数学中考模拟试题含答案 (2)
- 格式:doc
- 大小:289.12 KB
- 文档页数:19
2024届山东省济宁市泗水县中考数学仿真模拟试题(二模)同学们,你们好!这段时间,我们学到了许多新的数学知识,也提高了我们的数学思维能力.现在让我们在这里展示一下自己的真实水平吧!祝大家成功!一、选择题(下列各题的四个选项中,只有一项符合题意,请把正确选项前的字母填在答题纸上)注意可以用各种不同的方法来解决你面前的选择题哦!1.下列实数中,最小的数是( )A .B .-2C .D .0232.下列由两个全等的含45°角的直角三角板拼成的图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( )A .B .C .D .882.310-⨯78.2310-⨯982310-⨯60.82310-⨯4.一个几何体的三视图如图所示,那么这个几何体是()A .B .C .D .5.实数a ,b 在数轴上的位置如图所示,则下列判断正确的是()A .B .C .D .0ab >11a b>a b =22a b --<6.计算的结果是( )2241244a a a a a -⎛⎫-÷ ⎪+++⎝⎭A .B .C .D .22a -22a -22a +22a +7.从1,2,3,4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程有实数根的概率为( )230ax x c ++=A .B .C .D .231314168.如图,在△AOB 中,OA =OB =8,点C 的坐标为(0,2),点P 是OB 上一动点,连接CP ,将CP 绕C 点逆时针旋转90°得到线段CD ,使点D 恰好落在AB 上,则点D 的坐标为()第8题A .(2,4)B .(6,2)C .(2,5)D .(2,6)9.如图,将等边三角形纸片ABC 折叠,使点A 落在边BC 上的D 处,MN 为折痕.若,则的值为( )12BD CD =DMDN第9题A .B .C .D .1223455710.如图所示,每个小立方体的棱长为1,图1中共有1个立方体,其中1个看得见,0个看不见;图2中共有8个小立方体,其中7个看得见,1个看不见;图3中共有27个小立方体,其中19个看得见,8个看不见;……;则第10个图形中,其中看得见的小立方体个数是( )第10题A .270B .271C .272D .273第Ⅱ卷(非选择题)二、开动脑筋,耐心填一填!11.分解因式:______.3312m m -=12.中国古典园林里面的窗型,形制丰富,如图1是颐和园小长廊五角加膛窗,其轮廓是一个正五边形,如图2是它的示意图,它的一个外角的度数为______.α第12题13.如图,在塔前的平地上选择一点A ,由A 点看塔顶的仰角是,在A 点和塔之间选择α一点B ,由B 点看塔顶的仰角是.若测量者的眼睛距离地面的高度为1.5m ,AB =9m ,β,,则塔的高度大约为______m .(参考数据:,45α=︒50β=︒sin 500.8︒≈)tan 50 1.2︒≈第13题14.如图,在正方形网格中,点A ,B ,C ,D 均在格点上,过B ,C ,D 的弧交AB 于点E ,若每个正方形的边长为1,则图中阴影部分的面积为______.(结果保留π)第14题15.如图,在矩形ABCD 中,AB =6,BC =8,点E 、F 分别是边AB 、BC 上的动点,且EF =4,点G 是EF 的中点,连接AG 、CG ,则四边形AGCD 面积的最小值为______.第15题三、解答题(解答题要求写出必要的计算步骤或证明过程)16.已知,先化简,再求值:22x y -=()()3312x x y y x -+--17.中华文化源远流长,在文学方面《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某学校为了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行抽样调查,根据调查结果绘制成如下不完整的统计图.请根据以上信息,解决下列问题:(1)补全条形统计图,并计算扇形统计图中“4部”所在扇形的圆心角为______度;(2)本次调查所得数据的众数是______部,中位数是______部;(3)若该校共有3200名学生,请你估计该校读完“4部”的学生有多少人?18.如图,在平面直角坐标系xOy 中,一次函数(,b 为常数,且)与1y k x b =+1k 10k ≠反比例函数(为常数,且)的图象交于点A (m ,6),B (4,-3).2k y x=2k 20k ≠(1)求反比例函数和一次函数的表达式;(2)已知一次函数的图象与y 轴交于点C ,点P 在x 轴上,若△PAC 的面积为1y k x b =+8,求点P 的坐标.19.某企业销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?20.如图,在△ABC 中,∠C 是钝角.(1)尺规作图:在AB 上取一点O ,以O 为圆心,作出⊙O ,使其过A 、C 两点,交AB 于点D ,连接CD ;(不写作法,保留作图痕迹)(2)在(1)所作的图中,若∠BCD =∠A ,,BC =12.1tan 3A =①求证:BC 是⊙O 的切线;②求⊙O 直径的长.21.【问题情境】同学们探究“全等的等腰直角三角形图形变化问题”如图1,△ABC ≌△ADE ,其中∠B =∠D =90°,AB =BC =AD =DE =2,此时,点C 与点E 重合.【操作探究】(1)小明将图1中的两个全等的△ABC 和△ADE 按图2方式摆放,点B 落在AE 上,CB 所在直线交DE 所在直线于点M ,连结AM ,直接写出线段BM 与线段DM 的数量关系是______.【拓展应用】(2)小亮将图1中的△ABC 绕点A 按顺时针方向旋转角度,()090αα︒<<︒线段BC 和DE 相交于点F ,在操作中,小亮提出如下问题,请你解答:①如图3,当时,直接写出线段CE 的长为______;60α=︒②如图4,当旋转到点F 是边DE 的中点时,求线段CE 的长.22.如图1,二次函数的图象与x 轴交于点A ,B (点A 在点B 左侧),239344y x x =-++与y 轴交于点C .点P 是y 轴左侧抛物线上的一个动点,设点P 的横坐标为m ,过点P 作x 轴的平行线交y 轴于点D ,交抛物线于另一点E .(1)求点A ,B ,C 的坐标.(2)如图2,当点P 在第二象限时,连接BC ,交直线PE 于点F .当PF =EF 时,求m 的值.