经纬度计算两点的地表距离
- 格式:xlsx
- 大小:23.65 KB
- 文档页数:2
经纬度计算距离计算公式
摘要:
一、经纬度计算距离计算公式的介绍
二、经纬度计算距离的具体步骤
1.将经纬度转换为弧度
2.使用余弦定理计算距离
三、距离计算公式的实际应用
1.地图上的距离测量
2.导航定位
正文:
经纬度计算距离计算公式是一种用于计算地球表面上两点之间距离的方法。
它的基础是利用地球的半径和两点的经纬度来计算出一个弧长,然后将这个弧长转换为直线距离。
在具体计算过程中,首先需要将经纬度转换为弧度。
这是因为经纬度是角度制,而计算距离需要使用弧度制。
转换的方法是将经纬度乘以相应的转换因子。
对于纬度,我国所在的纬度范围是-40°到60°,对应的转换因子是111.321。
对于经度,由于地球是一个近似的椭球体,因此需要根据经度来计算一个修正因子。
转换为弧度后,就可以使用余弦定理来计算距离了。
余弦定理是一个在三角形中广泛应用的公式,可以用来计算两个角的余弦值。
在这个问题中,我们使用余弦定理来计算两个经纬度之间的余弦值,然后再用反余弦函数来计算出
角度,最后将角度转换为距离。
这个公式在实际应用中有很多用途,比如在地图上测量两点之间的距离,或者在导航定位中计算出当前位置和目标位置之间的距离。
这些应用都是基于互联网和移动设备的发展,使得我们可以随时随地获取到精确的经纬度信息。
根据两点经纬度计算距离这些经纬线是怎样定出来的呢?地球是在不停地绕地轴旋转(地轴是⼀根通过地球南北两极和地球中⼼的假想线),在地球中腰画⼀个与地轴垂直的⼤圆圈,使圈上的每⼀点都和南北两极的距离相等,这个圆圈就叫作“⾚道”。
在⾚道的南北两边,画出许多和⾚道平⾏的圆圈,就是“纬圈”;构成这些圆圈的线段,叫做纬线。
我们把⾚道定为纬度零度,向南向北各为90度,在⾚道以南的叫南纬,在⾚道以北的叫北纬。
北极就是北纬90度,南极就是南纬90度。
纬度的⾼低也标志着⽓候的冷热,如⾚道和低纬度地地区⽆冬,两极和⾼纬度地区⽆夏,中纬度地区四季分明。
其次,从北极点到南极点,可以画出许多南北⽅向的与地球⾚道垂直的⼤圆圈,这叫作“经圈”;构成这些圆圈的线段,就叫经线。
公元1884平⾯坐标图年,国际上规定以通过英国伦敦近郊的格林尼治天⽂台的经线作为计算经度的起点,即经度零度零分零秒,也称“本初⼦午线”。
在它东⾯的为东经,共180度;在它西⾯的为西经,共180度。
因为地球是圆的,所以东经180度和西经180度的经线是同⼀条经线。
各国公定180度经线为“国际⽇期变更线”。
为了避免同⼀地区使⽤两个不同的⽇期,国际⽇期变线在遇陆地时略有偏离。
每⼀经度和纬度还可以再细分为60分,每⼀分再分为60秒以及秒的⼩数。
利⽤经纬线,我们就可以确定地球上每⼀个地⽅的具体位置,并且把它在地图或地球仪上表⽰出来。
例如问北京的经纬度是多少?我们很容易从地图上查出来是东经116度24分,北纬39度54分。
在⼤海中航⾏的船只,只要把所在地的经度测出来,就可以确定船在海洋中的位置和前进⽅向。
纬度共有90度。
⾚道为0度,向两极排列,圈⼦越⼩,度数越⼤。
横线是纬度,竖线是经度。
当然可以计算,四元⼆次⽅程。
经度和纬度都是⼀种⾓度。
经度是个两⾯⾓,是两个经线平⾯的夹⾓。
因所有经线都是⼀样长,为了度量经度选取⼀个起点⾯,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤⼠河南岸的格林尼治皇家天⽂台(旧址)的⼀台主要⼦午仪⼗字丝的那条经线为起始经线,称为本初⼦午线。
经纬度两点距离公式
经纬度两点距离公式是用来计算两个地球表面上的点之间的距
离的公式。
由于地球是一个球体,所以在计算地球上两个点之间的距离时,需要考虑球面上的曲率。
经纬度两点距离公式基于球面三角学原理,通过计算两个点之间的弧长来确定它们之间的距离。
经纬度两点距离公式的公式如下:
