重合的正n(n≥3)边形,那么由其中一个正n边形绕平面内某一点旋转后能与另一个正n边形重合平面内可以作为旋转中心的点有多少个?(直接写结论)28. 如图,在四边形ABCD中,∠BAD=∠C=90∘,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA重合.如图,在四边形ABCD中,∠BAD=∠C=90∘,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA重合.(1)△BEA绕________点________时针旋转________度能与△DFA重合;(2)若AE=√6cm,求四边形AECF的面积.29. 我们小时候都玩过荡秋千的游戏.在夏天,我们会打开电扇,扇叶会绕着中心转轴转动起来.如图,单摆上小木球会从位置A运动到位置A′.(1)上述几种运动是做直线运动还是做曲线运动?(2)运动有何共同点?30. 如图,△ABD与△BCE都是等边三角形,图中哪两个三角形可以通过怎样的旋转相互得到?旋转角是多少度?31. 如图,四边形ABCD中,∠ABC=∠ADC=45∘,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.32. 如图,将△ABC绕点A按顺时针方向旋转60∘,得到△AB′C′.试判断△ABB′,△ACC′的形状.33. 如图在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△AB1C1,使点C1落在直线BC上(点C1与点C不重合),求证:AB1 // CB.34. 如图,在等边△ABC内有一点P,且PA=2,PB=√3,PC=1,求∠BPC的度数和等边△ABC的边长.A.解:∵等边△ABC,∴∠ABC=60∘,将△BPC绕点B逆时针旋转60∘得出△ABP′,∴AP′=CP=1,BP′=BP=√3,∠PBC=∠P′BA,∠AP′B=∠BPC,∵∠PBC+∠ABP=∠ABC=60∘,∴∠ABP′+∠ABP=∠ABC=60∘,∴△BPP′是等边三角形,∴PP′=√3,∠BP′P=60∘,∵AP′=1,AP=2,∴AP′2+PP′2=AP2,∴∠AP′P=90∘,∴∠BPC=∠AP′B=90∘+60∘=150∘,过点B作BM⊥AP′,交AP′的延长线于点M,∴∠MP′B=30∘,BM=√32,由勾股定理得:P′M=32,∴AM=1+32 =52,由勾股定理得,等边△ABC的边长AB=√AM2+BM2=√735. 如图,在Rt△ABC中,∠BAC=90∘,AB=AC,点D是△ABC内一点,连结AD,将线段AD绕点A逆时针旋转一定角度得到线段AE使∠BAD=∠CAE(E在AC右侧),连结BD,CE.(1)求证:BD=CE;(2)若AD=2,求点D绕点A旋转到点E所经过的路径长.36. 如图,四边形ABCD的∠BAD=∠C=90∘,AB=AD,AE⊥BC于E,△BEA旋转一定角度后能与△DFA重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5cm,求四边形ABCD的面积.37. 如图,将给出的4张扑克牌摆成第一行的样子,然后将其中的1张牌旋转180∘成第二行的样子,你能判断出被旋转过的1张牌是哪一张吗?为什么?38. 问题背景:在Rt△ABC中,∠B=90∘,将一直角三角板PMN的直顶点P放在斜边AC上的点P处,将三角板绕点P旋转,三角板的两直角边分别与边AB、BC交于D、E两点(假设三角板的两直角边足够长).(1)当△ABC是等腰直角三角形,且P为AC中点时,如图1,直接写出旋转过程中PD与PE的数量关系:________.的值;(2)类比延伸:如图2,当∠ACB=30∘,且P为AC中点时,求PDPE(3)拓展探究:如图3,当AB:BC=m:n,AP:PC=a:b时,直接写出PD的值.PE39. 已知∠AOB=90∘,在∠AOB的角平分线OM上有一点C,且OC=a,将一块三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E,△OCD的面积记作S1,△OCE的面积记作S2.(1)当三角板绕点C旋转到CD与OA垂直时,如图1,则S1+S2的值(用a表示)=________;(2)当三角板绕点C旋转到CD与OA不垂直时,如图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,S1、S2之间又有怎样的数量关系?请写出你的猜想,不需证明.40. 如图,已知AC⊥BC,垂足为C,AC=4,BC=3√3,将线段AC绕点A按逆时针方向旋转60∘,得到线段AD,连接DC,DB.(1)线段DC=________;(2)求线段DB的长度.参考答案与试题解析九年级上册初中数学图形的旋转同步专项练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】生活中的旋转现象【解析】根据旋转的定义,在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转;对每一项分析、判断即可.【解答】解:①时针转动,是旋转;故本项符合题意;②电风扇叶片的转动,是旋转;故本项符合题意;③转呼拉圈,不只是旋转;故本项不符合题意;④传送带上的电视机,不是旋转;故本项不符合题意;故选:A.2.【答案】B【考点】旋转的性质【解析】根据旋转的性质,可得BP′的长,∠PAP′的度数,根据勾股定理,可得答案.【解答】由旋转的性质,得BP′=BP=3,∠PBP′=∠ABC=90∘.在Rt△PBP′中,由勾股定理,得PP′=√BP2+P′B2=√32+32=3√2,3.【答案】C【考点】旋转的性质【解析】通过灵活运用旋转的性质,掌握①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了即可以解答此题.【解答】解:∵C,A,B1在同一条直线上,∠C=90∘,∠B=35∘,∴旋转角=∠BAB1=∠C+∠B=125∘.故选C.4.【答案】A【考点】生活中的旋转现象【解析】根据旋转的意义,找出图中阴影三角形3个关键处按顺时针方向旋转60∘后的形状即可选择答案.【解答】解:观察图形可知,图形由三个三角形组成,在旋转过程中,阴影三角形的变化更易观察,将图绕中心按顺时针方向旋转60∘后得到的图形是.故选A.5.【答案】D【考点】生活中的旋转现象【解析】根据旋转方向及旋转角度,结合选项即可得出答案.【解答】解:所给图案逆时针旋转90∘后得到的是.故选D.6.【答案】C【考点】旋转的性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】D【考点】旋转的性质【解析】△ABC为等腰直角三角形,∴ A=∠ACB=45∘∠BCB=180∘−45∘=135∘等腰直角三角尺ABC绕着点C顺时针旋转到|ABC的位置,∠BCB等于旋转角,即旋转角为135∘故选:D.【解答】此题暂无解答8.【答案】C【考点】生活中的旋转现象【解析】根据题意可得这个小正方形第一次回到起始位置时需16次翻转,而每翻转4次,它的方向重复依次,则此时就不难得到这个小正方形回到DA边的终点位置时的方向.【解答】解:根据题意分析可得:小正方形沿着正方形ABCD的边AB⇒BC⇒CD⇒DA⇒AB 连续地翻转,正方形ABCD的边长是3cm,一个边长为1cm的小正方,即这个小正方形回到DA边的终点位置时需16次翻转,而每翻转4次,它的方向重复依次,故回到DA边的终点位置时它的方向是向下.故选:C.9.【答案】A【考点】生活中的旋转现象【解析】旋转中心为图形的中心,每两个“花瓣”之间的夹角为360∘÷8=45∘,基本图形,可以是一个、两个、四个“花瓣”.【解答】为两个“花瓣”,绕其中心位置按同一方向连续旋转90∘、180∘、270∘前解:A、图形的14后共四个图形所构成,正确;B、图形的1为一个“花瓣”,还可以绕中心位置旋转180∘,错误;8C、由图形1的旋转180∘所得,错误;2D、100∘不是45∘的倍数,绕中心旋转100∘后所得图形不能与原图形重合,错误;正确的是A.故选A.10.【答案】C【考点】旋转的性质【解析】【解答】解:A,∠A与∠B是对应角,正确;B,∠AOC与∠BOD是对应角正确;CD,OC与OD是对应边,C错误D正确.故选C.