机器人操作臂运动学
- 格式:ppt
- 大小:1.62 MB
- 文档页数:73
工业机器人运动学基础篇:运动学构型本文重点介绍工业机器人常用运动学构形,以下是工业机器人的几种常用结构形式(图),图文描述非常详细,希望能对大家带来帮助!!1、笛卡尔机械臂优点:很容易通过计算机控制实现,容易达到高精度。
缺陷:妨碍工作,且占地面积大,运动速度低,密封性欠缺。
①焊接、搬运、上下料、包装、码垛、拆垛、检测、探伤、分类、装配、贴标、喷码、打码、(软仿型)喷涂、目标跟随、排爆等一系列工作。
②适用于多种类,批量的柔性化作业,提高产品质量,提高劳动生产效率,改进劳动条件和产品的快速更新换代有着显著作用。
2、铰链型机械臂(关节型)关节机器人的关节全都是旋转的,相似于人的手臂,工业机器人中最常见的结构。
它的工作范围较为复杂。
①汽车零配件、模具、钣金件、塑料产品、玻璃制品、陶瓷、航空等的快速检测及产品开发。
②车身装配拆卸、通用机械装配拆卸等制造质量控制等的三坐标测量及误差检测。
③古董、艺术品、雕塑、卡通人物造型、人像成品等的制作。
④汽车整车现场测量和检测等。
3、SCARA机械臂SCARA机器人常用于装配拆卸等作业,最显著的特点是它们在x-y平面上的活动具有较大的柔性,而沿z轴具有很强的刚性,因而,它具有选择性的柔性。
这种机器人在装配作业中取得了较好的使用。
①大量用于装配印刷电路板和电子零部件②搬动和取放物件,如集成电路板等③普通使用于塑料行业、汽车行业、电子产品行业、药品行业和食品工业等领域.④搬取零件和装配工作。
4、球面坐标型机械臂特点:围绕着中心支架附近的工作范围大,两个转动驱动装置容易密封,延伸工作空间较大。
但该坐标复杂,难于控制,且直线驱动装置存在密封的缺陷。
5、圆柱面坐标型机械臂优点:且计算简单;直线部分可使用液压驱动,可输出较大的动力;能够伸入型腔式机器内部。
缺陷:它的手臂能够延伸的空间遭到限制,不能到达近立柱或近地面的空间;直线驱动部分难以密封、防尘;后臂工作时,手臂后端会碰到运动范围内别的物体。
机械臂的运动学与逆运动学分析机械臂是一种能够模拟人类手臂运动的自动化机器人。
它广泛应用于工业领域,用于完成各种复杂的操作任务。
机械臂的运动控制是实现其功能的关键,其中运动学和逆运动学分析是研究机械臂运动的基础。
一、机械臂的运动学分析运动学分析主要关注机械臂的位置、速度和加速度等运动参数的计算。
机械臂主要由关节连接的刚性杆件组成,每个关节可以沿特定方向进行旋转或平移运动。
在机械臂运动学中,我们关注的是机械臂末端执行器的位置和姿态。
1. 正运动学分析正运动学分析指的是根据机械臂各关节的运动参数,计算机械臂末端执行器的位置和姿态。
通常,我们采用坐标变换矩阵的方法来进行计算。
通过将各个关节的运动连续相乘,可以得到机械臂末端执行器相对于机械臂基座标系的位姿矩阵。
以一个3自由度的机械臂为例,设第一关节绕Z轴旋转角度为θ1,第二关节绕Y轴旋转角度为θ2,第三关节绕X轴旋转角度为θ3。
则机械臂末端执行器相对于基座标系的位姿矩阵可以表示为:[cos(θ2+θ3) -sin(θ2+θ3) 0 a1*cos(θ1)+a2*cos(θ1+θ2)+a3*cos(θ1+θ2+θ3)][sin(θ2+θ3) cos(θ2+θ3) 0 a1*sin(θ1)+a2*sin(θ1+θ2)+a3*sin(θ1+θ2+θ3)][0 0 1 d1+d2+d3][0 0 0 1]其中,a1、a2、a3和d1、d2、d3分别为机械臂的长度和位移参数。
通过这个矩阵,我们可以得到机械臂末端执行器的位置和姿态。
2. 速度和加速度分析除了机械臂末端执行器的位置和姿态,机械臂的速度和加速度也是非常重要的运动参数。
通过对机械臂运动学模型的导数运算,我们可以得到机械臂的速度和加速度表达式。
机械臂的速度可以表示为:v = J(q) * q_dot其中,v为机械臂末端执行器的速度向量,J(q)为机械臂的雅可比矩阵,q为机械臂各关节的角度向量,q_dot为各关节的角速度向量。
机械臂运动学基础1、机械臂的运动学模型机械臂运动学研究的是机械臂运动,而不考虑产生运动的力。
运动学研究机械臂的位置,速度和加速度。
机械臂的运动学的研究涉及到的几何和基于时间的内容,特别是各个关节彼此之间的关系以及随时间变化规律。