(3)当点P 在第三象限时,以BD 为边作正方形DBMN ,当点C 在正方形DBMN 的边上时,直接写出点D 的坐标.九年级数学试题答案一、选择题(每小题3分,共30分)题号12345678910答案BABCDADBCB二、填空题(每小题3分,共15分)11. 12.72°13.55.514.15.38()()322m m m +-1313π168-三、解答题(共55分)16.(5分)原式=017.(6分)(1)补全条形图 72°(2)众数1部,中位数4部(3)人8320064040⨯=18.(8分)解:(1)∵B (4,-3)在反比例函数的图象上,2k y x =∴,∴反比例函数解析式为:,()24312k =⨯-=-12y x=-∵点A (m ,6)在图象上,∴m =-2,∴A (-2,6),12y x=-∵点A (-2,6),B (4,-3)在一次函数的图象上,1y k x b =+∴,解得,112643k b k b -+=⎧⎨+=-⎩1323k b ⎧=-⎪⎨⎪=⎩∴一次函数解析式为:.332y x =-+(2)由一次函数可知C (0,3),D (2,0),332y x =-+∵△PAC 的面积为8,∴,即,8PAC PAD PCDS S S=-=△△△1163822PD PD ⋅-⨯⋅=∴,∴或.163PD =10,03P ⎛⎫- ⎪⎝⎭22,03⎛⎫⎪⎝⎭19.(8分)解:(1)设函数解析式为y =kx +b ,将(10,30)、(16,24)代入,得:,解得:.10301624k b k b +=⎧⎨+=⎩140k b =-⎧⎨=⎩所以y 与x 的函数解析式为;()401016y x x =-+≤≤(2)根据题意知,()()()()221010405040025225W x y x x x x x =-=--+=-+-=--+∵,∴当时,W 随x 的增大而增大,10a =-<25x <∵,∴当x =16时,W 取得最大值,最大值为144;1016x ≤≤答:每件销售价为16元时销售利润最大为144元。
2019年湖北省武汉市武昌区中考模拟数学试卷(二)一.选择题(共10小题)1.有理数3的相反数是()A.﹣3B.﹣C.3D.2.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣23.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是2个白球、1个黑球B.摸出的是3个黑球C.摸出的是3个白球D.摸出的是2个黑球、1个白球4.若点A(1,2),B(﹣1,2),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于直线x=1对称D.关于直线y=1对称5.如图所示的几何体的俯视图是()A.B.C.D.6.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.7.把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A.B.C.D.8.如图,甲处表示2街6巷的十字路口,乙处表示6街1巷的十字路口.如果用(2,6)表示甲处的位置,那么“(2,6)→(3,6)→(4,6)→(5,6)→(6,6)→(6,5)→(6,4)→(6,3)→(6,2)→(6,1)”表示从甲处到乙处的一种路线(规定:只能沿线向下和向右运动),则从甲处到乙处的路线中经过丙处的走法共有()A.38种B.39种C.40种D.41种9.已知a,b,c满足a+b+c=0,4a+c=2b,则二次函数y=ax2+bx+c(a≠0)的图象的对称轴为()A.直线x=1B.直线x=﹣1C.直线x=D.直线x=﹣10.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC 相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于()A.B.C.D.1二.填空题(共6小题)11.化简的结果是.12.某校举行“中国诗词大会”的比赛每班限报一名选手,九(1)班甲、乙、丙、丁四位选手在班级选拔赛时的数据如表:甲乙丙丁平均分9.89.39.29.8方差 1.5 3.2 3.3 6.8根据表中数据,要从四个同学中选择一个成绩好且发挥稳定的参加比赛,应该选择是(填“甲”或“乙”或“丙”或“丁”)13.化简的结果是.14.如图,在矩形ABCD中,边AD沿DF折叠,点A恰好落在矩形的对称中心E处,则cos∠ADF=.15.如图,一次函数y=3x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣3,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为2,则k的值为.16.如图,在△ABC中,点D,E分别为AB,AC边上一点,且BE=CD,CD⊥BE.若∠A=30°,BD=1,CE=2,则四边形CEDB的面积为.三.解答题(共8小题)17.计算:(2a2)2﹣a•3a3+a5÷a.18.如图,AB∥CD,∠ADC=∠ABC.求证:∠E=∠F.19.“长跑”是中考体育考试项目之一,某中学为了解九年级学生“长跑”的情况,随机抽取部分九年级学生,测试其长跑成绩(男子1000米,女子800米),按长跑的时间的长短依次分为A,B,C,D四个等级进行统计,并绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中共抽取了名学生,扇形统计图中,D类所对应的扇形圆心角大小为;(2)补全条形统计图,所抽取学生“长跑”测试成绩的中位数会落在等级;(3)若该校九年级共有900名学生,请你估计该校C等级的学生约在多少人?20.如图,在下列10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A(3,0),B(4,3)都是格点.将△AOB绕点O顺时针旋转90°得到△COD(点A,B的对应点分别为点C,D).(1)作出△COD;(2)下面仅用无刻度的直尺画△AOD的内心I,操作如下:第一步:在x轴上找一格点E,连接DE,使OE=OD;第二步:在DE上找一点F,连接OF,使OF平分∠AOD;第三步:找格点G,得到正方形OAGC,连接AC,则AC与OF的交点I是△OAD的内心.请你按步骤完成作图,并直接写出E,F,I三点的坐标.21.如图,AB是⊙O的直径,过圆外一点E作EF与⊙O相切于G,交AB的延长线于F,EC⊥AB于H,交⊙O于D,C两点,连接AG交DC于K.