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】18【考点】旋转的性质【解析】根据旋转对称图形的定义解答.【解答】解:∵△ADE绕着点A旋转50∘后能与△ABC重合,∴∠BAD=50∘.又∵∠EAD=32∘,∴∠BAE=∠BAD−∠EAD=50∘−32∘=18∘.故答案为:18.12.【答案】,6,0.5,180,15【考点】生活中的旋转现象【解析】利用时钟的分针一小时转动360∘,进而求出分针每分钟转动角度以及时针每分钟转动角度,进而求出从1时5分到1时35分,分针与时针转动角度.【解答】解:∵时钟的分针一小时转动360∘,∴分针每分钟转:360∘=6∘,60∵时钟的时针一小时转动30∘,∴时针每分钟转:30∘=0.5∘,60∴从1时5分到1时35分,时钟的分针转了:30×6∘=180∘,时针转了:0.5∘×30=15∘.故答案为:6,0.5,180,15.13.【答案】270【考点】生活中的旋转现象【解析】先求出时钟上的分针匀速旋转一分钟时的度数为6∘,再求45分钟分针旋转的度数.【解答】解:∵时钟上的分针匀速旋转一周的度数为360∘,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6∘,那么45分钟,分针旋转了45×6∘=270∘.故答案为:270.垂直【考点】旋转的性质【解析】根据旋转角的定义即可作出判断.【解答】解:一条线段绕其上一点旋转90∘与原来的线段位置垂直关系.15.【答案】AC,60∘【考点】旋转的性质【解析】由∠BCD=120∘,把△BCD绕C点按顺时针方向旋转60∘到△ACE的位置,根据旋转的性质,即可求得答案.【解答】解:∵∠BCD=120∘,把△BCD绕C点按顺时针方向旋转60∘到△ACE的位置,∴BC旋转到AC的位置,∠BCA=60∘,∴∠ACD=∠BCD−∠BCA=60∘.故答案为:AC;60∘.16.【答案】60∘【考点】生活中的旋转现象【解析】时钟上的分针匀速旋转一周需要60min,分针旋转了360∘;求经过10分,分针的旋转度数,列出算式,计算即可.【解答】×360∘=60∘.解:根据题意得,1060故答案为:60∘.17.【答案】270【考点】生活中的旋转现象【解析】先求出时钟上的分针匀速旋转一分钟时的度数为6∘,再求45分钟分针旋转的度数.【解答】解::时钟上的分针匀速旋转一周的度数为360∘,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6∘那么45分钟,分针旋转了45×6∘=270∘故答案为:270.2【考点】旋转的性质【解析】根据旋转的性质得出BC=BC′=2、∠CBC′=60∘,即△BCC′为等边三角形,可知CC′=BC=BC′=2.【解答】解:∵△ABC绕点B逆时针旋转60∘得到△A′C′B,∴BC=BC′=2,∠CBC′=60∘,∴△BCC′为等边三角形,∴CC′=BC=BC′=2,故答案为:2.19.【答案】√6+√2【考点】旋转的性质勾股定理等腰直角三角形【解析】如图,连接AM,由题意得:CA=CM,∠ACM=60∘,得到△ACM为等边三角形根据AC=√2,OM=CM⋅AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=12sin60∘=√6,最终得到BM=BO+OM.【解答】如图,连接AM,由题意得:CA=CM,∠ACM=60∘,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60∘;∵∠ABC=90∘,AB=BC=2,∴AC=CM=2√2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=1AC=√2,OM=CM⋅sin60∘=√6,2∴BM=BO+OM=√2+√6,20.【答案】90,240【考点】生活中的旋转现象【解析】根据钟表的一个大格是30∘,从上午6时到上午9时时针转过3个大格,上午9时到下午5时时针转过8个大格分别列式计算即可得解.【解答】解:从上午6时到上午9时时针转过3个大格,所以,3×30∘=90∘,上午9时到下午5时时针转过8个大格,所以,8×30∘=240∘.故答案为:90;240.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:∵时针旋转一小时转动30∘,∴时针旋转出一个平角需要6小时,时针旋转出一个周角需要12小时.【考点】生活中的旋转现象【解析】利用时针每小时旋转30∘,进而得出答案.【解答】解:∵时针旋转一小时转动30∘,∴时针旋转出一个平角需要6小时,时针旋转出一个周角需要12小时.22.【答案】解:(1)AD:BE的值是定值.如图1,∵∠AOB=∠DOE=90∘,∴∠AOB−∠BOD=∠DOE−∠BOD,即∠AOD=∠BOE,∵∠OAB=∠ODE=30∘,∴OAOB =√3,ODOE=√3,∴OAOB =ODOE,∴△AOD∽△BOE,∴ADBE =OAOB=√3;(2)AD⊥BE.理由如下:如图2,延长EB交AD于F,∵OAOB =ODOE,而∠AOD=∠BOE=90∘,∴△AOD∽△BOE,∴∠ADO=∠BEO,∵∠BEO+∠OBE=90∘,∠OBE=∠DBF,∴∠DBF+∠FDB=90∘,∴∠DFB=90∘,∴BE⊥AD;如图3,AD与BE相交于P,∵∠AOB=∠DOE=90∘,∴∠AOB+∠BOD=∠DOE+∠BOD,即∠AOD=∠BOE,∵OAOB =ODOE=√3,∴△AOD∽△BOE,∴∠1=∠2,∵∠2+∠3=90∘,∠3=∠4,∴∠1+∠4=90∘,∴∠DPE=90∘,∴AD⊥BE.【考点】旋转的性质【解析】(1)如图1,由∠AOB=∠DOE=90∘得到∠AOD=∠BOE,再利用含30度的直角三角形三边的关系得到OAOB ODOE=√3,于是根据相似的判定方法得到△AOD∽△BOE,所以AD BE =OAOB=√3;(2)如图2,延长EB交AD于F,由OAOB =ODOE,∠AOD=∠BOE=90∘可判断△AOD∽△BOE,则∠ADO=∠BEO,然后计算出∠DBF+∠FDB=90∘,于是可判断BE⊥AD;如图3,AD与BE相交于P,与前面的方法得到AD⊥BE.【解答】解:(1)AD:BE的值是定值.如图1,∵∠AOB=∠DOE=90∘,∴∠AOB−∠BOD=∠DOE−∠BOD,即∠AOD=∠BOE,∵∠OAB=∠ODE=30∘,∴OAOB =√3,ODOE=√3,∴OAOB =ODOE,∴△AOD∽△BOE,∴ADBE =OAOB=√3;(2)AD⊥BE.理由如下:如图2,延长EB交AD于F,∵OAOB =ODOE,而∠AOD=∠BOE=90∘,∴△AOD∽△BOE,∴∠ADO=∠BEO,∵∠BEO+∠OBE=90∘,∠OBE=∠DBF,∴∠DBF+∠FDB=90∘,∴∠DFB=90∘,∴BE⊥AD;如图3,AD与BE相交于P,∵∠AOB=∠DOE=90∘,∴∠AOB+∠BOD=∠DOE+∠BOD,即∠AOD=∠BOE,∵OAOB =ODOE=√3,∴△AOD∽△BOE,∴∠1=∠2,∵∠2+∠3=90∘,∠3=∠4,∴∠1+∠4=90∘,∴∠DPE=90∘,∴AD⊥BE.23.【答案】汽车开动时的车轮:旋转中心是轴心;钟表:旋转中心是三个指针重叠的表盘心;酒店的转门:旋转中心是中间的立柱;另外还有很多,像风车,电风扇,荡秋千都是.【考点】生活中的旋转现象【解析】根据旋转的定义,结合实际生活可得答案.【解答】汽车开动时的车轮:旋转中心是轴心;钟表:旋转中心是三个指针重叠的表盘心;酒店的转门:旋转中心是中间的立柱;另外还有很多,像风车,电风扇,荡秋千都是.24.【答案】证明:∵线段CD绕点C顺时针旋转90∘至CE位置,∴CD=CE,∠DCE=90∘,∵CB=CA,∠BCA=90∘,∴△BCD绕点C顺时针旋转90∘得到△ACE,∴AE=BD.【考点】旋转的性质【解析】先根据旋转的性质,由线段CD绕点C顺时针旋转90∘至CE位置得到CD=CE,∠DCE= 90∘,加上CB=CA,∠BCA=90∘,于是根据旋转的定义可把△BCD绕点C顺时针旋转90∘得到△ACE,然后根据旋转的性质即可得到结论.【解答】证明:∵线段CD绕点C顺时针旋转90∘至CE位置,∴CD=CE,∠DCE=90∘,∵CB=CA,∠BCA=90∘,∴△BCD绕点C顺时针旋转90∘得到△ACE,∴AE=BD.25.