distance = arccos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1)) * R
其中,lat1和lat2分别是两个点的纬度,lon1和lon2分别是两个点的经度,R是地球的半径,一般取6367公里。
这个公式可以用来计算任意两个地球上的点之间的距离,例如,可以用它来计算两个城市之间的距离,或者计算两个地理坐标之间的距离。
- 1 -。
根据两点经纬度计算距离这些经纬线是怎样定出来的呢?地球是在不停地绕地轴旋转(地轴是一根通过地球南北两极和地球中心的假想线),在地球中腰画一个与地轴垂直的大圆圈,使圈上的每一点都和南北两极的距离相等,这个圆圈就叫作“赤道”。
在赤道的南北两边,画出许多和赤道平行的圆圈,就是“纬圈”;构成这些圆圈的线段,叫做纬线。
我们把赤道定为纬度零度,向南向北各为90度,在赤道以南的叫南纬,在赤道以北的叫北纬。
北极就是北纬90度,南极就是南纬90度。
纬度的高低也标志着气候的冷热,如赤道和低纬度地地区无冬,两极和高纬度地区无夏,中纬度地区四季分明。
其次,从北极点到南极点,可以画出许多南北方向的与地球赤道垂直的大圆圈,这叫作“经圈”;构成这些圆圈的线段,就叫经线。
公元1884平面坐标图年,国际上规定以通过英国伦敦近郊的格林尼治天文台的经线作为计算经度的起点,即经度零度零分零秒,也称“本初子午线”。
在它东面的为东经,共180度;在它西面的为西经,共180度。
因为地球是圆的,所以东经180度和西经180度的经线是同一条经线。
各国公定180度经线为“国际日期变更线”。
为了避免同一地区使用两个不同的日期,国际日期变线在遇陆地时略有偏离。
每一经度和纬度还可以再细分为60分,每一分再分为60秒以及秒的小数。
利用经纬线,我们就可以确定地球上每一个地方的具体位置,并且把它在地图或地球仪上表示出来。
例如问北京的经纬度是多少?我们很容易从地图上查出来是东经116度24分,北纬39度54分。
在大海中航行的船只,只要把所在地的经度测出来,就可以确定船在海洋中的位置和前进方向。
纬度共有90度。
赤道为0度,向两极排列,圈子越小,度数越大。
横线是纬度,竖线是经度。
当然可以计算,四元二次方程。
经度和纬度都是一种角度。
经度是个两面角,是两个经线平面的夹角。
因所有经线都是一样长,为了度量经度选取一个起点面,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤士河南岸的格林尼治皇家天文台(旧址)的一台主要子午仪十字丝的那条经线为起始经线,称为本初子午线。
根据地球上任意两点的经纬度计算两点间的距离地球是一个近乎标准的椭球体,它的赤道半径为6378.140千米,极半径为6356.755千米,平均半径6371.004千米。
如果我们假设地球是一个完美的球体,那么它的半径就是地球的平均半径,记为R。
如果以0度经线为基准,那么根据地球表面任意两点的经纬度就可以计算出这两点间的地表距离(这里忽略地球表面地形对计算带来的误差,仅仅是理论上的估算值)。
设第一点A的经纬度为(LonA, LatA),第二点B的经纬度为(LonB, LatB),按照0度经线的基准,东经取经度的正值(Longitude),西经取经度负值(-Longitude),北纬取90-纬度值(90- Latitude),南纬取90+纬度值(90+Latitude),则经过上述处理过后的两点被计为(MLonA, MLatA)和(MLonB, MLatB)。
那么根据三角推导,可以得到计算两点距离的如下公式:C = sin(MLatA)*sin(MLatB)*cos(MLonA-MLonB) + cos(MLatA)*cos(MLatB)Distance = R*Arccos(C)*Pi/180这里,R和Distance单位是相同,如果是采用6371.004千米作为半径,那么Distance就是千米为单位,如果要使用其他单位,比如mile,还需要做单位换算,1千米=0.621371192mile如果仅对经度作正负的处理,而不对纬度作90-Latitude(假设都是北半球,南半球只有澳洲具有应用意义)的处理,那么公式将是:C = sin(LatA)*sin(LatB) + cos(LatA)*cos(LatB)*cos(MLonA-MLonB)Distance = R*Arccos(C)*Pi/180以上通过简单的三角变换就可以推出。