(1)求证:EG=EK;(2)连接AC,若AC∥EF,cos C=,AK=,求BF的长.22.随着《流浪地球》的热播,其同名科幻小说的销量也急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次增购该小说,第二次的数量比第一次多500套,且两次进价相同.(1)该科幻小说第一次购进多少套?(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.①直接写出网店销售该科幻小说每天的销售量y(套)与销售单价x(元)之间的函数关系式及自变量x的取值范围;②网店决定每销售1套该科幻小说,就捐赠a(0<a<7)元给困难职工,每天扣除捐赠后可获得的最大利润为1960元,求a的值.23.在△ABC中,∠ACB=90°,CD为高,BC=nAC(1)如图1,当n=时,则的值为;(直接写出结果)(2)如图2,点P是BC的中点,过点P作PF⊥AP交AB于F,求的值;(用含n 的代数式表示)(3)在(2)的条件下,若PF=BF,则n=.(直接写出结果)24.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,0),B两点,与y轴交于C(0,3),对称轴为直线x=2.(1)请直接写出该抛物线的解析式;(2)设直线l与抛物线的对称轴的交点为F,在对称轴右侧的抛物线上有一点G,若=,且S△BAG=6,求点G的坐标;(3)若在直线y=上有且只有一点P,使∠APB=90°,求k的值.参考答案与试题解析一.选择题(共10小题)1.有理数3的相反数是()A.﹣3B.﹣C.3D.【分析】依据相反数的定义求解即可.【解答】解:3的相反数是﹣3.故选:A.2.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣2【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+2≥0,解得x≥﹣2.故选:B.3.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是2个白球、1个黑球B.摸出的是3个黑球C.摸出的是3个白球D.摸出的是2个黑球、1个白球【分析】根据白色的只有两个,不可能摸出三个进行解答.【解答】解:A.摸出的是2个白球、1个黑球是随机事件;B.摸出的是3个黑球是随机事件;C.摸出的是3个白球是不可能事件;D.摸出的是2个黑球、1个白球是随机事件,故选:C.4.若点A(1,2),B(﹣1,2),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于直线x=1对称D.关于直线y=1对称【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:∵点A(1,2),B(﹣1,2),∴点A与点B关于y轴对称,故选:B.5.如图所示的几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上往下看,易得一个长方形,且其正中有一条纵向实线,故选:B.6.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.【分析】分别利用有35名学生以及购票恰好用去750元,得出等式求出答案.【解答】解:设买了x张甲种票,y张乙种票,根据题意可得:.故选:B.7.把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A.B.C.D.【分析】首先根据题意画出表格,然后由表格求得所有等可能的结果与数字x、y满足y =﹣x+5的情况,再利用概率公式求解即可求得答案.【解答】解:列表得:12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)∵共有16种等可能的结果,数字x、y满足y=﹣x+5的有(1,4),(2,3),(3,2),(4,1),∴数字x、y满足y=﹣x+5的概率为:.故选:B.8.如图,甲处表示2街6巷的十字路口,乙处表示6街1巷的十字路口.如果用(2,6)表示甲处的位置,那么“(2,6)→(3,6)→(4,6)→(5,6)→(6,6)→(6,5)→(6,4)→(6,3)→(6,2)→(6,1)”表示从甲处到乙处的一种路线(规定:只能沿线向下和向右运动),则从甲处到乙处的路线中经过丙处的走法共有()A.38种B.39种C.40种D.41种【分析】先确定从甲到丙的路线,再确定从丙到乙的路线,两种路线的乘积即为所求;【解答】解:从甲到丙有4条路线,从丙到乙有10条路线,∴从甲处到乙处经过丙处的走法共有4×10=40种,故选:C.9.已知a,b,c满足a+b+c=0,4a+c=2b,则二次函数y=ax2+bx+c(a≠0)的图象的对称轴为()A.直线x=1B.直线x=﹣1C.直线x=D.直线x=﹣【分析】根据a+b+c=0,4a+c=2b,可以求得a、b、c之间的关系,从而可以求得该函数的对称轴,本题得以解决.【解答】解:∵a+b+c=0,4a+c=2b,∴c=﹣2a,a=b,∵二次函数y=ax2+bx+c(a≠0),∴对称轴是直线x==,故选:D.10.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC 相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于()A.B.C.D.1【分析】连OM,ON,利用切线长定理知OM,ON分别平分角BMN,角CNM,再利用三角形和四边形的内角和可求得△OBM与△NOC还有一组角相等,由此得到它们相似,通过相似比可解决问题.【解答】解:连OM,ON,如图∵MD,MF与⊙O相切,∴∠1=∠2,同理得∠3=∠4,而∠1+∠2+∠3+∠4+∠B+∠C=360°,AB=AC∴∠2+∠3+∠B=180°;而∠1+∠MOB+∠B=180°,∴∠3=∠MOB,即有∠4=∠MOB,∴△OMB∽△NOC,∴=,∴BM•CN=BC2,∴=.故选:B.二.填空题(共6小题)11.化简的结果是.【分析】根据二次根式的性质解答.【解答】解:==.12.某校举行“中国诗词大会”的比赛每班限报一名选手,九(1)班甲、乙、丙、丁四位选手在班级选拔赛时的数据如表:甲乙丙丁平均分9.89.39.29.8方差 1.5 3.2 3.3 6.8根据表中数据,要从四个同学中选择一个成绩好且发挥稳定的参加比赛,应该选择是甲(填“甲”或“乙”或“丙”或“丁”)【分析】首先比较平均数,平均数相同时选择方差较小的参加比赛即可.