习题一力学基本定律
- 格式:doc
- 大小:3.87 MB
- 文档页数:38
流體力學的基本定理質量動量能量守恒原理流体力学的基本定理-质量、动量、能量守恒原理引言:流体力学是研究流体静力学和动力学的科学。
在研究流体的运动和行为时,有一些基本的定理被广泛应用,包括质量守恒原理、动量守恒原理和能量守恒原理。
这些原理为我们深入理解和解释流体运动提供了重要的基础。
一、质量守恒原理:质量守恒定律是流体力学中最基本的定理之一,它表明在流体中,质量是守恒的。
简单来说,当流体通过一个封闭系统时,系统内的质量总量不会改变。
这可以用一个简单的数学表达式来表示:∂ρ/∂t + ∇(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇是偏微分算子。
这个方程说明了质量的变化由流体的输运和流动引起。
二、动量守恒原理:动量守恒定律是流体运动研究中的另一个基本原理。
根据牛顿第二定律,当外力作用于一个质点时,它的动量会发生改变。
对于流体,可以将这个定律推广到流体微团上,得到了动量守恒原理。
∂(ρv)/∂t + ∇(ρv⋅v) = -∇p + ∇⋅τ + ρg其中,p是流体的静压力,τ是黏性应力张量,g是重力加速度。
这个方程描述了流体内的动量变化是由压力、黏性应力和重力引起的。
三、能量守恒原理:能量守恒定律是流体运动研究中的第三个基本原理。
在流体中,能量是守恒的,包括内能、动能和位能。
∂(ρE)/∂t + ∇⋅(ρEv) = -p∇⋅v + ∇⋅(k∇T) + ρgv其中,E是单位质量的总能量,k是热传导系数,T是温度。
这个方程表示了流体的能量变化是由压力、热传导和重力引起的。
结论:流体力学的基本定理——质量守恒原理、动量守恒原理和能量守恒原理,为我们研究和理解流体的运动和行为提供了重要的方法和工具。
这些定理在工程实践和科学研究中有着广泛的应用,对于预测和解释自然界中的流体现象至关重要。
正是基于这些基本原理,我们能够更好地理解流体力学的本质,并为实际问题的解决提供科学的依据和方法。
(字数:525字)。
力学第三版习题答案第一章:力学的基本概念- 习题1:解释质量、重量、惯性的区别和联系。
答案:质量是物体的固有属性,与物体所含物质的多少有关。
重量是地球对物体的引力作用,与物体的质量和地球的引力加速度有关。
惯性是物体保持其运动状态不变的能力,与物体的质量成正比。
- 习题2:一个物体的质量为2kg,求其在地球表面受到的重力。
答案:重力G = mg,其中m是质量,g是地球的引力加速度(约为9.8m/s²)。
因此,G = 2kg * 9.8m/s² = 19.6N。
第二章:牛顿运动定律- 习题3:一个物体在水平面上受到一个恒定的力F=10N,求其加速度。
答案:根据牛顿第二定律F=ma,其中F是作用力,m是物体的质量,a是加速度。
如果物体的质量为m,则a = F/m = 10N/m。
第三章:功和能量- 习题4:一个物体从静止开始,经过一段距离后,速度达到v,求外力所做的功。
答案:功W = ΔK,其中ΔK是动能的变化。
动能K = 1/2mv²,因此W = 1/2mv² - 0 = 1/2mv²。
第四章:动量和动量守恒- 习题5:一个质量为m的物体以速度v1撞击一个静止的质量为2m的物体,求碰撞后两物体的速度。
答案:在没有外力作用的情况下,系统动量守恒。
设碰撞后两物体的速度分别为v2和v3,则mv1 = mv2 + 2mv3。
解得v2 = (3/3)v1,v3 = (-1/3)v1。
第五章:圆周运动- 习题6:一个物体在水平面上做匀速圆周运动,其速度为v,求其向心加速度。
答案:向心加速度a_c = v²/r,其中r是圆周运动的半径。
第六章:刚体的转动- 习题7:一个均匀的圆盘,其质量为M,半径为R,关于通过其中心的轴转动。
求其转动惯量。
答案:对于均匀圆盘,其转动惯量I = 1/2MR²。
第七章:流体力学- 习题8:解释伯努利定律,并给出其数学表达式。
1.第⼀定律——惯性定律
任何质点如不受⼒的作⽤,则将保持静⽌或匀速直线运动状态。
这个定律表明了任何质点都有保持静⽌或匀速直线运动状态的属性。
