与椭圆标准方程推导过程比较
- 格式:ppt
- 大小:485.50 KB
- 文档页数:15
椭圆参数方程推导原理
椭圆参数方程是一种用来描述椭圆形状的数学方程,它可以用来描述椭圆的位置、大小和形状。
椭圆参数方程的推导原理是基于椭圆的标准方程,即:
$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
其中,a和b分别是椭圆的长轴和短轴。
椭圆参数方程的推导原理是将椭圆的标准方程转换为椭圆参数方程,即:
$$\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$$
其中,h和k分别是椭圆的中心点的横纵坐标。
椭圆参数方程的推导原理是将椭圆的标准方程中的x和y分别减去h和k,然后将结果代入椭圆的标准方程中,即可得到椭圆参数方程。
椭圆参数方程的推导原理是基于椭圆的标准方程,它可以用来描述椭圆的位置、大小和形状。
椭圆参数方程的推导原理是将椭圆的标准方程转换为椭圆参数方程,即将椭圆的标准方程中的x和y分别减去h和k,然后将结果代入椭圆的标准方程中,即可得到椭圆参数方程。
椭圆参数方程的推导原理是一种简单而有效的方法,它可以用来描述椭圆的位置、大小和形状,为椭圆的研究提供了有效的数学工具。
椭圆的标准方程的推导方法1、回顾用坐标法求动点轨迹方程的一般步骤:建系设点、写出动点满足的几何约束条件、坐标化、化简、证明等价性2、建立焦点在轴上的椭圆的标准方程①建系设点:观察椭圆的几何特征,如何建系能使方程更简洁?——利用椭圆的对称性特征以直线为轴,以线段的垂直平分线为轴,建立平面直角坐标系.设焦距为,则.设为椭圆上任意一点,点与点的距离之和为.②动点满足的几何约束条件:③坐标化:④化简:化简椭圆方程是本节课的难点,突破难点的方法是引导学生思考如何去根号预案一:移项后两次平方法分析的几何含义,令得到焦点在轴上的椭圆的标准方程为预案二:用等差数列法:设得4cx=4at,即t=将t=代入式得③将③式两边平方得出结论。
以下同预案一预案三:三角换元法:设得即即代入式得以下同预案一设计意图:进一步熟悉用坐标法求动点轨迹方程的方法,掌握化简含根号等式的方法,提高运算能力,养成不怕困难的钻研精神,感受数学的简洁美、对称美(3)建立焦点在轴上的椭圆的标准方程要建立焦点在轴上的椭圆的标准方程,又不想重复上述繁琐的化简过程,如何去做?此时要借助于化归思想,抓住图(1)与图(2)的联系即可化未知为已知,将已知的焦点在轴上的椭圆的标准方程转化为焦点在轴上的椭圆的标准方程.只需将图(1)沿直线翻折或将图(1)绕着原点按逆时针方向旋转即可转化成图(2),需将轴、轴的名称换为轴、轴或轴、轴.(1)(2)焦点在轴上的椭圆的标准方程为设计意图:体会数学中的化归思想,化未知为已知,避免重复劳动(4)辨析焦点分别在轴、轴上的椭圆的标准方程的异同点区别:要判断焦点在哪个轴上,只需比较与项分母的大小即可.若项分母大,则焦点在轴上;若项分母大,则焦点在轴上.反之亦然.联系:它们都是二元二次方程,共同形式为两种情况中都有如有侵权请联系告知删除,感谢你们的配合!。
圆锥曲线(抛物线、椭圆、双曲线)标准方程推导几何定义是在平面中,由所有满足到一定点与到一定直线距离相等的点所组成的图形,把这个定点称为焦点(focus)、定直线称为准线(directrix)。
为了方便推导,把这一定点放在x轴正方向上,定直线垂直x 轴放在x轴负半轴上,且原点刚好在两者中间。
上面这些都仅仅是为了推导方便而已。
设曲线上的点坐标为(x,y),于是,\begin{aligned} d(F, P) &=d(P, D) \\ \sqrt{(x-a)^{2}+(y-0)^{2}} &=|x+a| \\ (x-a)^{2}+y^{2}&=(x+a)^{2} \\ x^{2}-2 a x+a^{2}+y^{2} &=x^{2}+2 ax+a^{2} \\ y^{2} &=4 a x \end{aligned}四种不同开口的标准型:二、椭圆(Ellipse)几何意义是在平面中,由所有到两个顶点距离之和为定值的点所组成的图形,把这两个定点称为焦点(foci),也是为了推导的方便,把这两个焦点对称放在x轴正负半轴上,令两段距离之和为2a,根据两点之间距离公式进行如下推导:\begin{aligned} d\left(F_{1}, P\right)+d\left(F_{2}, P\right) &=2 a \\ \sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}} &=2 