【解答】解:∵=>>,∴从甲和丁中选择一人参加比赛,∵S甲2<S乙2<S丙2<S丁2,∴选择甲参赛;故答案为:甲.13.化简的结果是.【分析】首先通分,然后根据分式加减法的运算方法,求出算式的值是多少即可.【解答】解:,=+,=,=.14.如图,在矩形ABCD中,边AD沿DF折叠,点A恰好落在矩形的对称中心E处,则cos∠ADF=.【分析】根据折叠的性质得到AD=ED=AE,∠ADF=∠EDF=∠ADE,推出△DAE 的等边三角形,根据等边三角形的性质得到∠ADE=60°,求得∠ADF=30°,于是得到结论.【解答】解:如图,连接AE,∵把∠A沿DF折叠,点A恰好落在矩形的对称中心E处,∴AD=ED=AE,∠ADF=∠EDF=ADE,∴△DAE的等边三角形,∴∠ADE=60°,∴∠ADF=30°,∴cos∠ADF=,故答案为:.15.如图,一次函数y=3x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣3,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为2,则k的值为.【分析】作辅助线,先确定OQ长的最大时,点P的位置,当BP过圆心C时,BP最长,设B(t,3t),则CD=t﹣(﹣3)=t+3,BD=﹣3t,根据勾股定理计算t的值,可得k 的值.【解答】解:如图,连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=BP,∵OQ长的最大值为2,∴BP长的最大值为2×2=4,如图,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=3,∵B在直线y=3x上,设B(t,3t),则CD=t﹣(﹣3)=t+3,BD=﹣3t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴32=(t+3)2+(﹣3t)2,解得t=0(舍)或﹣,∴B(﹣,﹣),∵点B在反比例函数y=(k>0)的图象上,∴k=(﹣)×(﹣)=.故答案为:.16.如图,在△ABC中,点D,E分别为AB,AC边上一点,且BE=CD,CD⊥BE.若∠A=30°,BD=1,CE=2,则四边形CEDB的面积为.【分析】作辅助线CK⊥AB,EH⊥AB,由两直线垂直得∠BMD=∠CKD=∠BHE=90°,角角边证明△CKD≌△BHE,其性质得DK=EH;设CK=x,根据直角三角的性质,线段的和差得AK=,EH=DK=x﹣,BH=4+﹣x;建立等量关系4+﹣x=x,求得CK=,DK═,最后由勾股定理,面积公式求得四边形CEDB的面积为.【解答】解:分别过点C、E两点作CK⊥AB,EH⊥AB交AB于点K和点H,设CK=x,如图所示:∵CD⊥BE,∴∠BMD=90°,∴∠EBH+∠CDB=90°,同理可得:∠EBH+∠BEH=90°,∴∠CDB=∠BEH,又∵CK⊥AB,EH⊥AB,∴∠CKD=∠BHE=90°,在△CKD和△BHE中,,∴△CKD≌△BHE(AAS),∴DK=EH,又∵Rt△AKC中,∠A=30°,∴AC=2x,AK=,又∵AC=AE+EC,CE=2,∴AE=2x﹣2,∴EH=DK=x﹣,又∵DK=DB+BK,BD=1,∴BK=x﹣﹣1,又∵AK=AH+BH+BK,∴BH=4+﹣x,又∵BH=CK,∴4+﹣x=x,解得:x=,∴DK=x﹣=,在Rt△CDK中,由勾股定理得:CD2=CK2+DK2==,∴===.故答案为.三.解答题(共8小题)17.计算:(2a2)2﹣a•3a3+a5÷a.【分析】分别求出每(2a2)2a=4a4;a•3a3=3a4;a5÷a=a4;再运算即可;【解答】解:(2a2)2﹣a•3a3+a5÷a=4a4﹣3a4+a4=2a4;18.如图,AB∥CD,∠ADC=∠ABC.求证:∠E=∠F.【分析】直接利用平行线的性质得出∠ABC=∠DCF,再利用已知得出∠E=∠F.【解答】证明:∵AB∥CD,∴∠ABC=∠DCF.又∵∠ADC=∠ABC∴∠ADC=∠DCF.∴DE∥BF.∴∠E=∠F.19.“长跑”是中考体育考试项目之一,某中学为了解九年级学生“长跑”的情况,随机抽取部分九年级学生,测试其长跑成绩(男子1000米,女子800米),按长跑的时间的长短依次分为A,B,C,D四个等级进行统计,并绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中共抽取了45名学生,扇形统计图中,D类所对应的扇形圆心角大小为104°;(2)补全条形统计图,所抽取学生“长跑”测试成绩的中位数会落在C等级;(3)若该校九年级共有900名学生,请你估计该校C等级的学生约在多少人?【分析】(1)这次调查中共抽取学生:8÷=45(名),D类所对应的扇形圆心角360°×=104(度);(2)B等级学生:45﹣8﹣20﹣13=4,据此补全条形统计图;(3)该校九年级900名学生中估计C等级的学生约有:900×=400(名).【解答】解:(1)这次调查中共抽取学生:8÷=45(名),D类所对应的扇形圆心角360°×=104(度),故答案为45,104°;(2)B等级学生:45﹣8﹣20﹣13=4补全条形统计图如下共有45名学生,因此中位数为第23,落在C等级.故答案为C;(3)该校九年级900名学生中估计C等级的学生约有:900×=400(名).答:该校九年级900名学生中估计C等级的学生约有400人.20.如图,在下列10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A(3,0),B(4,3)都是格点.将△AOB绕点O顺时针旋转90°得到△COD(点A,B的对应点分别为点C,D).(1)作出△COD;(2)下面仅用无刻度的直尺画△AOD的内心I,操作如下:第一步:在x轴上找一格点E,连接DE,使OE=OD;第二步:在DE上找一点F,连接OF,使OF平分∠AOD;第三步:找格点G,得到正方形OAGC,连接AC,则AC与OF的交点I是△OAD的内心.请你按步骤完成作图,并直接写出E,F,I三点的坐标.【分析】(1)根据要求作图即可(2)根据要求作图即可【解答】解:(1)如图所示(2)如图所示,每格单位长度都为1,即可得E(5,0),F(4,﹣2),I(2,﹣1)21.如图,AB是⊙O的直径,过圆外一点E作EF与⊙O相切于G,交AB的延长线于F,EC⊥AB于H,交⊙O于D,C两点,连接AG交DC于K.(1)求证:EG=EK;(2)连接AC,若AC∥EF,cos C=,AK=,求BF的长.