【答案】解:(1)依题意得:∵∠ABC=30∘,∴∠ABE=180∘−30∘=150∘,即旋转了150∘.(2)∵根据旋转的性质知,CB=BD,∴△CBD为等腰三角形.(3)∵BD=CB,∴∠DCB=∠BDC,又∵∠DBE=∠ABC=30∘,∠DBE=∠DCB+∠BDC,∴∠DCB=∠CDB=15∘,∴∠AFC=∠ABC+∠DCB=30∘+15∘=45∘.【考点】旋转的性质【解析】(1)根据题意知∠ABC=30∘,求出旋转角∠ABE的度数即可.(2)根据旋转得出BC=BD,即可得出答案.(3)根据旋转的性质求出∠DBE=30∘,三角形三角形外角性质求出∠DCB,根据三角形外角性质求出即可.【解答】解:(1)依题意得:∵∠ABC=30∘,∴∠ABE=180∘−30∘=150∘,即旋转了150∘.(2)∵根据旋转的性质知,CB=BD,∴△CBD为等腰三角形.(3)∵BD=CB,∴∠DCB=∠BDC,又∵∠DBE=∠ABC=30∘,∠DBE=∠DCB+∠BDC,∴∠DCB=∠CDB=15∘,∴∠AFC=∠ABC+∠DCB=30∘+15∘=45∘.26.【答案】时针尖12小时走了20π厘米【考点】弧长的计算生活中的旋转现象【解析】(弧长为l,圆心角度数为n,圆的半径为R)代入对应数可得答根据弧长公式:l=nπR180案.【解答】=20π(cm),解:由题意得:l=360π×1018027.【答案】3;(2)如图2,如果把正方形CDFE经过旋转后能与正方形ABCD重合,那么图形所在的平面上可作为旋转中心的点有C、D,以及线段CD的中点共三个.故答案为:3.(3)如图3,如果把正五边形ABCDE经过旋转后能与正五边形ABGHF重合,那么图形所在的平面上可作为旋转中心的点有A、B,以及线段AB的中点以及HF与DE的延长线交点Q、HG与DC的延长线交点S,共5个;故答案为:5;(4)如图4,如果把正六边形ABCDEF经过旋转后能与正六边形ABNMHG重合,那么图形所在的平面上可作为旋转中心的点有A、B,和线段AB的中点以及EF与HG的延长线交点H、MN与DC的延长线交点T,共5个;故答案为:5;(5)利用上面所求可得:n为奇数时,有n个,n为偶数时,有n−1个.【考点】旋转的性质【解析】(1)根据旋转的性质,分析对应点的不同情况,易得答案.(2)根据旋转的性质,把正方形CDFE经过旋转后能与正方形ABCD重合,分析对应点的不同情况,易得答案.(3)根据旋转的性质,把如果把正五边形ABCDE经过旋转后能与正五边形ABGHF重合,分析对应点的不同情况,易得答案.(4)根据旋转的性质,把正六边形ABCDEF经过旋转后能与正六边形ABNMHG重合,分析对应点的不同情况,易得答案.(5)利用以上所求得出旋转中心的个数,进而得出答案.【解答】解:(1)如图1,根据图形间的关系,可得△ABC绕A顺时针旋转60∘可与△ABF重合,△ABC绕B逆时针旋转60∘可与△ABF重合,△ABC绕AB的中点O旋转180∘可与△ABF 重合;(2)如图2,如果把正方形CDFE经过旋转后能与正方形ABCD重合,那么图形所在的平面上可作为旋转中心的点有C、D,以及线段CD的中点共三个.(3)如图3,如果把正五边形ABCDE经过旋转后能与正五边形ABGHF重合,那么图形所在的平面上可作为旋转中心的点有A、B,以及线段AB的中点以及HF与DE的延长线交点Q、HG与DC的延长线交点S,共5个;(4)如图4,如果把正六边形ABCDEF经过旋转后能与正六边形ABNMHG重合,那么图形所在的平面上可作为旋转中心的点有A、B,和线段AB的中点以及EF与HG的延长线交点H、MN与DC的延长线交点T,共5个;(5)利用上面所求可得:n为奇数时,有n个,n为偶数时,有n−1个.28.【答案】A,逆,90【考点】旋转的性质【解析】连接ODC相交于点G,判断出ODAC,根据同弧所对圆心角等圆角倍可∠AO=2∠DCF 根同的余角等求出AF∠AOD,然后求出∠DC=∠AOD,即可得证;利用径定理求出D再据等腰形两腰的高相可AG=DH,然后求出△AFH和△AOG似,再利相三角形对应边成比例式求AF根据FC2AG−AF计算可得解.【解答】∵D=OAEOA,AG⊥OD,∴AG=D=,∴AFOA =AHAG,∴D2=ABH=1×4=4,则∠AD=2∠DC,∵=1,BH=4,解得A=54,∴H=2,证:连接D与C相交于点G,∴∠+∠AFH=A+∠OG=90,即AF2.5=12,AO=12AB2.5,解:∵E⊥AB,H=1,BH=,∴OD⊥A,∴B=1+45,∵⊥OA,AC⊥OD,∴∠D=∠AOD,∴FC2AGA=2×2−54=114.29.【答案】解:(1)上述几种运动是做曲线运动;(2)运动共同点是属于旋转.【考点】生活中的旋转现象【解析】(1)根据几种运动的路线分析得出答案;(2)利用运动方式可得出是旋转.【解答】解:(1)上述几种运动是做曲线运动;(2)运动共同点是属于旋转.30.【答案】答:△DBC向逆时针方向旋转60∘得到△ABE.【考点】旋转的性质【解析】此题暂无解析【解答】略31.【答案】如图,设AC与BD的交点为点M,BD与AE的交点为点N,∵旋转∴AC=BC,∠DBC=∠CAE又∵∠ABC=45∘,∴∠ABC=∠BAC=45∘,∴∠ACB=90∘,∵∠DBC+∠BMC=90∘∴∠AMN+∠CAE=90∘∴∠AND=90∘∴AE⊥BD,如图,连接DE,∵旋转∴CD=CE=3,BD=AE,∠DCE=∠ACB=90∘∴DE=√CD2+CE2=3√2,∠CDE=45∘∵∠ADC=45∘∴∠ADE=90∘∴EA=√AD2+DE2=√22∴BD=√22【考点】旋转的性质【解析】(1)由旋转的性质可得AC=BC,∠DBC=∠CAE,即可得∠ACB=90∘,根据直角三角形的性质可得AE⊥BD,(2)由旋转的性质可得CD=CE=3,BD=AE,∠DCE=∠ACB=90∘,由勾股定理可求BD的长.【解答】如图,设AC与BD的交点为点M,BD与AE的交点为点N,∵旋转∴AC=BC,∠DBC=∠CAE又∵∠ABC=45∘,∴∠ABC=∠BAC=45∘,∴∠ACB=90∘,∵∠DBC+∠BMC=90∘∴∠AMN+∠CAE=90∘∴∠AND=90∘∴AE⊥BD,如图,连接DE,∵旋转∴CD=CE=3,BD=AE,∠DCE=∠ACB=90∘∴DE=√CD2+CE2=3√2,∠CDE=45∘∵∠ADC=45∘∴∠ADE=90∘∴EA=√AD2+DE2=√22∴BD=√2232.【答案】如图,∵将△ABC绕点A按顺时针方向旋转60∘,得到△AB′C′.∴AB=AB′,AC=AC′,∴△ABB′是等边三角形,△ACC′是等边三角形.【考点】旋转的性质【解析】由旋转的性质可得AB=AB′,AC=AC′,∠BAB′=∠CAC′=60∘,由等边三角形的判定可得结论.【解答】如图,∵将△ABC绕点A按顺时针方向旋转60∘,得到△AB′C′.∴AB=AB′,AC=AC′,∴△ABB′是等边三角形,△ACC′是等边三角形.33.【答案】解:∵△ABC绕点A沿顺时针方向旋转得到△AB1C1,∴AC1=AC,∠B1AC1=∠BAC,∵AB=BC,∴∠BAC=∠C,∴∠B1AC1=∠C,∵AC=AC1,∴∠AC1C=∠C,∴∠B1AC1=∠AC1C,∴AB1 // CB.【考点】旋转的性质【解析】由旋转性质可得:∠B1AC1=∠BAC AC1=AC,进而用”等边对等角“证得∠AC1C=∠C,∠BAC=∠C,可得∠B1AC1=∠AC1C1,从而证得AB1|CB.【解答】此题暂无解答34.【答案】解:∵等边△ABC,∴∠ABC=60°,将△BPC绕点B逆时针旋转60°得出△ABP′,∴ AP′=CP=1,BP′=BP= ,∠PBC=∠P′BA,∠AP′B=∠BPC,∵∠PBC+∠ABP=∠ABC=60°,∴∠ABP′+∠ABP=∠ABC=60°,∴△BPP′是等边三角形,∴ PP′= ,∠BP′P=60°,∵ AP′=1,AP=2,∴ AP′2+PP′2=AP2,∴∠AP′P=90°,∴∠BPC=∠AP′B=90°+60°=150°,过点B作BM⊥AP′,交AP′的延长线于点M,∴∠MP′B=30°,BM= ,由勾股定理得:P′M= ,∴ AM=1+ = ,由勾股定理得,等边△ABC的边长AB=【考点】生活中的旋转现象【解析】根据旋转得出AP′=CP=1,BP′=BP=√3,∠PBC=∠P′BA,∠APB=∠BPC,求出|∠ABP′+∠ABP=60∘,得到等边△BPP,推出|PP′=√3,∠BP=60∘,求出|∠AP= 90∘即可求出|∠BPC;过点B作:BM⊥AP,交AP的延长线于点M,由ZMPB=30∘,求出BM=√32PM=32,根据勾股定理即可求出答案.