这种属性称为该质点的惯性。
所以第⼀定律叫做惯性定律。
⽽质点作匀速直线运动称为惯性运动。
由惯性定律可知.如果质点的运动状态(静⽌或匀速直线状态)发⽣改变,即有了加速度,则质点上必受到⼒的作⽤。
因此,⼒是物体运动状态改变的原因。
2.第⼆定律——⼒与加速度的关系定律
质点受⼀⼒F作⽤时所获得的加速度a的⼤⼩与⼒F的⼤⼩成正⽐,⽽与质点的质量成反⽐;加速度的⽅向与作⽤⼒⽅向相同,即
ma=F (4-3-1)
如果质点同时受⼏个⼒的作⽤,则上式中的F应理解为这些⼒的合⼒,⽽a应理解为这些⼒共同作⽤下的质点的加速度,这样式(4—3—1)可写为
ma=ΣFi (4-3-2)
式(4—3—1)或式4—3—2)称为质点动⼒学基本⽅程。
3.第三定律——作⽤与反作⽤定律
两质点相互作⽤的⼒总是⼤⼩相等,⽅向相反,沿同⼀直线,并分别作⽤在两质点上。
这些定律是古典⼒学的基础,它们不仅只适⽤于惯性坐标系,且只适⽤于研究速度远少于光速的宏观物体。
由于⼀般⼯程问题中,⼤多问题都属于上述的适⽤范围,因此以基本定律为基础的古典⼒学在近代⼯程技术中仍占有很重要的地位。
力学1.牛顿第一定律:任何物体总保持静止或匀速直线运动状态,直到受到外力迫使它改变这种运动状态为止。
2.牛顿第二定律:物体受到外力作用时,它获得的加速度与外力的大小成正比,与物体的质量成反比,且加速度方向与外力方向相同。
3:牛顿第三定律:两个物体之间同时存在作用力与反作用力,且沿同一条直线上,大小相等,方向相反。
4.万有引力定律:自然界的一切物体之间都存在吸引力,且这个力与两个物体质量的乘积成正比,与它们之间距离的平方成反比。
5.伽利略相对性原理:一切惯性系中的物体力学规律都是相同的。
6.质心运动定理:质心的运动就像是物体所受的全部质量集中与这个点,且外力全部集中于此质点的运动情况一样。
7.动量定理:物体在运动过程中所受合外力的冲量等于物体动量的改变量。
8.动量守恒定律:如果物体所受外力的矢量和为零,则系统的总动量保持不变。
9.角动量定理:质点或刚体所受的合力矩等于他角动量对时间的变化率。
10.角动量守恒定律:如果质点或刚体所受外力矩的矢量和为零,则系统的角动量保持不变。
11.动能定理:合外力对物体做的功等于物体动能的改变量。
12.机械能守恒定律:如果系统只收到保守力作用,则系统的机械能保持不变。
13.刚体转动定律:刚体的角加速度与合外力矩的大小成正比,与刚体的转动惯量成反比。
14.平行轴定理:刚体对任一转轴的转动惯量等于刚体对通过质心且与该轴平行的轴的转动惯量加上质量与两条轴距离平方的乘积。
15.狭义相对性原理:一切惯性系中的物体规律都是相同的。
16.光速不变原理:在彼此相对静止或匀速直线运动的惯性系中观测光速的大小都相同。
17.杠杆原理:一切平衡杠杆动力臂与动力大小的乘积都等于阻力臂与阻力大小的乘积。
18.阿基米德定律:物体在液体中所受的浮力大小等于排开液体所受重力的大小。
19.惠更斯原理:在波的传播过程中,波阵面上的每一点都可以看作是发射子波的波源,在其后的任一时刻,这些子波产生波阵面的包络面就是新的波阵面。
第3章 力学基本定律与守恒律 习题及答案1.作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j 6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则i t i t t F p t 1401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,ip I imp v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆ 若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t tt F v m t m F v m p v m p 000000d )d (,于是⎰∆==-=∆t p t F p p p 0102d,同理, 12v v ∆=∆,12I I=这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t 解得s 10=t ,(s 20='t 舍去)2.一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=tbt at t bt a I 0221d )(将bat =代入,得 ba I 22=(3)由动量定理可求得子弹的质量202bv a v I m == 3.如图所示,一质量为m 的球,在质量为M 半径为R 的1/4圆弧形滑槽中从静止滑下。