【分析】(1)连接OG.根据切线的性质得到∠OGE=90°,证明∠EKG=∠AGE,根据等腰三角形的判定定理证明结论;(2)连接OC,设CH=4k,根据余弦的定义、勾股定理用k表示出AC、AH,根据勾股定理列式求出k,设⊙O半径为R,根据勾股定理列式求出R,根据余弦的定义求出OF,计算即可.【解答】(1)证明:连接OG.∵EF是⊙O的切线,∴∠OGE=90°,即∠OGA+∠AGE=90°.∵OA=OG,∴∠OGA=∠OAG,∴∠OAG+∠AGE=90°.∵CD⊥AB,∴∠AHK=90°,则∠OAG+∠AKH=90°.∴∠AKH=∠AGE.∵∠AKH=∠EKG,∴∠EKG=∠AGE,∴EG=EK;(2)如图,连接OC,设CH=4k,∵cos∠ACH==,∴AC=5k,由勾股定理得,AH==3k,∵AC∥EF,∴∠CAK=∠EGA,又∠AKC=∠EKG,而由(1)知∠EKG=∠EGA,∴∠CAK=∠CKA,∴CK=AC=5k,HK=CK﹣CH=k.在Rt△AHK中,AH2+HK2=AK2,即(3k)2+k2=()2,解得,k=1,则CH=4,AC=5,AH=3,设⊙O半径为R,在Rt△OCH中,OH2+CH2=OC2,即(R﹣3)2+42=R2,解得,R=,由AC∥EF知,∠CAH=∠F,则∠ACH=∠GOF,在Rt△OGF中,cos∠ACH=cos∠GOF==,解得,OF=,∴BF=OF﹣OB=.22.随着《流浪地球》的热播,其同名科幻小说的销量也急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次增购该小说,第二次的数量比第一次多500套,且两次进价相同.(1)该科幻小说第一次购进多少套?(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.①直接写出网店销售该科幻小说每天的销售量y(套)与销售单价x(元)之间的函数关系式及自变量x的取值范围;②网店决定每销售1套该科幻小说,就捐赠a(0<a<7)元给困难职工,每天扣除捐赠后可获得的最大利润为1960元,求a的值.【分析】(1)设该科幻小说第一次购进m套,根据题意列方程即可得到结论;(2)根据题意列函数关系式即可;(3)设每天扣除捐赠后可获得利润为w元.根据题意得到w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)求得对称轴为x=35+a,①若0<a<6,则30,则当x=35+a时,w取得最大值,解方程得到a1=2,a2=58,于是得到a=2;②若6<a<7,则38<35a,则当30≤x≤38时,w随x的增大而增大;解方程得到a=,但6<a<7,故舍去.于是得到结论.【解答】解:(1)设该科幻小说第一次购进m套,则=,∴m=1000,经检验,当m=1000时,m(m+500)≠0,则m=1000是原方程的解,答:该科幻小说第一次购进1000套;(2)根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38);(3)设每天扣除捐赠后可获得利润为w元.w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)对称轴为x=35+a,①若0<a<6,则30,则当x=35+a时,w取得最大值,∴(35+a﹣20﹣a)[﹣10x(35+a)+500]=1960∴a1=2,a2=58,又0<a≤6,则a=2;②若6<a<7,则38<35a,则当30≤x≤38时,w随x的增大而增大;∴当x=38时,w取得最大值,则(38﹣20﹣a)(﹣10×38+500)=1960,∴a=,但6<a<7,故舍去.综上所述,a=2.23.在△ABC中,∠ACB=90°,CD为高,BC=nAC(1)如图1,当n=时,则的值为;(直接写出结果)(2)如图2,点P是BC的中点,过点P作PF⊥AP交AB于F,求的值;(用含n 的代数式表示)(3)在(2)的条件下,若PF=BF,则n=.(直接写出结果)【分析】(1)设AC=2k,BC=3k,求出AD,BD即可解决问题.(2)过点P作PG∥AC交AB于点G.证明△PCE∽△PGF,即可解决问题.(3)设PF=x,AP=2nx,利用勾股定理构建方程求出n即可.【解答】解:(1)如图1中,∵BC=AC,∴可以假设AC=2k,BC=3k,∵∠ACB=∠ADC=90°,∴AB=k,∵•AC•BC=•AB•CD,∴CD=k,∴AD==k,BD=k,∴=,故答案为.(2)过点P作PG∥AC交AB于点G.∴∠PGF=∠CAD,∠GPC=90°,∵CD⊥AB,∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠PCE=90°,∴∠PCE=∠CAD,∴∠PCE=∠PGF,又∵PF⊥AP,∴∠CPE+∠APG=∠FPG+∠APG=90°,∴∠CPE=∠GPF,∴△PCE∽△PGF,∴=,又∵点P是BC的中点,∴AC=2PG,∴==n.(3)由(2)可知=n,则可以假设PF=x,PE=nx,∵∠GPB=90°,PF=BF,则PF=BF=GF=x,则AG=2x,∵△PCE∽△PGF,∴==n,则CE=nGF=nx,又∵∠ACB=90°,则AE=PE=nx,在Rt△APF中,AP2+PF2=AF2,则x2+(2nx)2=(3x)2,∴n=,故答案为.24.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,0),B两点,与y轴交于C(0,3),对称轴为直线x=2.(1)请直接写出该抛物线的解析式;(2)设直线l与抛物线的对称轴的交点为F,在对称轴右侧的抛物线上有一点G,若=,且S△BAG=6,求点G的坐标;(3)若在直线y=上有且只有一点P,使∠APB=90°,求k的值.【分析】(1)抛物线与x轴另外一个交点坐标为(3,0),则函数的表达式为:y=a(x ﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,即可求解;(2)分点G在点B下方、点G在点B上方两种情况,分别求解即可;(3)由△P AS∽△BPT,则,即可求解.【解答】解:(1)∵抛物线过点A(1,0),且对成轴为直线x=2,则抛物线与x轴另外一个交点坐标为(3,0),则函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),令x=0则3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3…①;(2)过点B作BM∥x轴交对称轴于点M,设对称轴与x轴交于点N.