【解答】此题暂无解答35.【答案】(1)证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠DAC+∠CAE,即∠BAC=∠DAE=90∘,∵线段AD绕点A逆时针旋转一定角度得到线段AE,∴AD=AE,而AB=AC,∴△ABD绕点A逆时针旋转90度可得到△ACE,∴BD=CE;(2)解:点D经过的路径长=90⋅π⋅2180=π.所以点D绕点A旋转到点E所经过的路径长为π.【考点】旋转的性质【解析】(1)由∠BAD=∠CAE可得∠BAC=∠DAE=90∘,再根据旋转的性质,由线段AD绕点A逆时针旋转一定角度得到线段AE得到AD=AE,加上AB=AC,则根据旋转的定义可将△ABD绕点A逆时针旋转90度得到△ACE,于是根据旋转的性质可得BD=CE;(2)点D绕点A旋转到点E所经过的路径为以A点为圆心,AD为半径,圆心角为90的弧,然后根据弧长公式计算即可.【解答】(1)证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠DAC+∠CAE,即∠BAC=∠DAE=90∘,∵线段AD绕点A逆时针旋转一定角度得到线段AE,∴AD=AE,而AB=AC,∴△ABD绕点A逆时针旋转90度可得到△ACE,∴BD=CE;=π.(2)解:点D经过的路径长=90⋅π⋅2180所以点D绕点A旋转到点E所经过的路径长为π.36.【答案】解:(1)由图可知,点A为旋转中心;(2)∠EAF为旋转角,在正方形AECF中,∠EAF=90∘,所以,旋转了90∘或270∘;(3)∵△BEA旋转后能与△DFA重合,∴△BEA≅△DFA,∴S△BEA=S△DFA,∴四边形ABCD的面积=正方形AECF的面积,∵AE=5cm,∴四边形ABCD的面积=52=25(cm2).【考点】旋转的性质【解析】(1)根据图形确定旋转中心即可;(2)对应边AE、AF的夹角即为旋转角,再根据正方形的每一个角都是直角解答;(3)根据旋转变换只改变图形的位置不改变图形的形状与大小可得△BAE的面积等于△DAF的面积,从而得到四边形ABCD的面积等于正方形AECF的面积,然后求解即可.【解答】解:(1)由图可知,点A为旋转中心;(2)∠EAF为旋转角,在正方形AECF中,∠EAF=90∘,所以,旋转了90∘或270∘;(3)∵△BEA旋转后能与△DFA重合,∴△BEA≅△DFA,∴S△BEA=S△DFA,∴四边形ABCD的面积=正方形AECF的面积,∵AE=5cm,∴四边形ABCD的面积=52=25(cm2).37.【答案】解:被旋转过的1张牌是第二张牌.理由如下:第一张牌,因为最中间的图案不是中心对称,所以不是中心对称图形,第二张牌是中心对称图形,第三张牌,因为最中间只有一张,所以不是中心对称图形,第四张牌,因为最中间的图案不是中心对称,所以不是中心对称图形,∵将其中的1张牌旋转180∘成第二行的样子,∴被旋转过的1张牌是第二张.【考点】生活中的旋转现象【解析】根据旋转的性质,找出四张牌中成中心对称的一张即可.【解答】解:被旋转过的1张牌是第二张牌.理由如下:第一张牌,因为最中间的图案不是中心对称,所以不是中心对称图形,第二张牌是中心对称图形,第三张牌,因为最中间只有一张,所以不是中心对称图形,第四张牌,因为最中间的图案不是中心对称,所以不是中心对称图形,∵将其中的1张牌旋转180∘成第二行的样子,∴被旋转过的1张牌是第二张.38.【答案】【考点】旋转的性质【解析】此题暂无解析【解答】此题暂无解答39.【答案】a2;(2)如图,过点C作CF⊥OA于F,作OG⊥OB于G,。
3.2图形的旋转同步习题一.选择题1.下列图形中,不是旋转对称图形的是()A.正三角形B.等腰梯形C.正五边形D.正六边形2.下列各图中,能通过一个三角形绕一点旋转一次得到另一三角形的图形是()A.B.C.D.3.把如图的五角星绕着它的中心旋转一定角度后与自身重合,则这个旋转角度可能是()A.36°B.72°C.90°D.108°4.如图,把△OAB绕点O逆时针旋转80°,得到△OCD,则下列结论错误的是()A.BD=OB B.AB=CD C.∠AOC=∠BOD D.∠A=∠C5.如图,在△ABC中,∠B=50°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,则∠CB′C′的度数为()A.50°B.60°C.80°D.100°6.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B 的对应点为E,连接BE,下列四个结论:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC;其中一定正确的是()A.①②B.②③C.③④D.②③④7.如图,在△ABC中,AB=AC=10,BC=16,点D是边BC上一点(点D不与点B,点C重合),将AC绕点A顺时针旋转至AC1,AC1交BC于点H,且AD平分∠CAC1,若DC1∥AB,则点B到线段AD的距离为()A.2B.C.4D.38.如图,将△ABC绕A点逆时针旋转60°得到△ADE,连接CD,若∠CDE=90°,则∠BCD 的度数是()A.110°B.120°C.130°D.150°9.如图,Rt△ABC中,∠BAC=30°,∠C=90°,将△ABC绕点A旋转,使得点C的对应点C′落在AB上,则∠BB′C′的度数为()A.12°B.15°C.25°D.30°10.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=4,点D是BC上的一点,BD=1,点P是AC上的一个动点,连接DP,将线段DP绕点D顺时针旋转90°得到线段BQ,连接BQ,则线段BQ长的最小值是()A.1B.2C.D.二.填空题11.如图,在△ABC中,∠BAC=105°,将△ABC绕点A逆时针旋转得到△AB′C′.若点B 恰好落在BC边上,且AB′=CB′,则∠C′的度数为°.12.如图,Rt△ABC和Rt△DCE中,∠ACB=∠DCE=90°,∠A=30°,∠E=45°.B,C,E三点共线,Rt△ABC不动,将△DCE绕点C逆时针旋转α(0°<α<360°),当DE∥BC 时,α=.13.如图,等边△ABC,边长为4,动点D从点B出发,沿射线BC方向移动,以AD为边在右侧作等边△ADE,取AC中点F,连接EF,当EF的值最小时,BD=.14.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M 是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.15.如图,在Rt△ABC中,∠C=90°,∠A=30°,点P在AC边上,以点P为中心,将△ABC 顺时针旋转90°,得到△DEF,DE交边AC于G,当P为中点时,AG:DG的值为.三.解答题16.如图,D是△ABC的边BC延长线上一点,连接AD,把△ACD绕点A顺时针旋转60°恰好得到△ABE,其中D,E是对应点,若∠CAD=18°,求∠EAC的度数.17.如图,P是等边△ABC内的一点,且P A=5,PB=4,PC=3,将△APB绕点B逆时针旋转,得到△CQB.(1)求点P与点Q之间的距离;(2)求∠BPC的度数;(3)求△ABC的面积.18.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).分别画出下列图形.(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0);(2)若△ABC和△A2B2C2关于原点O成中心对称图形;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3.参考答案一.选择题1.解:A、正三角形旋转120°,可以与原图形重合,是旋转对称图形,不合题意;B、等腰梯形,不是旋转对称图形,符合题意;C、正五边形旋转72°,可以与原图形重合,是旋转对称图形,不合题意;D、正六边形旋转60°,可以与原图形重合,是旋转对称图形,不合题意;故选:B.2.