牛顿第二定律练习题牛顿第二定律练习题牛顿第二定律是力学中的基本定律之一,它描述了物体的运动与所受力的关系。
根据牛顿第二定律的表达式F=ma,我们可以通过一些练习题来巩固和应用这一定律。
下面,我们就来看几个关于牛顿第二定律的练习题。
练习题一:一个质量为2 kg的物体受到一个力为10 N的作用力,求物体的加速度是多少?解析:根据牛顿第二定律的表达式F=ma,我们可以将已知的数值代入计算。
力F=10 N,质量m=2 kg,代入公式得到a=F/m=10/2=5 m/s²。
所以,物体的加速度是5 m/s²。
练习题二:一个质量为0.5 kg的物体受到一个力为4 N的作用力,求物体的加速度是多少?解析:同样地,我们将已知的数值代入牛顿第二定律的表达式F=ma。
力F=4 N,质量m=0.5 kg,代入公式得到a=F/m=4/0.5=8 m/s²。
因此,物体的加速度是8 m/s²。
练习题三:一个物体质量为10 kg,受到一个力为20 N的作用力,求物体的加速度是多少?解析:按照牛顿第二定律的表达式F=ma,我们可以将已知的数值代入计算。
力F=20 N,质量m=10 kg,代入公式得到a=F/m=20/10=2 m/s²。
所以,物体的加速度是2 m/s²。
通过上面的练习题,我们不仅巩固了牛顿第二定律的公式,还能够应用这一定律解决实际问题。
牛顿第二定律告诉我们,物体的加速度与所受力成正比,与物体的质量成反比。
当物体所受力增大时,加速度也会增大;当物体质量增大时,加速度会减小。
除了计算加速度,我们还可以利用牛顿第二定律来计算物体所受的力。
例如,如果我们已知一个物体的质量和加速度,可以通过F=ma来计算作用力。
这样的练习题有助于我们理解力学中的基本定律,并能够在实际问题中运用它们。
练习题四:一个质量为3 kg的物体受到一个加速度为4 m/s²的作用力,求作用力的大小是多少?解析:根据牛顿第二定律的表达式F=ma,我们将已知的数值代入计算。
习题二第二章物体的弹性2-1 形变是怎样定义的?它有哪些形式?答:物体在外力作用下发生的形状和大小的改变称为形变。
形变包括弹性形变和范(塑)性形变两种形式,弹性形变指在一定形变限度内,去掉外力后物体能够完全恢复原状的形变,而范(塑)性形变去掉外力后物体不再能完全恢复原状的形变。
2-2 杨氏模量的物理含义是什么?答:在长度形变中,在正比极限范围内,张应力与张应变之比或压应力与压应变之比称为杨氏模量。
杨氏模量反映物体发生长度形变的难易程度,杨氏模量越大,物体越不容易发生长度变形。
2-3 动物骨头有些是空心的,从力学角度来看它有什么意义?答:骨骼受到使其轴线发生弯曲的载荷作用时,将发生弯曲效应。
所产生的应力大小与至中心轴的距离成正比,距轴越远,应力越大。
中心层附近各层的应变和应力都比小,它们对抗弯所起的作用不大。
同样,骨骼受到使其沿轴线产生扭曲的荷载作用时,产生的切应力的数值也与该点到中心轴的距离成正比。
因此,空心的骨头既可以减轻骨骼的重量,又而不会严重影响骨骼的抗弯曲强度和抗扭转性能。
2-4 肌纤维会产生哪几种张力?整体肌肉的实际张力与这些张力有何关系?答:肌纤维会产生两种张力,一种是缩短收缩的主动张力,另一种是伸长收缩的被动张力。
整块肌肉伸缩时的张力是主动张力和被动张力之和。
2-5 如果某人的一条腿骨长0.6m,平均横截面积为3㎝2。
站立时,两腿支持整个人体重为800N,问此人每条腿骨要缩短多少?已知骨的杨氏模量为1010N·m-2。
(8×10-5m)2-6 松弛的二头肌,伸长5㎝时,所需要的力为25N,而这条肌肉处于紧张状态时,产生同样伸长量则需500N的力。