∴,又AN=1,则BM=2,点B的坐标为(4,3),∵直线AB的解析式为y=kx+m,则,则,则y=x﹣1,①若点G在点B下方,则过点G作GQ∥y轴交AB于Q,则设点G(t,t2﹣4t+3),Q (t,t﹣1),∴S△BAG=6=S△AQG+S△BGQ=GQ×3=(t﹣1﹣t2+4t﹣3),即:t2﹣5t+8=0,△<0,无解;②若点G在点B上方,则过点G作GH∥AB交x轴于H,则S△BAG=6=S△ABH,即:AH×3=6,则AH=4,则H(﹣3,0),则可设直线GH的解析式为:y=x+t,将H(﹣3,0)代入得,t=3.∴直线GH的解析式为y=x+3…②,联立①②并解得:x=0或5(舍去0),∴G(5,8);(3)分别过点A,B作直线y=﹣的垂线,垂足分别为S,T,则△P AS∽△BPT,则,直线l的解析式为y=kx﹣k…③,联立①③并解得:x=1或k+3,则点B(k+3,k2+2k),设:PS=x,则x(k+2﹣x)=(k2+2k+)有两个相等实数根,△=(k+2)2﹣2k2﹣4k﹣1=0,解得:k=(舍去负值),故:k=.。
中考数学模拟试卷(二)一、选择题(本题共10小题;每小题3分,共30分)下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的.1.13-的值是 ( )A .-3B .3C .13D .-132.函数(1)y k x =-中,如果y 随着x 增大而增大,那么常数k 的取值范围是( ) A .1k < B .1k ≤ C .1>k D .1k ≥ 3.一个几何体的三视图如图所示,则此几何体是( ) A .圆锥 B .棱柱 C .圆柱 D .棱台3.下列计算正确的是 ( )A.422a a a =+; B .236a a a =÷; C .32a a a =⋅; D .532)(a a =. 4.如果b a <,0<c ,那么下列不等式成立的是( ).A. c b c a +<+;B. c b c a +-<+-;C. bc ac <;D.cbc a <. 5.在一个不透明的袋子中装有2个白球,n 个红球,它们除了颜色不同外,其余均相同. 若从中随机摸出一个球,摸到红球的概率是54,则n 的值等于( ) A .15个 B .8个 C .10个 D .6个6.在平面直角坐标系中,若点P (m ,m+2)在第二象限,则mx 的取值范围为 ( ) A .-2 <m<0 B .m <-2 C .m >0 D .m >-2 7.如图所示,点P 为反比例函数y =2x上的一动点,作PD ⊥x 轴于点D ,△POD 的面积为k ,则函数y =k x -1的图像为 ( )8.如图所示,将矩形ABCD 沿对角线BD 折叠,使C 落在C'处, BC'交AD 于E ,则下列结论不一定成立的是 ( ) A .AD =BC' B .∠EBD =∠EDB C .△ABE ∽△CBD D .sin ∠ABE =AEED9.如图所示,已知Rt △ABC 中,∠ABC =90°,∠BAC =30°,AB =3,将△ABC 绕顶点C 顺时针旋转至△A'B'C 的位置,且A 、C 、B'三点在同一条直线上, 则点A 经过的最短路线的长度是 ( )(第3题图)俯视图 主视图左视图A .8cmB .43cmC .323πcm D .83πcm10.如图所示,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°.现给出以下四个结论:①∠A =45°; ②AC =AB ;③AE =BE ;④CE ·AB =2BD 2,其中正确结论的序号是 ( ) A .①②B .②③C .②④D .③④二、填空题(本题共8小题;每小题3分,共24分)请把最后结果填在题中横线上.请把最后结果填在题中横线上.11.分解因式:a 3-a =________________.12.如图所示的围棋盘放在平面直角坐标系内,黑棋A 的坐标为(-1, 2),那么白棋B 的坐标是____________.13.4支排球队进行单循环比赛(参加比赛的每两支球队之间都要进行一 场比赛),则总的比赛场数为_______场.14.若关于x 的分式方程311x a x x--=-无解,则a =_______.15.现在一般超市都是使用环保购物袋,某超市有偿..提供可重复使用的三种环保购物袋,每个售价分别为1元、2元和3元,这三种环保购物袋每个最多分别能装大米3kg 、5kg和8kg .6月7日,小明和爸爸在该超市选购了3个环保购物袋用来装刚购买的20kg 散装大米,他们选购的3个环保购物袋至少..应付给超市___________元. 16.如图所示的抛物线是二次函数y =ax 2-3x +a 2-1的图像,那么a 的值是_______. 17.如图所示,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,则DE 的长是________.18.如图所示为手的示意图,在各个手指间标记字母A 、B 、C 、D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是_______;当字母C 第201次出现时,恰好数到的数是_______;当字母C 第2n +l 次出现时(n 为正整数),恰好数到的数是_______(用含n 的代数式表示).A B CD E(第10题Ox yE DC A B三、解答题(本题共11小题;共76分.解答应写出文字说明、证明过程或演算步骤)19.(本小题5分)计算:0183221π⎛⎫-+⎪-⎝⎭20.(本小题5分)先化简,再求值:2239(1)x xx x---÷,其中31x=21.(本小题5分)解不等式组:12,132,2xx x->⎧⎪⎨-≤+⎪⎩………………①…………②22.(本小题6分)如图所示,△ABC在方格纸中.(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2).并求出B点坐标.(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A'B'C'.(3)计算△A'B'C'的面积S.23.(本小题6分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如右图所示:(1)请你完成如左图所示游戏一个回合所有可能出现的结果的树状图.(2)求一个回合能确定两人先下棋的概率.解:(1)树状图为:24.