解:根据旋转的定义,A,B,C中的三角形绕一点旋转一次不能得到另一三角形,不符合题意,选项D符合题意.故选:D.3.解:五角星可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360°÷5=72°,故选:B.4.解:∵△OAB绕点O逆时针旋转80°得到△OCD,∴∠A=∠C,∠AOC=∠BOD,AB=CD,OB=OD,∵∠BOD≠90°,∴BD≠OB.故选:A.5.解:∵将△ABC绕点A按逆时针方向旋转得到△A′B′C′,∴AB=AB′,∠C′B′A=∠B,∴∠AB′B=∠B,∵∠B=50°,∴∠C′B′A=∠AB′B=50°,∴∠CB′C′=180°﹣∠C′B′A﹣∠AB′B=80°,故选:C.6.解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故①错误,③正确;∴∠ACD=∠BCE,∴∠A=∠ADC=,∠CBE=,∴∠A=∠EBC,故④正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故②错误.故选:C.7.解:如图,过点B作BF⊥AD于F,过点A作AE⊥BC于E,∵AB=AC=10,BC=16,AE⊥BC,∴CE=BE=8,∠C=∠ABC,∴AE===6,∵将AC绕点A顺时针旋转至AC1,∴AC=AC1,∵AD平分∠CAC1,∴∠CAD=∠C1AD,在△ACD和△AC1D中,,∴△ACD≌△AC1D(SAS),∴∠C=∠C1,∵DC1∥AB,∴∠C1=∠HAB,∵∠ADB=∠C+∠CAD,∠DAB=∠DAC1+∠HAB,∴∠DAB=∠ADB,∴AB=DB=10,∴DE=BD﹣BE=2,∴AD===2,∵S△ABD=×BD×AE=×AD×BF,∴10×6=2×BF,∴BF=3,故选:D.8.解:∵将△ABC绕点A逆时针旋转60°得到△ADE,∴∠CAE=60°,∠E=∠ACB,∴∠CAE+∠CDE=360°﹣(∠ACD+∠E),∵∠BCD=360°﹣∠ACB﹣∠ACD=360°﹣(∠ACD+∠E),∴∠BCD=∠CDE+∠CAE=60°+90°=150°,故选:D.9.解:由旋转的性质可知,∠B′AB=∠BAC=30°,AB=AB′,∴∠ABB′=∠AB′B=(180°﹣30°)=75°,∵∠BCB=90°,∴∠BB′C=90°﹣75°=15°,故选:B.10.解:过点D作DT⊥BC交AC于点T,在DC上取一点G,使得DG=DT,连接TG,GQ,过点B作BR⊥QG于R.∵∠TDC=∠PDQ=90°,∴∠PDT=∠GDQ,在△PDT和△QDG中,,∴△PDT≌△QDG(SAS),∴∠DTP=∠DGQ,∴点Q在射线GQ上运动,∠DGQ是定值,∵∠TDC=∠B=90°,∴DT∥AB,∴=,∠DTC=∠A,∴=,∠DGQ=∠A,∴DT=DG=,∵∠ABC=90°,AB=2,BC=4,∴AC===2,∴sin∠DGR=sin∠A,∴=,∴=,∴BR=,根据垂线段最短可知,当BQ与BR重合时,BQ的值最小,最小值为.故选:D.二.填空题11.解:∵∠BAC=105°,∴∠B+∠C=75°,∵AB′=CB′,∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵将△ABC绕点A逆时针旋转得到△AB′C′,∴AB=AB',∴∠B=∠AB'B=2∠C,∴∠C=25°,故答案为:25.12.解:如图1,当DE位于BC的上方,∵DE∥BC,∴∠D=∠BCD,∵∠E=45°,∠DCE=90°,∴∠D=90°﹣∠E=45°,∴∠BCD=45°,∴α=∠ACD=45°,如图2,当DE位于BC的下方,∵DE∥BC,∴∠E=∠BCE=45°,∴α=∠ACB+∠BCE+∠ECD=90°+45°+90°=225°,∴当DE∥BC时,α=45°或225°.故答案为:45°或225°.13.解:如图,连接CE,∵点F是AC的中点,∴AF=CF=2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴CE=BD,∠ABD=∠ACE=60°,∴点E在∠ACB的外角的角平分线上运动,∴当EF⊥CE时,EF有最小值,∴∠CFE=30°,∴CE=CF=1,∴BD=1,故答案为1.14.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.15.解:设BC=x,在Rt△ABC中,∠A=30°,∴AB=2x,AC=x,∵点P是AC中点,∴PC=P A=x,由旋转得,DP=DF=AC=x,DG=DE=AB=x,根据勾股定理得,PG===x,∴AG=AP﹣PG=x﹣x,∴==.故答案为.三.解答题16.解:∵把△ACD绕点A顺时针旋转60°恰好得到△ABE,∴∠DAE=60°,∴∠EAC=∠EAD﹣∠CAD=42°.17.解:(1)连接PQ,如图1,∵△ABC是等边三角形,∴∠ABC=60°,BA=BC,∵△QCB是△P AB绕点B逆时针旋转得到的,∴△QCB≌△P AB,∴BP=BQ,∠PBQ=∠ABC=60°,CQ=AP=5,∵BP=BQ=4,∠PBQ=60°,∴△PBQ是等边三角形,∴PQ=PB=4;(2)∵QC=5,PC=3,PQ=4,而32+42=52,∴PC2+PQ2=CQ2,∴△PCQ是直角三角形,且∠QPC=90°,∵△PBQ是等边三角形,∴∠BPQ=60°,∴∠BPC=∠BPQ+∠QPC=60°+90°=150°;(3)如图2,过点C作CH⊥BP,交BP的延长线于H,∵∠BPC=150°,∴∠CPH=30°,∴CH=PC=,PH=HC=,∴BH=4+,∴BC2=BH2+CH2=+(4+)2=25+12,∵S△ABC=BC2,∴S△ABC=(25+12)=+9.18.解:(1)如图,△A1B1C1即为所求作.(2)如图,△A2B2C2即为所求作.(3)如图,△A3B3C3即为所求作.。
23.1图形的旋转内容提要1.在平面内,将一个图形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动称为旋转.定点叫旋转中心,转动的角度叫做旋转角.2.旋转的三要素:旋转中心、旋转方向、旋转角.3.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.4.旋转作图步骤:(1)首先确定旋转中心和图形中的关键点(如线段的端点、角的顶点等);(2)将这些关键点沿指定的方向旋转指定的角度;(3)然后连接对应部分,形成相应的图形.23.1.1旋转的特征基础训练1.将如图的图案按逆时针方向旋转90︒后得到的是()2.下列说法不正确的是()A.旋转后的图形与原来图形面积相等B.旋转后的图形改变了图形的大小C.旋转不改变图形的大小D.旋转不改变图形的形状3.如图,将ABC∆绕点A旋转后得到ADE∆,则旋转方式是()A.顺时针旋转90︒B.逆时针旋转90︒C.顺时针旋转45︒D.逆时针旋转45︒4.如图,ABC∆,图中旋转中心是,旋∆按顺时针方向转动一个角度后成为''A B C转了度.5.如图,Rt ABC ∆的斜边16AB =,Rt ABC ∆绕点O 顺时针旋转后得到'''Rt A B C ∆,则'''Rt A B C ∆的斜边''A B 上的中线'C D 的长度为.6.如图,将OAB ∆绕着点O 逆时针旋转两次得到OA B ''''∆,每次旋转的角度都是50︒,若120B OA ''∠=︒,则AOB ∠=.7.如图,在正方形ABCD 中,点E 在AB 边上,点F 在BC 边的延长线上,且AE CF =. (1)求证AED CFD ∆∆≌;(2)将AED ∆按逆时针方向至少旋转多少度才能与CFD ∆重合,旋转中心是什么?8.如图,ABC ∆中,1AB AC ==,45BAC ∠=︒,AEF ∆是由ABC ∆绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证BE CF =;(2)当四边形ACDE 为菱形时,求BD 的长.9.在ABC ∆中,AB BC =,120ABC ∠=︒,将ABC ∆绕点B 顺时针旋转角()090αα︒<<︒得11A BC ∆,1A B 交AC 于点E ,11A C 分别交AC ,BC 于D ,F 两点.(1)如图(1),观察并猜想,在旋转过程中,线段BE 与BF 有怎样的数量关系?