如果把二头肌看做是一条长为0.2㎝,横截面积为50㎝2的圆柱体,求其在上述两种情况下的杨氏模量。
(2×104N·m-2;4×105N·m-2)2-7 在边长为0.02m的正方体的两个相对面上,各施加大小相等、方向相反的切向力9.8×102N,施加力后两面的相对位移为0.00lm,求该物体的切变模量。
(4.9X107N·m-2)2-8 若使水的体积缩小0.1%,需加多大的压强?它是大气压1×105N,m-1’的多少倍?已知水的压缩率为50×10-6atm-1。
(20atm,20倍)习题三第三章流体的运动3-1 若两只船平行前进时靠得较近,为什么它们极易碰撞?答:以船作为参考系,河道中的水可看作是稳定流动,两船之间的水所处的流管在两船之间截面积减小,则流速增加,从而压强减小,因此两船之间水的压强小于两船外侧水的压强,就使得两船容易相互靠拢碰撞。
3-2 为什么一个装有烟囱的火炉,烟囱越高通风的效果越好?(即烟从烟囱中排出的速度越大)答:通常高处空气水平流动速度比较大,如果烟囱越高,则出口处的气体更容易被吸出。
3-3 为什么自来水沿一竖直管道向下流时,形成一连续不断的冰流,而当水从高处的水龙头自由下落时,则断裂成水滴,试说明之。
答:水沿一竖直管道向下流时,由于管壁的摩擦力作用,使得各处水的速度一致,因而可形成连续不断的水流。
水自由下落时,由于水在不同高度处速度不同,因此难以形成连续的流管,故易裂开。
3-4 有人认为从连续性方程来看,管子愈粗流速愈小,而从泊肃叶定律来看,管子愈粗流速愈大,两者似有矛盾,你认为如何?为什么?答:对于一定的管子,流量一定的情况下,根据连续性方程管子愈粗流速愈小;管子两端压强一定的情况下,根据泊肃叶定律管子愈粗流速愈大。
条件不同,结果不同。
3-5 水在粗细不均匀的水平管中作稳定流动,已知截面S1处的压强为110Pa,流速为0.2m·s-1,截面S2处的压强为5Pa,求S2处的流速(内摩擦不计)。
(0.5m·s-1)3-6 水在截面不同的水平管中作稳定流动,出口处的截面积为管的最细处的3倍,若出口处的流速为2m·s-1,问最细处的压强为多少?若在此最细处开一小孔,水会不会流出来。
(85kPa)3-7 在水管的某一点,水的流速为2m·s-1,高出大气压的计示压强为104Pa,设水管的另一点的高度比第一点降低了1m,如果在第二点处水管的横截面积是第一点的1/2,求第二点处的计示压强。
(13.8kPa)3-8 一直立圆柱形容器,高0.2m,直径0.1m,顶部开启,底部有一面积为10-4m2的小孔,水以每秒1.4×10-4m3的快慢由水管自上面放人容器中。
问容器内水面可上升的高度?若达到该高度时不再放水,求容器内的水流尽需多少时间。
(0.1;11.2s.)3-9 试根据汾丘里流量计的测量原理,设计一种测气体流量的装置。
提示:在本章第三节图3-5中,把水平圆管上宽、狭两处的竖直管连接成U形管,设法测出宽、狭两处的压强差,根据假设的其他已知量,求出管中气体的流量。
解:该装置结构如图所示。
3-10 用皮托管插入流水中测水流速度,设两管中的水柱高度分别为5×10-3m和5.4×10-2m,求水流速度。
(0.98m·s-1)3-11 一条半径为3mm的小动脉被一硬斑部分阻塞,此狭窄段的有效半径为2mm,血流平均速度为50㎝·s-1,试求(1)未变窄处的血流平均速度。
(0.22m·s—1)(2)会不会发生湍流。
(不发生湍流,因Re = 350)(3)狭窄处的血流动压强。
(131Pa)3-12 20℃的水在半径为 1 ×10-2m的水平均匀圆管内流动,如果在管轴处的流速为0.1m·s-1,则由于粘滞性,水沿管子流动10m后,压强降落了多少? (40Pa)3-13 设某人的心输出量为0.83×10—4m3·s-1,体循环的总压强差为12.0kPa,试求此人体循环的总流阻(即总外周阻力)是多少N.S·m-5,?3-14 设橄榄油的粘度为0.18Pa·s,流过管长为0.5m、半径为1㎝的管子时两端压强差为2×104Pa,求其体积流量。