a \\ \sqrt{(x+c)^{2}+y^{2}}=& 2 a-\sqrt{(x-c)^{2}+y^{2}} \\ (x+c)^{2}+y^{2}=& 4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}} \\ &+(x-c)^{2}+y^{2} \\x^{2}+2 c x+c^{2}+y^{2}=& 4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}} \\ &+x^{2}-2 c x+c^{2}+y^{2} \\ 4 c x-4 a^{2}=&-4 a \sqrt{(x-c)^{2}+y^{2}} \\ c x-a^{2}=&-a\sqrt{(x-c)^{2}+y^{2}} \\ \left(c x-a^{2}\right)^{2}=& a^{2}\left[(x-c)^{2}+y^{2}\right] \\ c^{2} x^{2}-2a^{2} c x+a^{4}=& a^{2}\left(x^{2}-2 cx+c^{2}+y^{2}\right) \\ \left(c^{2}-a^{2}\right)x^{2}-a^{2} y^{2} &=a^{2} c^{2}-a^{4} \\ \left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2} &=a^{2}\left(a^{2}-c^{2}\right) \end{aligned}令 b^2=a^2-c^2 (根据三角形两边之和大于第三边推出c<a)所以,\begin{aligned} b^{2} x^{2}+a^{2} y^{2} &=a^{2} b^{2} \\ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} &=1\end{aligned}常见的两种椭圆标准方程,一种是横躺在x轴上,一种是“站立”着,关键就是看x和y下面哪个数值比较大,哪个大,那么长的对称轴就在哪个方向上。
椭圆:1、(第一)定义:12122PF PFa F F +=>;2、椭圆标准方程及离心率:焦点在x轴上的椭圆标准方程为:22221(0)x ya ba b+=>>;:a长半轴;b:短半轴;:c半焦距 .椭圆中a,b,c的关系:222a b c=+;椭圆的离心率(0,1)cea=∈ .3、弦长公式: 直线:l y kx b =+与椭圆2222:1()x y C m n m n+=≠交于两点11(,)M x y ,22(,)N x y ,则相交时的弦长1212MN x x y y =-=- .弦长公式是由两点距离公式与两点斜率公式推导出来,故适用性比较广。
4、中点弦结论(点差法): 椭圆2222:1()x y C m n m n+=≠上的两点11(,)M x y ,22(,)N x y ,弦MN 的中点1212(,)22x x y yP ++, 则22MNOPn kk m⋅=- .5、焦点三角形面积: 椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1F 、2F ,点P 是椭圆C 上除左、右端点外的一点,令12F PF θ∠=,则:122tan2PF F S b θ∆=⋅ . 该公式是由三角形面积公式、椭圆第一定义、余弦定理结合三角恒等变换推导出来。
6、直线与椭圆位置关系: 联立:0l Ax By C ++=与椭圆2222:1()x y C m n m n +=≠,消去y (或x )得一元二次方程,24b ac ∆=-, 相离⇔0∆<;相切⇔0∆=;相交⇔0∆>;7、与点坐标相关的面积公式: (0,0)O ,11(,)A x y ,22(,)B x y ,点O ,A ,B 不在一条直线上, 则:122112OAB S x y x y ∆=-.该公式是由三角形面积公式、余弦定理结合三角恒等式推导出。
椭圆的标准方程推理过程
嘿,咱今儿个就来唠唠椭圆的标准方程推理过程。
你想啊,椭圆就像是一个被压扁了的圆,它有两个焦点,这两个焦点就好像是椭圆的两个小眼睛,一直盯着椭圆上的点呢。
那怎么来推导出椭圆的标准方程呢?咱先从简单的情况入手。
想象一下,在一个平面上,有两个固定的点,这就是那两个焦点啦。
然后呢,有一个动点,这个动点到这两个焦点的距离之和是个定值。
咱就设这两个焦点之间的距离是 2c,动点到两焦点的距离之和是2a,而且 a 是大于 c 的哦,要不然那还叫啥椭圆呀,对吧?