并证明你的结论.(2)如图(2),当30α=︒时,试判断四边形1BC DA 的形状,并说明理由.10.如图,在直角坐标系中,Rt AOB ∆的两条直角边OA ,OB 分别在x 轴的负半轴,y 轴的负半轴上,且2OA =,1OB =.将Rt AOB ∆绕点O 按顺时针方向旋转90︒,再把所得的图象沿x 轴正方向平移1个单位,得CDO ∆.(1)写出点A ,C 的坐标; (2)求点A 和点C 之间的距离.23.1.2 简单的旋转作图及图案设计基础训练1.将如图所示的图案以圆心为中心,旋转180︒后得到的图案是( )2.……依次观察左边这三个图形,并判断照此规律从左到右第四个图形是( )3.如图,在44⨯的正方形网格中,MNP ∆绕某点旋转一定的角度,得到111M N P ∆,则其旋转中心一定是.4.如图,将图①绕某点经过几次旋转后得到图②,则每次旋转的最小角度是.5.如图,把五角星图案绕着它的中心点O至少旋转(角度)时,它与自身重合;把等边三角形绕着它的中心O至少旋转(角度)时,它与自身重合.6.如图所示的图案由三个叶片组成,绕点O旋转120︒后可以和自身重合,若每个叶片的面积为24cm,AOBcm.∠为120︒,则图中阴影部分的面积之和为27.在格纸上按以下要求作图,不用写作法:(1)作出“小旗子”向右平移6格后的图案;(2)作出“小旗子”绕O点按逆时针方向旋转90︒的图案.8.如图,在等腰直角ABC ∆中,90C ∠=︒,2BC cm =,如果以AC 的中点O 为旋转中心,将这个三角形旋转180︒,点B 落在点'B 处,求'BB 的长度.9.如图所示,画出ABC ∆绕点A 顺时针旋转90︒后的图形.10.如图,在平面直角坐标系中,有一Rt ABC ∆,且()1,3A -,()3,1B --,()3,3C -.已知11A AC ∆是由ABC ∆旋转得到的, (1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为中心,分别画出11A AC ∆顺时针旋转90︒,180︒的三角形.能力提高1.如图,在方格纸中,ABC∆经过变换得到DEF∆,正确的变换是()A.把ABC∆绕点C逆时针方向旋转90︒,再向下平移2格B.把ABC∆绕点C顺时针方向旋转90︒,再向下平移5格C.把ABC∆向下平移4格,再绕点C逆时针方向旋转180︒D.把ABC∆向下平移5格,再绕点C逆时针方向旋转180︒2.图ABC∆,且'C在BC上,则∆中,67AB C∆绕点A顺时针旋转后,得到''C∠=︒,将ABC∠的度数为()''B C BA.56︒B.50︒C.46︒D.40︒3.下列图形中,旋转60︒后可以和原图形重合的是()A.正六边形B.正五边形C.正方形D.正三角形4.如图,已知直线443y x =-+与x 轴、y 轴分别交于A ,B 两点,把AOB ∆绕点A 按顺时针方向旋转90︒后得到''AO B ∆,则点'B 的坐标是.5.如图,在等边ABC ∆中,6AB =,D 是BC 的中点,将ABD ∆绕点A 旋转后得到ACE ∆,那么线段DE 的长度为.6.如图,把ABC ∆绕着点C 顺时针旋转35︒,得到''A B C ∆,''A B AC ⊥于点D ,则A ∠的度数是.7.如图所示,在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,1AC =,60ACD ∠=︒,求四边形ABCD 的面积.8.如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别是()3,2A -,()1,4B -,()0,2C . (1)将ABC ∆以点C 为旋转中心旋转180︒,画出旋转后对应的11A B C ∆; (2)平移ABC ∆,若点A 的对应点2A 的坐标为()5,2--,画出平移后的222A B C ∆; (3)若将222A B C ∆绕某一点旋转可以得到11A B C ∆,请直接写出旋转中心的坐标.9.如图①,正方形ABCD是一个66⨯网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图②的程序移动.(1)请在图①中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).拓展探究1.如图,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,90∆绕点A旋转,AF,AG与边BC的∆固定不动,AFGBAC AGF∠=∠=︒,若ABC交点分别为D ,E (点D 不与点B 重合,点E 不与点C 重合),在旋转过程中,等量关系222BD CE DE +=是否成立?若成立,请证明;若不成立,请说明理由.2.在ABC ∆中,90BAC ∠=︒,AB AC =,P 是ABC ∆内一点,2PA =,1PB =,3PC =,求APB ∠的度数.3.在ABC ∆中,AB AC =,BAC α∠=(060α︒<<︒),将线段BC 绕点B 逆时针旋转60︒得到线段BD .(1)如图①,直接写出ABD ∠的大小(用含α的式子表示);(2)如图②,150BCE ∠=︒,60ABE ∠=︒,判断ABE ∆的形状并加以证明; (3)在(2)的条件下,连接DE ,若45DEC ∠=︒,求α的值.23.1 参考答案:23.1.1 旋转的特征基础训练1.D 2.B 3.B 4.点C 40 5.8 6.20︒7.(1)证明:在正方形ABCD 中,90A BCD ∠=∠=︒,AD CD =,90FCD ∴∠=︒.90A FCD ∴∠=∠=︒.又AE CF =,(SAS)AED CFD ∴∆∆≌.(2)90ADC ∠=︒,∴将AED ∆按逆时针方向至少旋转90度才能与CFD ∆重合,旋转中心是点D .8.(1)证明:由旋转可知EAF BAC ∠=∠,AF AC =,AE AB =.EAF BAF BAC BAF ∴∠=∠=∠+∠,即BAE CAF ∠=∠.又AB AC =,AE AF ∴=.ABE ACF ∴∆∆≌.BE CF ∴=.(2)四边形ACDE 是菱形,1AB AC ==,AC DE ∴∥,1DE AE AB ===. 又45BAC ∠=︒,45AEB ABE BAC ∴∠=∠=∠=︒.180AEB BAE ABE ∠+∠+∠=︒,90BAE ∴=︒.2222112BE AB AE ∴=++=21BD BE DE ∴=-=.9.(1)AB BC =,A C ∴∠=∠.由旋转可知,1AB BC =,1A C ∠=∠,1ABE C BF ∠=∠,1ABE C BF ∴∆∆≌.BE BF ∴=.(2)四边形1BC DA 是菱形.证明:1130A ABA ∠=∠=︒,11AC AB ∴∥,同理1AC BC ∥.∴四边形1BC DA 是平行四边形.又1AB BC =,∴四边形1BC DA 是菱形.10.(1)点A 的坐标是(2,0)-,点C 的坐标是(1,2);(2)连接AC ,在Rt ACD ∆中,3AD OA OD =+=,2CD =,222222313AC CD AD ∴=+=+=,13AC ∴=.23.1.2 简单的旋转作图及图案设计基础训练1.D 2.D 3.B 4.60︒ 5.72︒ 120︒ 6.4 7.如图 8.25 9.如图10.(1)(0,0) 90 (2)画出图形如图能力提高1.B 2.C 3.A 4.(7,3) 5.33 6.55︒ 7.3 8.(1)图略 (2)图略 (3)旋转中心的坐标为(1,0)-9.(1)如图;(2)因为12364ππ⨯⨯=,所以点P 经过的路径总长为6π.拓展探究1.如图,将ACE ∆绕点A 顺时针旋转90︒至ABH ∆的位置,则CE HB =,AE AH =,45ABH C ∠=∠=︒,旋转角90GAH ∠=︒. 连接HD ,在EAD ∆和HAD ∆中,AE AH =,45HAD EAH FAG EAD ∠=∠-∠=︒=∠,AD AD =,EAD HAD ∴∆∆≌. DH DE ∴=.又90HBD ABH ABC ∠=∠+∠=︒,222BD HB DH ∴+=,即222BD CE DE +=.2.135︒3.(1)1302α︒-. (2)ABE ∆为等边三角形.证明:连接AD ,CD ,ED . 线段BC 绕点B 逆时针旋转60︒得到线段BD ,BC BD ∴=,60DBC ∠=︒.60ABE ∠=︒,160302ABD DBE EBC α∴∠=︒-∠=∠=︒-. 又BD BC =,60DBC ∠=︒,BCD ∴∆为等边三角形,BD CD ∴=. 又AB AC =,AD AD =,(SSS)ABD ACD ∴∆∆≌.1122BAD CAD BAC α∆∠=∠=∠=. 150BCE ∠=︒,11180(30)15022BEC αα∴∠=︒-︒--︒=.BAD BEC ∴∠=∠. 在ABD ∆与EBC ∆中,,,,BEC BAD EBC ABD BC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)ABD EBC ∴∆∆≌.AB BE ∴=. 又60ABE ∠=︒,ABE ∴∆为等边三角形.(3)60BCD ∠=︒,150BCE ∠=︒,1506090DCE ∴∠=︒-︒=︒. 45DEC ∠=︒,DCE ∴∆为等腰直角三角形.CD CE BC ∴==. 150BCE ∠=︒,(180150)152EBC ︒-︒∴∠==︒. 又130152EBC α∠=︒-=︒,30α∴=︒.。