(8.7×10—4m3·s-1)3-15 假设排尿时,尿从计示压强为40mmHg的膀胱经过尿道后由尿道口排出,已知尿道长4㎝,体积流量为21㎝3· s-1,尿的粘度为6.9×10-4Pa· s,求尿道的有效直径。
(1.4mm)3-16 设血液的粘度为水的5倍,如以72㎝·s-1的平均流速通过主动脉,试用临界雷诺数为1000来计算其产生湍流时的半径。
已知水的粘度为6.9×10-4Pa·s。
(4.6mm)3-17 一个红细胞可以近似的认为是一个半径为2.0×10-6m的小球,它的密度是1.09×103kg·m—3。
试计算它在重力作用下在37℃的血液中沉淀1㎝所需的时间。
假设血浆的粘度为1.2×10-3Pa·s,密度为1.04×103kg·m—3。
如果利用一台加速度(ω2r)为105g的超速离心机,问沉淀同样距离所需的时间又是多少? (2.8×104s;0.28s)习题四第四章振动4-1 什么是简谐振动?说明下列振动是否为简谐振动:(1)拍皮球时球的上下运动。
(2)一小球在半径很大的光滑凹球面底部的小幅度摆动。
4-2 简谐振动的速度与加速度的表达式中都有个负号,这是否意味着速度和加速度总是负值?是否意味着两者总是同方向?4-3 当一个弹簧振子的振幅增大到两倍时,试分析它的下列物理量将受到什么影响:振动的周期、最大速度、最大加速度和振动的能量。
4-4 轻弹簧的一端相接的小球沿x 轴作简谐振动,振幅为A ,位移与时间的关系可以用余弦函数表示。
若在t=o 时,小球的运动状态分别为 (1)x=-A 。
(2)过平衡位置,向x 轴正方向运动。
(3)过 处,向x 轴负方向运动。
2A x =2A x =(4)过处,向x轴正方向运动。
试确定上述各种状态的初相位。
4-5 任何一个实际的弹簧都是有质量的,如果考虑弹簧的质量,弹簧振子的振动周期将如何变化?4-6 一沿x轴作简谐振动的物体,振幅为5.0×10-2m,频率2.0Hz,在时间t=0时,振动物体经平衡位置处向x轴正方向运动,求振动表达式。
如该物体在t=o时,经平衡位置处向x轴负方向运动,求振动表达式。
[x=5.0×10—2cos(4πt—π/2)m;x=5.0×10-2cos(4πt+π/2)m]4-7 一个运动物体的位移与时间的关系为,x=0.10cos(2.5πt+π/3)m,试求:(1)周期、角频率、频率、振幅和初相位;(2) t=2s时物体的位移、速度和加速度。
[(1)0.80s;2.5π·s-1;1.25Hz;0.10m;π/3(2)-5×10-2m;0.68m/s;3.1m·s-2]4-8 两个同方向、同频率的简谐振动表达式为,x1=4cos(3πt+π/3)m和x 2=3cos(3πt-π/6)m,试求它们的合振动表达式。
[x=5cos(3πt+0.128π)m]4-9 两个弹簧振子作同频率、同振幅的简谐振动。
第一个振子的振动表达式为x1=Acos (ωt+φ),当第一个振子从振动的正方向回到平衡位置时,第二个振子恰在正方向位移的端点。
求第二个振子的振动表达式和二者的相位差。
[x2 = Acos(ωt +φ—π/2),Δφ= -π/2]4-10 由两个同方向的简谐振动:(式中x以m计,t以s计)x1=0.05cos(10t十3π/4),x2=0.06cos(10t -π/4)(1)求它们合成振动的振幅和初相位。
(2)若另有一简谐振动x3 = 0.07cos (10t+φ),分别与上两个振动叠加,问φ为何值时,x1+x3的振幅为最大;φ为何值时,x1+x3的振幅为最小。
[(1)1.0×l0-2m,-π/4;(2)当φ=2n π+3π/4,n=1,2,…时,x1+x3的振幅为最大,当φ=2nπ+3π/4,n=1,2,…时,x2+x3的振幅为最小]习题五第五章波动5-1 机械波在通过不同介质时,它的波长、频率和速度中哪些会发生变化?哪些不会改变?5-2 振动和波动有何区别和联系?5-3,波动表达式y= Acos[(ω(t-x/u)+ φ]中,x/u表示什么? φ表示什么?若把上式改写成y=Acos[(ωt—ωx/u)+ φ],则ωx/u表示什么?5-4 已知波函数为y=Acos(bt—cx),试求波的振幅、波速、频率和波长。