然后咱就开始捣鼓这个动点的坐标啦。
咱设动点的坐标是(x,y),那根据到两焦点距离之和为定值这个条件,咱就能列出个式子来。
这式子一出来,咱就开始各种化简变形啦。
这过程就好像是给一个乱蓬蓬的头发慢慢梳理整齐一样,得有耐心呐。
经过一番捣鼓,嘿,椭圆的标准方程就出来啦!它就像是个宝贝,被我们从一堆乱麻中找出来了。
你说这神奇不神奇?这椭圆的标准方程就像是一把钥匙,能打开椭圆这个神秘世界的大门。
有了它,我们就能知道椭圆的各种性质,比如长短轴啦,离心率啦等等。
这就好比我们有了一张地图,能在椭圆的世界里畅游无阻。
而且啊,椭圆在生活中也有很多应用呢。
你看那些椭圆形的跑道,
还有那些椭圆形状的建筑,不都是椭圆的功劳嘛。
所以说啊,了解椭圆的标准方程推理过程,那可真是太重要啦!它
让我们能更好地理解这个奇妙的数学世界,也能让我们在生活中发现
更多椭圆的美和用处。
咱可别小瞧了这椭圆的标准方程推理过程,它就像是一把开启智慧
大门的钥匙,能让我们看到更多数学的奥秘和精彩呢!你说是不是呀?。
椭圆的标准方程推导过程
一、椭圆的定义
椭圆是平面内到两个定点 $F_1$ 和 $F_2$ 的距离之和等于常
数 $2a$ 的点 $P$ 的轨迹。
二、椭圆的标准方程
椭圆的标准方程形式为:$\frac{(x-h)^2}{a^2}+\frac{(y-
k)^2}{b^2}=1$,其中 $(h,k)$ 是椭圆的中心点坐标,$a$ 和
$b$ 分别是椭圆在 $x$ 和 $y$ 方向的半轴长度。
三、推导过程
首先,设椭圆上任意一点 $P(x,y)$,则有:
$$PF_1+PF_2=2a$$ 根据两点之间的距离公式,可得:
$$\sqrt{(x-F_1)^2+y^2}+\sqrt{(x-F_2)^2+y^2}=2a$$ 将 $F_1$ 和$F_2$ 的坐标代入上式,化简后得到:
$$\sqrt{(x+a)^2+y^2}+\sqrt{(x-a)^2+y^2}=2a$$ 平方并化简,可得:$$x^2\cdot\frac{a^2}{a^2-b^2}+y^2\cdot\frac{a^2}{a^2-
b^2}=1$$ 因为 $a>b>0$,故 $\frac{a^2}{a^2-b^2}>0$,于是可
令常数 $c=\frac{a^2}{a^2-b^2}$,则上式可以转化为:
$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$ 即为椭圆的标准方程。
椭圆及其标准方程1.椭圆的定义:平面内与两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.注意:定义中的常数用2a表示,|F1F2|用2c表示,当2a>2c>0时,轨迹为椭圆,当2a=2c 时,轨迹为线段F1F2;当2a<2c时,无轨迹.这样,椭圆轨迹一定要有2a>2c这一条件.另外,应用定义来求椭圆方程或解题时,往往比较简便.2.椭圆的标准方程当焦点在x轴上时:+ =1(a>b>0)当焦点在y轴上时:+ =1(a>b>0)注意:(1)三个量之间的关系:a2=b2+c2(2)由x2,y2的分母大小确定焦点在哪条坐标轴上,x2的分母大,焦点就在x轴上,y2的分母大,焦点就在y轴上.(3)在方程Ax2+By2=C中,只有A、B、C同号时,才可能表示椭圆方程.(4)当且仅当椭圆的中心在原点,其焦点在坐标轴上时,椭圆的方程才具有标准形式.典型例题例1 求与椭圆+ =1共焦点,且过点M(3,-2)的椭圆方程.解法一:(待定系数法)由已知椭圆方程+ =1得C2=9-4=5,且焦点在x轴上,设所求椭圆方程为+ =1又∵点M(3,-2)在椭圆上∴+ =1,得a4-18a2+45=0∴a2=15或a2=3<5=C2(舍)∴所求椭圆方程为+ =1解法二:(定义法)椭圆两焦点为F1(- ,0),F2( ,0),点M(3,-2)到这两个焦点距离之和是2a,即2a=|M1F1|+|M1F2|= + =2∴a2=15 b2=a2-c2=15-5=10∴所求椭圆方程为+ =1例2 已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1( ,1),P2(- ,- ),求椭圆的方程.