人教版2021年九年级上册:23.1图形的旋转同步练习第2课时旋转作图一、选择题1.下列图形绕某个点旋转72°后能与自身重合的是()2.如图是几种汽车轮轴的图案,图案绕中心旋转90°后能与原来的图案重合的是()3.下列选项中可以看成由下方图形绕着一个顶点顺时针旋转90°而形成的图形的是 ()4.[芜湖期中]正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为()A.30°B.60°C.120°D.180°5.在平面直角坐标系中,将点A(1,2)绕点P(-1,1)顺时针旋转90°到点A'处,则点A'的坐标为()A.(-2,3)B.(-3,0)C.(1,0)D.(0,-1)6.如图,将线段AB绕点C(4,0)顺时针旋转90°得到线段A'B',那么点A(2,5)的对应点A'的坐标是()A.(9,2)B.(7,2)C.(9,4)D.(7,4)7.(2020·赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()8.(2020·青岛)如图,将△ABC 先向上平移1个单位长度,再绕点P 按逆时针方向旋转90°,得到△A ′B ′C ′,则点A 的对应点A ′的坐标是( )A .(0,4)B .(2,-2)C .(3,-2)D .(-1,4)9.(2020·枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA =2.将△AOB 绕点O 逆时针旋转90°,点B 的对应点B ′的坐标是( )A.()-3,3B.()-3,3C.()-3,2+3D.()1,2+3二、填空题10.旋转作图的步骤和方法:(1)确定旋转中心、____________及____________; (2)作出图形的关键点经过旋转后的__________; (3)按一定的顺序连接对应点.11.把一个图案进行旋转变换,选择不同的旋转中心、不同的旋转方向、不同的_____________,会有不同的效果.12.正八边形绕它的中心旋转一定角度后能与自身完全重合,则其旋转的角度至少为 . 三、解答题13.如图,在平面直角坐标系中,等边△OAB 的边长为2,y 轴的正半轴恰好是△OAB 的角平分线,先将△OAB 绕点O 按顺时针方向旋转120°,再关于y 轴对称后得到△A 1B 1O ,求点A 1的坐标..14.在图中作出“三角旗”绕点O 逆时针旋转90°后的图案.15.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求DP的长及点D的坐标.16.(2020·鄂尔多斯)(1)【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′.②在①中所画图形中,∠AB′B=________°.(2)【问题解决】如图②,在Rt△ABC中,BC=1,∠C=90°,延长CA到点D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.17.如图,边长为3的正方形纸片ABCD的相邻边AB,AD分别在x轴、y轴的正半轴上,点E在纸片上,点E的坐标是(1,2),将正方形纸片绕其右下角的顶点按顺时针方向旋转90°至图①位置,此时点E的对应点为E1,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,此时点E1的对应点为E2,以此类推,这样连续旋转2020次,求点E2020的坐标.18.[安徽中考]如图,在由边长为1个单位长度的小正方形组成的网格中,给出以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1;(A1,B1分别为点A,B的对应点)(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.参考答案一、选择题1.下列图形绕某个点旋转72°后能与自身重合的是(B)2.如图是几种汽车轮轴的图案,图案绕中心旋转90°后能与原来的图案重合的是(B)3.下列选项中可以看成由下方图形绕着一个顶点顺时针旋转90°而形成的图形的是 (B)4.[芜湖期中]正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为(C)A.30°B.60°C.120°D.180°5.在平面直角坐标系中,将点A(1,2)绕点P(-1,1)顺时针旋转90°到点A'处,则点A'的坐标为(D)A.(-2,3)B.(-3,0)C.(1,0)D.(0,-1)6.如图,将线段AB绕点C(4,0)顺时针旋转90°得到线段A'B',那么点A(2,5)的对应点A'的坐标是(A)A.(9,2)B.(7,2)C.(9,4)D.(7,4)7.(2020·赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是(C)8.(2020·青岛)如图,将△ABC先向上平移1个单位长度,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是(D)A .(0,4)B .(2,-2)C .(3,-2)D .(-1,4)9.(2020·枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA =2.将△AOB 绕点O 逆时针旋转90°,点B 的对应点B ′的坐标是( )A.()-3,3B.()-3,3C.()-3,2+3D.()1,2+3【点拨】如图,过点B ′作B ′H ⊥y 轴于点H . ∵∠AOB =∠B =30°,∴AB =OA =2.∵将△AOB 绕点O 逆时针旋转90°得到△A ′OB ′, ∴A ′B ′=AB =2,OA ′=OA =2,∠A ′OB ′=∠A ′B ′O =30°. ∴∠B ′A ′H =60°. ∴∠A ′B ′H =30°. ∴A ′H =12A ′B ′=1.∴B ′H =A ′B ′2-A ′H 2=3,OH =OA ′+A ′H =3. ∴点B ′的坐标是(-3,3).【答案】A 二、填空题10.旋转作图的步骤和方法:(1)确定旋转中心、____________及____________;(2)作出图形的关键点经过旋转后的__________;(3)按一定的顺序连接对应点.【答案】旋转角度旋转方向对应点11.把一个图案进行旋转变换,选择不同的旋转中心、不同的旋转方向、不同的_____________,会有不同的效果.【答案】旋转角度12.正八边形绕它的中心旋转一定角度后能与自身完全重合,则其旋转的角度至少为45°.三、解答题13.如图,在平面直角坐标系中,等边△OAB的边长为2,y轴的正半轴恰好是△OAB的角平分线,先将△OAB绕点O按顺时针方向旋转120°,再关于y轴对称后得到△A1B1O,求点A1的坐标..解:先将△OAB绕点O按顺时针方向旋转120°,点A的对应点在x轴的正半轴上,且坐标为(2,0),再关于y轴对称后得点A1的坐标为(-2,0).14.在图中作出“三角旗”绕点O逆时针旋转90°后的图案.解:如图.15.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求DP的长及点D的坐标.