(本题满分6分)结合“两纲教育”,某中学600名学生参加了“让青春飞扬”知识竞赛.竞赛组委会从中随机抽取了部分学生的成绩(得分都是整数..,最高分98分)作为样本进行统计分析,并绘制成抽样分析分类统计表和频率分布直方图(如表1和图6,部分数据缺失).试根据所提供的信息解答下列问题:(1) 本次随机抽样调查的样本容量是 ▲ ;(2) 试估计全校所有参赛学生中成绩等第为优良的学生人数;(3) 若本次随机抽样的样本平均数为76.5,又表1中b 比a 大15,试求出a 、b 的值; (4) 如果把满足q x p ≤≤的x 的取值范围记为[p ,q ],表1中a 的取值范围是 ▲ . (A )[69.5,79.5] (B )[65,74] (C )[66.5,75.5] (D )[66,75]25.(本小题8分)如图所示,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200m 范围内为原始森林保护区,在MN 上的点A 处测得点C 在点A 的北偏东45°方向上,从A 向东走600m 到达B 处,测得点C 在点B 的北偏西60°方向上. (1)MN 是否穿过原始森林保护区?为什么?(参考数据:3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?26.(本小题8分)如图a 所示,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE 、GC .成绩范围60<x 8060<≤x80≥x 成绩等第 不合格合格优良人数 40平均成绩57a b表1:抽样分析分类统计表抽样分析频率分布直方图(图6)成绩0.01 0.04 组距频率0.020.0349.5 0.1 0.20.3 0.15 59.5 69.5 79.5 89.599.5(1)试猜想AE 与GC 有怎样的位置关系,并证明你的结论.(2)将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图b 所示,连接AE 和CG .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.27.(本小题9分)如图所示,已知⊙O 的半径为6cm ,射线PM 经过点O ,OP =10cm ,射线PN 与⊙O 相切于点Q .A 、B 两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动,设运动时间为t s . (1)求PQ 的长.(2)当t 为何值时,直线AB 与⊙O 相切?OPQMNAB28.(本小题9分)某茶厂种植“春蕊”牌绿茶,由历年来市场销售行情知道,从每年的3 月25日起的180天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用图a 中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用图b 所示的抛物线表示.B C D EFG A a 图 B C D E F G A b 图(1)直接写出图a中表示的市场销售单价y(元)与上市时间£(天)(t>0)的函数关系式.(2)求出图b中表示的种植成本单价z(元)与上市时间t(天)(t>0)的函数关系式.(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500g.)29.(本小题9分)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=5分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标.(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式.(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.参考答案1~10. BCCAB AACDC 11.()()11a a a +- 12.(-3,-2) 13.6 14.1或-2 15.8 16.-1 17.601318.B 603 6n +3 19.0 20.解:原式=9)32(2-⨯--x xx x x x =)3)(3(3-+⨯-x x x x x=31+x 当13-=x 时,原式=231+=32-21.由①,得x>3. 由②,得x ≤10. ∴原不等式的解集为3<x ≤10. 22.(1)图略.B (2,1) (2)图略(3)16 23.(1)如图所示:(2)3424..解:(1) 80 ; (2) 成绩位于79.5~89.5的频率为25.015.03.02.01.01=+++-)(.所以全校所有参赛学生中成绩等第为优良的学生人数为24015.025.0600=+⨯)((人) (3) 本次随机抽样分析成绩不合格的人数为81.080=⨯(人),成绩优良的人数为324.080=⨯(人),依据题意,可得方程组⎪⎩⎪⎨⎧=+-=++⨯.15,5.76803240857b a ba 解得 ⎩⎨⎧==.87,72b a(4) D .25.(1)MN 不会穿过原始森林保护区 (2)原计划完成这项工程需要25天 26.(1)AE ⊥GC (2)成立 27.(1)8cm (2)当t 为0.5s 或3.5s 时,直线AB 与⊙O 相切28.(1) ()()2160 0<t<120,380 (120t 150),220 150t 1805t y t ⎧-+⎪⎪=≤≤⎨⎪⎪+≤≤⎩(2)()2111020300z t =-+(t>0)(3)在t =10时,纯收益单价最大,最大值为100元。