如果三角函数的输入和输出都采用弧度值,那么公式还可以写作:C =sin(LatA*Pi/180)*sin(LatB*Pi/180)+cos(LatA*Pi/180)*cos(LatB*Pi/180)*cos((MLonA-MLonB)*Pi/180)Distance = R*Arccos(C)*Pi/180也就是:C =sin(LatA/57.2958)*sin(LatB/57.2958)+cos(LatA/57.2958)*cos(LatB/57.2958)*cos((MLonA-MLonB)/57.2958)Distance = R*Arccos(C) = 6371.004*Arccos(C) kilometer = 0.621371192*6371.004*Arccos(C) mile = 3958.758349716768*Arccos(C) mile在实际应用当中,一般是通过一个个体的邮政编码来查找该邮政编码对应的地区中心的经纬度,然后再根据这些经纬度来计算彼此的距离,从而估算出某些群体之间的大致距离范围(比如酒店旅客的分布范围-各个旅客的邮政编码对应的经纬度和酒店的经纬度所计算的距离范围-等等),所以,通过邮政编码查询经纬度这样一个数据库是一个很有用的资源。
根据两点经纬度计算距离这些经纬线是怎样定出来的呢?地球是在不停地绕地轴旋转(地轴是一根通过地球南北两极和地球中心的假想线),在地球中腰画一个与地轴垂直的大圆圈,使圈上的每一点都和南北两极的距离相等,这个圆圈就叫作“赤道”。
在赤道的南北两边,画出许多和赤道平行的圆圈,就是“纬圈”;构成这些圆圈的线段,叫做纬线。
我们把赤道定为纬度零度,向南向北各为90度,在赤道以南的叫南纬,在赤道以北的叫北纬。
北极就是北纬90度,南极就是南纬90度。
纬度的高低也标志着气候的冷热,如赤道和低纬度地地区无冬,两极和高纬度地区无夏,中纬度地区四季分明。
其次,从北极点到南极点,可以画出许多南北方向的与地球赤道垂直的大圆圈,这叫作“经圈”;构成这些圆圈的线段,就叫经线。
公元1884平面坐标图年,国际上规定以通过英国伦敦近郊的格林尼治天文台的经线作为计算经度的起点,即经度零度零分零秒,也称“本初子午线”。
在它东面的为东经,共180度;在它西面的为西经,共180度。
因为地球是圆的,所以东经180度和西经180度的经线是同一条经线。
各国公定180度经线为“国际日期变更线”。
为了避免同一地区使用两个不同的日期,国际日期变线在遇陆地时略有偏离。
每一经度和纬度还可以再细分为60分,每一分再分为60秒以及秒的小数。
利用经纬线,我们就可以确定地球上每一个地方的具体位置,并且把它在地图或地球仪上表示出来。
例如问北京的经纬度是多少?我们很容易从地图上查出来是东经116度24分,北纬39度54分。
在大海中航行的船只,只要把所在地的经度测出来,就可以确定船在海洋中的位置和前进方向。
纬度共有90度。
赤道为0度,向两极排列,圈子越小,度数越大。
横线是纬度,竖线是经度。
当然可以计算,四元二次方程。
经度和纬度都是一种角度。
经度是个两面角,是两个经线平面的夹角。
因所有经线都是一样长,为了度量经度选取一个起点面,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤士河南岸的格林尼治皇家天文台(旧址)的一台主要子午仪十字丝的那条经线为起始经线,称为本初子午线。
hive 经纬度计算距离公式Hive经纬度计算距离公式在数据分析和处理中,经纬度是一种常见的地理位置信息表示方式。