解:设椭圆方程为mx2+ny2=1,(m>0,n>0)由题意有解得m= ,n=∴所求椭圆方程为+ =1说明:设椭圆方程为mx2+ny2=1(m>0,n>0)可免讨论焦点的位置,而且计算简便.例3 已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P作焦点所在轴的垂线恰好过椭圆的一个焦点,求椭圆方程.解:设两个焦点为F1F2,且|PF1|= ,|PF2|=由椭圆定义知2a=|PF1|+|PF2|=2 ∴a=而|PF1|>|PF2|知PF2与焦点所在的对称轴垂直.∴Rt△PF2F1中,sin∠PF1F2= =∴∠PF1F2=2C=|PF1|cos =∴b2=a2-c2=故所求方程为+ y2=1或x2+ =13.(代入法)与椭圆有关的轨迹问题:常用的方法有定义法,坐标转移法,交轨法,点差法. 例4 已知圆C1:x2+y2+4x-12=0与圆C2:x2+y2-4x=0,动圆C与C1相内切,且与C2相外切,求动圆圆心的轨迹方程.解:圆C1与C2的标准方程是(x+2)2+y2=16,(x-2)2+y2=4圆心分别为C1(-2,0),C2(2,0)设动圆P的圆心为P,半径为r,有|PC1|=4-r,|PC2|=2+r∴|PC1|+|PC2|=6>|C1C2|=4∴P点在椭圆上运动,又2a=6,2c=4,∴b2=a2-c2=5∴P的轨迹为+ =1(在已知圆C1内)例5 已知MN是椭圆+ =1(a>b>0)中垂直于长轴的动弦,AB是椭圆长轴的两端点,求直线MA与NB的交点P的轨迹方程.解:设M、N的坐标为M(x0,y0),N(x0,-y0),又A(-a,0),B(a,0)所以直线AM的方程为y= (x+a) ①直线BN的方程为:y= ②①×②得:y2= (x2-a2) ③∵点M(x0,y0)在椭圆上,∴b2x20+a2y20=a2b2∴x20-a2=- y02,代入得③得:y2= (x2-a2)∴交点P的轨迹方程为- =1例6已知椭圆+y2=1(1)求斜率为2的平行弦的中点轨迹方程(2)过A(2,1)引椭圆的割线,求截得的弦中点轨迹方程(3)求过点P( ,),且被P平分的弦所在的直线方程.解:(点差法)设弦的两端点分别为M(x1,y1)N(x2,y2)、MN的中点为P(x,y),则x21+2y21=2,x22+2y22=2,两式相减弄除以(x2-x1)得:x1+x2+2(y1+y2) =0而x1+x2=2x,y1+y2=2y∴x+2y· =0 (*)(1)将=2代入(*)式得所求的轨迹方程为x+4y=0(椭圆内部分)(2)将= 代入(*)式,得所求的轨迹方程为x2+2y2-2x-2y=0(椭圆内部分)(3)将x1+x2=1,y1+y2=1代入(*)式,得=-∴所求的直线方程为2x+4y-3=0例7已知中心在原点,一焦点为F(0,)的椭圆被直线l:y=3x-2截得弦的中点横坐标为,求椭圆方程.解:∵C= ,∴a2=b2+50∴可设椭圆方程为+ =1把直线y=3x-2代入椭圆方程整理得10(b2+5)x2-12b2x-b4-46b2=0∴x1+x2=又∵=∴12b2=10b2+50解得b2=25 a2=75∴所求的椭圆方程为+ =1例8已知P为椭圆+ =1上的一点,F1F2是椭圆上的两焦点,∠F1PF2=60°,求△F1PF2的面积.解:∵= |PF1|·|PF2|sin∠F1PF2∴只需求|PF1|·|PF2|即可又|PF1|+|PF2|=10|PF1|2+|PF2|2-2|PF1|·|PF2|cos60°=4C2=64解得|PF1|·|PF2|=12∴= ×12× =3例9已知方程2(k2-2)x2+k2y2+k2-k-6=0表示椭圆,求实数k的取值范围.