解:∵△AOB是等边三角形,∴∠OAB=60°.由旋转得∠OAB=∠PAD=60°,AD=AP.∵OA=3,AP平分∠OAB,∴∠OAP=30°,∴AP=2OP.∵OP2+32=(2OP)2,∴OP=√3,AP=2√3,∴AD=AP=2√3.∵∠OAP=30°,∠PAD=60°,∴∠OAD=30°+60°=90°,∴点D的坐标为(2√3,3).16.(2020·鄂尔多斯)(1)【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′.解:如图①,△AB′C′即为所求.②在①中所画图形中,∠AB′B=________°.【答案】45(2)【问题解决】如图②,在Rt△ABC中,BC=1,∠C=90°,延长CA到点D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.解:如图②,过点E作EH⊥CD,交CD的延长线于点H.∵∠C=∠BAE=∠H=90°,∴∠B+∠CAB=90°,∠CAB+∠EAH=90°.∴∠B=∠EAH.又∵AB=AE,∴△ABC≌△EAH(AAS).∴BC=AH,EH=AC.∵BC=CD,∴CD=AH.∴DH=AC=EH.∴∠EDH=45°.∴∠ADE=135°.17.如图,边长为3的正方形纸片ABCD的相邻边AB,AD分别在x轴、y轴的正半轴上,点E在纸片上,点E的坐标是(1,2),将正方形纸片绕其右下角的顶点按顺时针方向旋转90°至图①位置,此时点E的对应点为E1,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,此时点E1的对应点为E2,以此类推,这样连续旋转2020次,求点E2020的坐标.解:∵正方形的边长为3,∴OB=3,∵点E的坐标是(1,2),将正方形纸片绕其右下角的顶点按顺时针方向旋转90°至图①位置,∴E1(5,2),以此类推,E2(8,1),E3(10,1),E4(13,2),…,观察可知:纵坐标的变化规律是四次一个循环(2,1,1,2),2020÷4=505,∴点E2020的纵坐标与点E4相同,纵坐标为2,横坐标为3×2020+1=6061,∴点E2020的坐标为(6061,2).18.[安徽中考]如图,在由边长为1个单位长度的小正方形组成的网格中,给出以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1;(A1,B1分别为点A,B的对应点)(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.解:(1)如图所示,线段A1B1即为所求.(2)如图所示,线段B1A2即为所求.。
23.1.1图形的旋转
知识点
在平面内,把一个图形绕着某 _________ 沿着某个方向转动 ________ 的图形变换叫做旋
转•这个点o 叫做 ________ ,转动的角叫做 ______ •因此,图形的旋转是由 _______ 和 _____ 及 ____ 决定的. 一. 选择题
1.下列物体的运动不是旋转的是(
)
A •坐在摩天轮里的小朋友 C .骑自行车的人
2 .在26个英文大写字母中,通过旋转
A . 6个
B . 7个
C . 8个
3•同学们曾玩过万花筒吗?如图是看到的万花筒的一个图案, 4.如图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是(
)
A . 90°
B . 60°
C . 45°
D . 30°
5•如图,图形旋转一定角度后能与自身重合
,则旋转的角度可能是(
)
0 0 0 0
A 、30
B 、60
C 、90
D 、120
二、填空
6. _________________________________________________________________ 如果图形上的点 P 经过旋转变为点 P',那么这两点叫做这个旋转的 ___________________________ .
7. ____________________________________________________________________ 如图,△ AOB 旋转到△ AOB'的位置.若/ AOA ' =90 °则旋转中心是点 _______________________ .旋转角
是 ______ .点A 的对应点是 __________ .线段 AB 的对应线段是 _________ . Z B 的对应角是
B .正在走动的时针 D .正在转动的风车叶片 180后能与原字母重合的有的等边三角形,其中的菱形 AEFG 可以看成是把菱形 ABCD 以点A 为中心( )得到的.
A 、顺时针旋转60 ° C 、逆时针旋转60 °
B 、顺时针旋转120 D 、逆时针旋转120
图中所有的小三角形均是全等
(第3
(第4题)
_____ . Z BOB,= _____
8 .如图,△ ABC 绕着点
_____ . AO= ______ , AB= ______ ,/ ACB= Z ______ .
9. ___________________________________________ 如图,正三角形 ABC 绕其中心0至少旋转 _______________________________________________ 度,可与其自身重合. 10. 一个平行四边形 ABCD ,如果绕其对角线的交点
O 旋转,至少要旋转 ________ 度,才可
与其自身重合.
11.
钟表的运动可以看作是一种旋转现象, 那么分针匀
速旋转时, 它的旋转中心是钟表的旋
转轴的轴心,经过 45分钟旋转了 _______ 度.
12. 如图,把厶ABC 绕C 顺时针旋转35°,得到△ A Z B Z C ,若Z BCA/=100°,则Z B /CA= ________ 13. 如图7, P 是等边△ ABC 内一点,△ BMC 是由△ BFA 旋转所得,则Z PBM = _________ °
点从开始至结束所走过的路径长是 ______________ 三. 解答 15•阅读下面材料
:
0旋转到△ DEF 的位置,则旋转中心是 .旋转角是
14. 一块等边三角形木块,边长为
1,如图,?现将木块沿水平线翻滚五个三角形,那么
(第8
(第12
(第13
B
如图 1, 把厶ABC 沿直线BC 平行移动线段 BC 的长度,可以变到△ ECD 的位置.
如图 2, 如图 以A 点为中心, 把厶ABC 旋转90 °
可以变到厶AED 的位置,像这样,?其中 一个三角形是由另一个三角形按平行移动、翻折、 旋转等方法变成的, 这种只改变位置,不
D
(1)
以BC 为轴把△
(4
改变形状和大小的图形变换,叫做三角形的全等变换.
回答下列问题
1 如图4,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF= AB.
2
(1)在如图4所示,可以通过平行移动、翻折、旋转中的哪一种方法,?使厶ABE移到厶ADF的位置?
(2)指出如图4所示中的线段BE与DF之间的关系.
16•两个边长为1的正方形,如图所示,?让一个正方形的顶点与另一个正方形中心重合,不
1
难知道重合部分的面积为丄,现把其中一个正方形固定不动,
4
转,问在旋转过程中,两个正方形重叠部分面积是否发生变化??另一个正方形绕其中心旋?说明理由.
参考答案
知识点
点0,—个角度,旋转中心,旋转角,旋转中心、旋转角、旋转方向一•选择题
CBDCC
二、填空
6•对应点;7.0,90° A;A B', / B', 90°
8.0,Z A0D , D0,ED, / DFE; 9.120 °10.180 °
11.270 °12.100 ° 13.60 °14.二
三.解答
15略
16.解(1)通过旋转,即以点A为旋转中心,将△ ABE逆时针旋转90°(2) BE=?DF, BE丄DF ______
解:面积不变.
0D m IT
理由:设任转一角度,如图所示. ? j 在Rt A ODD 和Rt A OEE '中
/ ODD ' 5= OEE ' =90
/ DOD ' = EOE ' =90-^7 BOE
OD = OD
S^ODD '=S^OEE'
1
• S四边形OE'BD'=S正方形OEBD=—
4。