在Hive中,我们可以使用经纬度计算距离公式来计算两个地点之间的距离。
本文将介绍Hive中经纬度计算距离的公式,并探讨如何在Hive中应用这一公式。
1.公式介绍经纬度计算距离的公式主要有两种,分别为球面法和平面法。
球面法通常用于大地测量学,而平面法则通常用于近距离计算。
在Hive 中,我们主要使用球面法来计算两个地点之间的距离。
球面法计算距离的公式主要有Haversine公式和Vincenty公式。
Haversine公式适用于计算两个地球表面上任意两点之间的距离,而Vincenty公式适用于计算两个地球椭球体上的任意两点之间的距离。
在Hive中,我们可以使用Haversine公式来计算经纬度之间的球面距离。
2.在Hive中应用经纬度计算距离公式在Hive中,我们可以使用内置的函数来计算经纬度之间的距离。
Hive提供了一系列的地理位置函数,包括ST_Distance和ST_GeomFromText等。
下面是一个示例,演示如何在Hive中计算两个地点之间的距离。
```SELECT ST_Distance(ST_GeomFromText('POINT(116.397128 39.916527)'), ST_GeomFromText('POINT(117.197939 39.084158)')) as distance;```在上述示例中,ST_GeomFromText函数用于将经纬度坐标转换为几何对象,ST_Distance函数用于计算两个几何对象之间的距离。
通过执行上述查询语句,我们可以得到两个地点之间的距离。
3.注意事项在使用Hive进行经纬度计算距离时,需要注意以下几点:- 经纬度的表示方式:经度表示东西方向,取值范围为-180到180,西经为负数,东经为正数;纬度表示南北方向,取值范围为-90到90,南纬为负数,北纬为正数。
两个经纬度算距离公式及方法以《两个经纬度算距离公式及方法》为标题,本文将会阐述如何利用经纬度,算出两点之间的距离。
首先,我们得先了解什么是经纬度。
经纬度是赤道坐标系,它将地球分割成有序的网格,每一个网格都有一组经纬度来标识,比如北京的经纬度是39°54′24″N,116°23′29″E,柏林的经纬度是52°31′N, 13°25′E。
其次,要知道如何用经纬度计算两点之间的距离,有两种方法。
一种是用球面三角建立的简单平面三角法,它的公式如下:d=2rarcos[sin(A1)sin(A2)+cos(A1)cos(A2)cos(B1-B2)] 其中,A1和B1是第一个点的纬度和经度,A2和B2是第二个点的纬度和经度,r是地球的半径(约为6356.750 km),arccos是反余弦函数。
另一种是使用弧度,公式为:d=r*arcsin[sqrt(sin2((A1-A2)/2)+cos(A1)*cos(A2)*sin2((B1-B2)/2))]可以看出,两种方法都使用了余弦、正弦和平方根等数学函数,计算复杂度较高,但调用起来比较简单,可以方便地实现实际应用。
接下来,介绍如何应用上面的算法,来实现计算两点经纬度的距离的实际应用。
在实际应用中,常常会用到地图服务,比如百度地图、高德地图等,它们提供了比较全面的接口,可以根据不同的需求,实现计算地图上两点之间的距离,算法可以是用上面介绍的简单平面三角建立的算法,也可以使用弧度法,或者使用更高级的算法,比如“墨卡托距离”等。
再者,经纬度计算距离还可以应用于汽车导航系统中,设计时可通过实时的位置信息,估算出最短的行驶距离,从而更好地规划路线,给用户更优质的体验。
最后,要记住,经纬度算距离具有经度和纬度限制,即经度在-180°和180°之间,纬度在-90°和90°之间,这是要求两点之间距离计算准确的前提条件。
1根据两点经纬度计算距离根据两点的经纬度计算距离是地理学中常见的问题,可以用于测算两个地点之间的直线距离。
这个距离计算方法被称为大圆距离(Great Circle Distance)或球面距离(Spherical Distance)。