解:结合椭圆的变形方程式a2y2+b2x2-a2b2=0从而有:2(k2-2)>0 k<- 或k>k2≠0解得k≠0k2-k-6<0 -2<k<32(k2-2)≠k2k≠±2∴k∈(-2,- )∪( ,2)∪(2,3)例10△ABC的三边a>b>c,且a+c=2b,|AC|=2,求顶点B的轨迹.解:以AC的中点为坐标原点建立坐标系,则A(-1,0),C(1,0),又a+c=2b=4由椭圆的定义知B点在椭圆上运动.∵a>b>c,且A、B、C三点不共线∴B点的轨迹方程是椭圆+ =1,在y轴左侧的部分,但要去掉点(-2,0),(0,),(0,- )核心知识1.椭圆+ =1(a>b>0),范围:椭圆位于直线x=±a和y=±b所围成的矩形里,即|x|≤a,|y|≤b.2.对称性:椭圆关于x轴,y轴和原点都是对称的.坐标轴为椭圆的对称轴,原点是椭圆的对称中心,即为椭圆的中心.3.顶点:椭园与坐标轴的交点为椭圆的顶点为A1(-a,0),A2(a,0),B1(0,b),B2(0,-b)4.离心率:e= ,(o<e<1),e越接近于1,则椭圆越扁;e越接近于0,椭圆就越接近于圆.5.椭圆的第二定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(0<e<1=的点的轨迹.定点即为椭圆的焦点,定直线为椭圆的准线.6.椭圆的焦半径公式:设P(x0,y0)是椭圆+ =1(a>b>0)上的任意一点,F1、F2分别是椭圆的左、右焦点,则|PF1|=a+ex0,|PF2|=a-ex0.7.椭圆的参数方程典型例题例1 设直线l过点P(-1,0),倾角为,求l被椭圆x2+2y2=4所截得的弦长.解:直线l的方程为y= x+ ,代入椭圆方程,得7x2+12x+2=0,∵△=144-4×7×2=88∴弦长= =例2 求椭圆+ =1上的点到直线3x+4y-64=0的最长距离与最短距离.解:设椭圆上的点为(5cosθ,9sinθ),则d= ==∴d max=例3 已知椭圆+ =1内有一点P(1,-1),F是右焦点,M是椭圆上的动点,求|MP|+2|MF|的最小值,并求此时M的坐标.解:过M作右准线x=4的垂线,垂足为M1,由椭圆第二定义,有= ∴2|MF|=|MM1|∴|MP|+2|MF|=|MP|+|MM1|过P作右准线的垂线交椭圆于N,垂足为N1,垂线方程为y=-1.显然|MP|+|MM1|≥|NP|+|NN1|(当M与N重合时等号成立)而|NP|+|NN1|=|PN1|=3由方程组得N( ,-1)∴|MP|+2|MF|的最小值是3,此时M的坐标是( ,-1)例4 P是椭圆方程为+ =1上的任意一点,F1,F2是椭圆的两个焦点,试求|PF1|·|PF2|的取值范围.解:设|PF1|=t,则t∈[a-c,a+c],即t∈[4- ,4+ ]且|PF2|=2a-t=8-t.∴|PF1|·|PF2|=t(8-t)=-(t-4)2+16 t∈[4- ,4+ ]当t=4时,取最大值为16当t=4± 时,取最小值为9.∴所求范围为[9,16]例5 F1、F2是椭圆的两个焦点,过F2作一条直线交椭圆于P、Q两点,使PF1⊥PQ,且|PF1|=|PQ|,求椭圆的离心率e.解:如下图,设|PF1|=t,则|PQ|=t,|F1Q|= t,由椭圆定义有:|PF1|+|PF2|=|QF1|+|QF2|=2a∴|PF1|+|PQ|+|F1Q|=4a 即( +2)t=2a,t=(4-2 )a∴|PF2|=2a-t=(2 -2)a在Rt△PF1F2中,|F1F1|2=(2c)2∴[(4-2 )a]2+[(2 -2)a]2=(2c)2∴=9-6 ∴e= = -双曲线1.双曲线的定义平面内与两定点F1、F2的距离差的绝对值是常数(大于零小于|F1F2|)的点的轨迹叫双曲线.两定点F1、F2是焦点,两焦点间的距离|F1F2|是焦距,用2c表示.常数用2a表示.(1)若|MF1|-|MF2|=2a时,曲线只表示焦点F2所对应的一支双曲线.(2)若|MF1|-|MF2|=-2a时,曲线只表示焦点F1所对应的一支双曲线.(3)若2a=2c时,动点的轨迹不再是双曲线,而是以F1、F2为端点向外的两条射线.