典型的机械臂由一些串行连接的关节和连杆组成。
每个关节具有一个自由度,平移或旋转。
对于具有n个关节的机械臂,关节的编号从1到n,有n +1个连杆,编号从0到n。
连杆0是机械臂的基础,一般是固定的,连杆n上带有末端执行器。
关节i连接连杆i和连杆i-1。
一个连杆可以被视为一个刚体,确定与它相邻的两个关节的坐标轴之间的相对位置。
一个连杆可以用两个参数描述,连杆长度和连杆扭转,这两个量定义了与它相关的两个坐标轴在空间的相对位置。
而第一连杆和最后一个连杆的参数没有意义,一般选择为0。
一个关节用两个参数描述,一是连杆的偏移,是指从一个连杆到下一个连杆沿的关节轴线的距离。
二是关节角度,指一个关节相对于下一个关节轴的旋转角度。
为了便于描述的每一个关节的位置,我们在每一个关节设置一个坐标系,对于一个关节链,Denavit和Hartenberg提出了一种用矩阵表示各个关节之间关系的系统方法。
对于转动关节i,规定它的转动平行于坐标轴z i-1,坐标轴x i-1对准从z i-1到z i的法线方向,如果z i-1与z i相交,则x i-1取z i−1×z i的方向。
连杆,关节参数概括如下:●连杆长度a i沿着x i轴从z i-1和z i轴之间的距离;●连杆扭转αi从z i-1轴到zi轴相对x i-1轴夹角;●连杆偏移d i从坐标系i-1的原点沿着z i-1轴到x i轴的距离;●关节角度θi x i-1轴和x i轴之间关于z i-1轴的夹角。
对于一个转动关节θi 是关节变量,d i 是常数。
而移动关节d i 是可变的,θi 是恒定的。
为了统一,表示为ii iq d θ⎧=⎨⎩转动关节移动关节 运用Denavit-Hartenberg (DH )方法,可以将相邻的两个坐标系之间的变换关系表示为一个4x4的齐次变换矩阵1cos sin cos sin sin cos sin cos cos cos sin sin 0sin cos 01ii i i i i i i i ii ii i i i iii a a A d θθαθαθθθαθαθαα--⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦上式表示出了坐标系i 相对于坐标系i-1的关系。
第3章工业机器人运动学和动力学机器人操作臂可看成一个开式运动链,它是由一系列连杆通过转动或移动关节串联而成。
开链的一端固定在基座上,另一端是自由的,安装着工具,用以操作物体,完成各种作业。
关节由驱动器驱动,关节的相对运动导致连杆的运动,使手爪到达所需的位姿。
在轨迹规划时,最感兴趣的是末端执行器相对于固定参考系的空间描述。
为了研究机器人各连杆之间的位移关系,可在每个连杆上固接一个坐标系,然后描述这些坐标系之间的关系。
Denavit和Hartenberg提出一种通用方法,用一个4*4的齐次变换矩阵描述相邻两连杆的空间关系,从而推导出“手爪坐标系”相对于“参考系”的等价齐次变换矩阵,建立出操作臂的运动方程。
称之为D-H矩阵法。
3.1 工业机器人的运动学教学时数:4学时教学目标:理解工业机器人的位姿描述和齐次变换;掌握齐次坐标和齐次变换矩阵的运算;理解连杆参数、连杆变换和运动学方程的求解;教学重点:掌握齐次变换及运动学方程的求解教学难点:齐次变换及运算教学方法:讲授教学步骤:齐次变换有较直观的几何意义,而且可描述各杆件之间的关系,所以常用于解决运动学问题。
已知关节运动学参数,求出末端执行器运动学参数是工业机器人正向运动学问题的求解;反之,是工业机器人逆向运动学问题的求解。
3.1.1 工业机器人位姿描述1.点的位置描述在选定的指教坐标系{A}中,空间任一点P的位置可用3*1的位置矢量表示,其左上标代表选定的参考坐标系。
2.点的齐次坐标如果用四个数组成4*1列阵表示三维空间直角坐标系{A}中点P,则该列阵称为三维空间点P的齐次坐标,如下:必须注意,齐次坐标的表示不是惟一的。
我们将其各元素同乘一个非零因子后,仍然代表同一点P,即其中:,,。
该列阵也表示P点,齐次坐标的表示不是惟一的。
3.坐标轴方向的描述用i、j、k分别表示直角坐标系中X、Y、Z坐标轴的单位向量,用齐次坐标来描述X、Y、Z轴的方向,则有,,从上可知,我们规定:4*1列阵中第四个元素为零,且,则表示某轴(某矢量)的方向。