下面将详细介绍如何通过两点的经纬度计算它们之间的距离。
首先,我们需要了解以下几个重要的概念:1.经度:用来描述地球上一些地点相对于本初子午线的距离,表示为一个角度值,在东经为正数,在西经为负数。
经度的范围是-180到180度。
2.纬度:用来描述地球上一些地点相对于赤道的距离,也表示为一个角度值,在北纬为正数,在南纬为负数。
纬度的范围是-90到90度。
3.大圆距离:地球是一个近似于椭球形的天体,而大圆距离是地球表面上两个点之间的最短距离,沿着大圆弧线(地球表面的一部分)测量。
4. 弧度:弧度是用来描述角度大小的一种单位,1弧度(rad)等于180/π度。
我们将经纬度转换为弧度后再进行计算,这样可以简化计算公式。
现在我们来介绍一个常见的计算两点距离的公式,称为Haversine公式。
该公式基于大圆距离和球面三角学,可以通过经纬度计算两点之间的距离。
Haversine公式的数学表达式如下:a = sin²(Δφ/2) + cos(φ1) * cos(φ2) * sin²(Δλ/2)c = 2 * atan2(√a, √(1-a))d=R*c其中-φ1和φ2分别表示第一个点和第二个点的纬度,单位为弧度。
-Δφ表示两个点纬度之间的差值,单位为弧度。
-Δλ表示两个点经度之间的差值,单位为弧度。
- R表示地球的半径,一般使用平均半径6371km。
通过这个公式,我们可以计算出两点之间的大圆距离d,单位为千米(km)。
下面我们来具体讲解如何用这个公式计算两点距离:1.确定两点的经纬度。
2.将经纬度转换为弧度。
我们将经纬度转换为弧度的公式如下:rad = deg * π / 180其中,rad表示弧度,deg表示度数。
地球上两点间的距离 赖宝锋假设地球是一个椭球体,南北长,东西短,用水平面去截椭球,得到的都是圆面。
设地心为原点,记为O ,北极记为N ,南极记为S ,以NS 为Z 轴,NS为Z 轴正方向。
过O 作垂线,交本初子午线于A ,以OA为X 轴正方向。
按右手定则再建立Y 轴,成立体正交坐标系。
以北纬为正,南纬为负,东经为正,西经为负。
假设南北两极距离为2a ,赤道半径为b 。
那么地球球面方程为2222221x y z b b a++=任取地球球面上一点P ,假设纬度为ϕ,经度为ψ,22ππ-≤ϕ≤,ππ-≤ψ<,则sin ϕ=则22222sin z x y z ϕ=++又2222221x y z b b a++=求得22222222sin cos sin a b z a b ϕ=ϕ+ϕ而z 与sin ϕ同号,故z =222222222222222222242222222222222sin (1)cos sin sin cos cos sin cos sin z b b a b x y b b z b a a a a b b a b b a b a b ϕ+=-=-=-ϕ+ϕϕϕ=-=ϕ+ϕϕ+ϕ=x =ψ=y =ψ=这样,设地球球面上两点1P ,2P ,纬度分别为12,ϕϕ,经度分别为12ψ,ψ,则1P 坐标为1x =1y =1z =2P 坐标为2x =2y =2z =则12||PP =====若用角度制,把ϕ替换为180πϕ,ψ替换为180πψ,即可。
例如,把118.222替换为118.222180π,32.77替换为32.77180π,然后代入公式中运算,即可。