(4)若2a>2c时,动点的轨迹不存在.2.双曲线的标准方程- =1(a>0,b>0)焦点在x轴上的双曲线;- =1(a>0,b>0)焦点在y轴上的双曲线.判定焦点在哪条坐标轴上,不像椭圆似的比较x2、y2的分母的大小,而是x2、y2的系数的符号,焦点在系数正的那条轴上.典型例题例1 若方程+ =1表示双曲线,则实数m的取值范围是( )A.-3<m<2或m>3B.m<-3或m>3C.-2<m<3D.-3<m<3或m>3分析该方程表示双曲线,则x2与y2项的系数的符号相反,即(2-m)(|m|-3)<0,将问题转化为不等式的求解.答:A例2 求与椭圆+ =1共焦点,且过点(3 ,)的双曲线的方程.分析一由题意知所求双曲线的焦点在x轴上,且焦距为8,∴c=4,设所求双曲线方程为- =1代入点(3 ,),得λ2=7,故所求双曲线方程为- =1.分析二运用与椭圆共焦点的曲线系方程.设所求双曲线方程为+ =1,代入点(3 ,),得λ=16或λ=-7(舍),故所求双曲线方程为- =1.例3 课本第108页习题8.3第一题:△ABC一边的两个端点是B(0,6)和C(0,-6),另两边所在直线的斜率之积是,求顶点A的轨迹.分析其顶点A的轨迹方程求得:- =1(x≠0).若将问题一般化:B(0,a)、C(0,-a)·k AB·k AC= ,则顶点A的轨迹方程为:- =1(x≠0).若B(bcotφ,acosφ)、C(-cotφ,-acscφ).k AB·k AC= ,则顶点A的轨迹会是怎样?反之,双曲线- =1(x≠0)上任一点到B(0,a),C(0,-a)两点的连线的斜率之和,等于;若改变B、C的位置保持B、C两点关于原点对称于双曲线上,k AB·k AC是否成立.总之,同学们在学习过程中要多动手、多思考,举一反三,做到“以点代面,以少胜多”.例4一动圆与圆(x+3)2+y2=1外切又与圆(x-3)2+y2=9内切,求动圆圆心轨迹方程.分析如图,设动圆M与⊙O外切于A,与⊙O2内切于B,由位置关系可得数量关系:|MO1|=|MA|+1 |MO2|=|MB|-3由|MA|=|MB|可得|MO1|-|MO2|=4由定义可知M点轨迹为双曲线的一支.解:如图,设动圆圆心M坐标为M(x,y),圆M与圆O1外切于A,与圆O2内切于B,则,MO1=|MA|+1,①|MO2|=|MB|=3②,①-②:|MO1|-|MO2|=4由双曲线定义知,M点轨迹是以O1(-3,0)O2(3,0)为焦点2a=4的双曲线的右支∴b2=32-23=5∴所求轨迹方程为:- =1(x≥2)说明:在求轨迹方程时,要注意使用曲线的定义,此时的思路:位置关系(内切,外切)数量关系(|MO1|=r1+r0,|MO2|=r-r2其中r为动圆半径曲线形状写出标准方程,可以简化运算.同时应注意定义中是到两定点距离的绝对值,此时不含绝对值,要求|MO1|>|MO2|,所以是双曲线的右支,而不是整个双曲线.例5过双曲线- =1的右焦点作倾角为45°的弦,求弦AB的中点C到右焦点F 的距离,并求弦AB的长.分析将直线方程与双曲线方程联立,求出A、B两点的坐标,再求其中点,由两点的距离公式求出|CF|.解:∵双曲线的右焦点为F(5,0),直线AB的方程为y=x-5,故16x2-9y2-144=0 ①y=x-5 ②消去y,并整理得7x2+90x-369=0 ③此方程的两个根x1、x2是A、B两点的横坐标,设AB的中心点C的坐标为(x,y),则x===- .C点的坐标满足方程②,故y=- -5=-∴|CF|==(5+ )=又设A点坐标为(x1,y1),B点坐标为(x2,y2),则y1=x1-5,y2=x2-5.∴y1-y2=x1-x2,|AB|====由方程③知x1+x2=- ,x1·x2=-∴|AB|====27点评:利用韦达定理及两点间距离公式求弦长核心知识1.双曲线- =1的简单几何性质(1)范围:|x|≥a,y∈R.(2)对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称。