给定圆心O 的经纬度,设为00(,)ϕψ,这就相当于知道圆心的坐标0x =0y =0z =地球球面方程为222222(,,)10x y z f x y z b b a=++-=22f x x b ∂=∂,22f y y b∂=∂,22f zz a ∂=∂ 这样,地球过O 的切平面的方程为000000222222()()()0x y z x x y y z z b b b-+-+-= 即000000222()()()0x y z x x y y z z b b b -+-+-= 于是,到O 距离为r 且在切平面上的点的轨迹方程为2222000000000222()()()()()()0x x y y z z r x x x y y y z z z b b a ⎧-+-+-=⎪⎨---++=⎪⎩令0x x u -=,0y y v -=,0z z w -=,则2222002220u v w r x y z u v w bb a ⎧++=⎪⎨++=⎪⎩2222u v w r w ++=⇒=220022()x y u v b b +=222222222222220000000044444442()x x y y z z z z u uv v r u v r u v b b b a a a a ++=--=-- 2222222200000004444442()()x z x y y z z u uv v r b a b b a a++++= 424224424224220000000()2()a x b z u a x y uv a y b z v b z r ++++= 4424242222000004242424242420000002a x y a y b z b z r u uv v a x b z a x b z a x b z +++=+++444424242222220000000004242424242424242424200000000002()()a x y a x y v a x y v a y b z b z r u uv v a x b z a x b z a x b z a x b z a x b z +++-+=+++++4424244222220000000424242424242424200000000()[()]a x y a y b z a x y b z r u v v a x b z a x b z a x b z a x b z +++-=++++42424424242428224422442284200000000000000042424242424224242200000000()()()()()a yb z a x y a y b z a x b z a x y a b x z a b y z b z a x b z a x b z a x b z a x b z +++-++-==++++这样,4442244228442222000000004242424224242000000()[]()a x y a b x z a b y z b z b z r u v v a x b z a x b z a x b z ++++=+++ 令22000v b z θθ=⇒=令4200424200a x y u v a x b z θ+=+242000424200242a x y ub z a x b z θθθθ=-+=-再通过且平面方程求出w ,这样,我们得到参数方程24220000222()/u v b z x y z w u v b b a θθθ⎧⎪⎪⎪⎪=⎨⎪⎪=-+⎪⎪⎩这样,24200200000000222()/x u x x y v y b z y x y z z w z u v z b b a θθθ⎧=+=+⎪⎪⎪⎪=+=+⎨⎪⎪=+=-++⎪⎪⎩现在讨论其近似的经纬度我们再来看坐标和经纬度之间的关系x y z ⎧=⎪⎪⎪⎪=⎨⎪⎪⎪=⎪⎩我们从中可以看出z 可唯一由ϕ表出:z =这样,ϕ也必然是z 的函数,两边关于z 求导,得到1d d d dz d azϕϕ==1sin d d ab az d ϕϕ=ϕ22d d ϕ==-这样,00000|()|d d z z w dz dzϕϕϕϕϕϕϕϕϕ===+-=+ 再来看x 或y ,它们都是ϕ和ψ的表达式,当ϕ确定下来后,由于cos sin x y ⎧⎧=ψ=⎪⎪⎪⎪⇒⎨⎨⎪⎪=ψ=⎪⎪⎩⎩它们便由x 和y 唯一决定,用反正弦或反余弦或反正切,可唯一地得到ψ。