2022年北京市海淀区中考数学模拟真题练习 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、若x =1是关于x 的一元二次方程x 2+mx ﹣3=0的一个根,则m 的值是( ) A .﹣2 B .﹣1 C .1 D .2 2、已知关于x ,y 的方程组3424x y ax by -=⎧⎨-=-⎩和2593x y bx ay +=⎧⎨+=⎩的解相同,则()20213a b +的值为( ) A .1 B .﹣1 C .0 D .20213、下列方程中,属于二元一次方程的是( ) A .xy ﹣3=1 B .4x ﹣2y =3 C .x +2y =4 D .x 2﹣4y =14、如图,已知AD ∥BC ,欲用“边角边”证明△ABC ≌△CDA ,需补充条件( ) A .AB = CD B .∠B = ∠D C .AD = CB D .∠BAC = ∠DCA5、在平面直角坐标系xOy 中,点A (2,1)与点B (0,1)关于某条直线成轴对称,这条直线是( )·线○封○密○外A .x 轴B .y 轴C .直线1x =(直线上各点横坐标均为1)D .直线1y =(直线上各点纵坐标均为1)6、文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话.小张:该工艺品的进价是每个22元;小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?设这种工艺品的销售价每个应降低x 元,由题意可列方程为( )A .(38﹣x )(160+3x ×120)=3640B .(38﹣x ﹣22)(160+120x )=3640C .(38﹣x ﹣22)(160+3x ×120)=3640D .(38﹣x ﹣22)(160+3x×120)=3640 7、已知抛物线()20y ax bx c a =++≠的对称轴为直线1x =,与x 轴的一个交点坐标为()3,0A ,其部分图象如图所示,下列结论中:①0abc <;②240b ac ->;③抛物线与x 轴的另一个交点的坐标为()1,0-;④方程21ax bx c ++=有两个不相等的实数根.其中正确的个数为( )A .1个B .2个C .3个D .4个8、已知23m x y 和312n x y 是同类项,那么m n +的值是( ) A .3 B .4 C .5 D .69、某三棱柱的三种视图如图所示,已知俯视图中1tan 2B =,7ABC S =,下列结论中:①主视图中3m =;②左视图矩形的面积为18;③俯视图C ∠的正切值为23.其中正确的个数为( ) A .3个B .2个C .1个D .0个 10、下列四个实数中,无理数是( ) AB .0.131313…C .227 D.2 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、用13米长的篱笆围成一个面积为20平方米的长方形场地,其中一边靠墙,若设垂直于墙的一边为x ,则可列出的方程是 ___; 2、万盛是重庆茶叶生产基地和名优茶产地之一,以“重庆第一泡•万盛茶飘香”为主题的采茶制茶、品茶赏茶,茶艺表演活动在万盛板辽湖游客接待中心开幕,活动持续两周,活动举办方为游客准备了三款2021年的新茶:清明香,云雾毛尖、滴翠剑茗.第一批采制的茶叶中清明香、云雾毛尖、滴翠剑茗的数量(盒)之比为2:3:1,由于品质优良宣传力度大,网上的预订量暴增,举办方加紧采制了第二批同种类型的茶叶,其中清明香增加的数量占总增加数量的12,此时清明香总数量达到三种茶叶总量的49,而云雾毛尖和滴翠剑茗的总数量恰好相等.若清明香、云雾毛尖、滴翠剑茗三种茶叶每盒的成本分别为500元、420元,380元,清明香的售价为每盒640元,活动中将清明香的18供游客免费品尝,活动结束时两批茶叶全部卖完,总利润率为16%,且云雾毛尖的销售单价等于另外两种茶叶销售单价之和的614,则滴翠剑茗单价为____元 3、小河的两条河岸线a ∥b ,在河岸线a 的同侧有A 、B 两个村庄,考虑到施工安全,供水部门计划在岸线b 上寻找一处点Q 建设一座水泵站,并铺设水管PQ ,并经由PA 、PB 跨河向两村供水,其中QP ⊥a 于点P .为了节约经费,聪明的建设者们已将水泵站Q 点定好了如图位置(仅为示意图),能使·线○封○密○外三条水管长PQ PA PB ++的和最小.已知 1.6km PA =, 3.2km PB =,0.1km PQ =,在A 村看点P 位置是南偏西30°,那么在A 村看B 村的位置是_________.4、已知射线OP ,在射线OP 上截取OC =10cm ,在射线CO 上截取CD =6cm ,如果点A 、点B 分别是线段OC 、CD 的中点,那么线段AB 的长等于_______cm .5、如图,在△ABC 中,∠ABC =120°,AB =12,点D 在边AC 上,点E 在边BC 上,sin∠ADE =45,ED =5,如果△ECD 的面积是6,那么BC 的长是_____.三、解答题(5小题,每小题10分,共计50分)1、解方程:3471168x x +=+.2()20120204cos 452⎛⎫---︒ ⎪⎝⎭3、一司机驾驶汽车从甲地到乙地,他以60km/h 的平均速度行驶4h 到达目的地,并按照原路返回甲地.(1)返回过程中,汽车行驶的平均速度v 与行驶的时间t 有怎样的函数关系? (2)如果要在3h 返回甲地,求该司机返程的平均速度;(3)如图,是返程行驶的路程s (km )与时间t (h )之间的函数图象,中途休息了30分钟,休息后以平均速度为85km/h 的速度回到甲地.求该司机返程所用的总时间.4、已知:如图,E ,F 是线段BC 上两点,AB ∥CD ,BE =CF ,∠A =∠D .求证:AF =DE . 5. -参考答案- 一、单选题1、D【分析】·线○·封○密○外把x =1代入方程x 2+mx -3=0,得出一个关于m 的方程,解方程即可.【详解】解:把x =1代入方程x 2+mx -3=0得:1+m -3=0,解得:m =2.故选:D .【点睛】本题考查了一元二次方程的解和解一元一次方程,关键是能根据题意得出一个关于m 的方程.2、B【分析】联立不含a 与b 的方程组成方程组,求出方程组的解得到x 与y 的值,进而求出a 与b 的值,即可求出所求.【详解】解:联立得:342259x y x y -=⎧⎨+=⎩, 解得:21x y =⎧⎨=⎩, 则有2423a b b a -=-⎧⎨+=⎩, 解得:12a b =-⎧⎨=⎩, ∴()()2021202113312a b +⨯-+=⎡⎤⎣=-⎦,故选:B .【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值. 3、B【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【详解】解:A 、xy -3=1,是二元二次方程,故本选项不合题意;B 、4x -2y =3,属于二元一次方程,故本选项符合题意;C 、x +2y =4,是分式方程,故本选项不合题意;D 、x 2-4y =1,是二元二次方程,故本选项不合题意; 故选:B . 【点睛】 此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程. 4、C 【分析】 由平行线的性质可知DAC BCA ∠=∠,再由AC 为公共边,即要想利用“边角边”证明△ABC ≌△CDA ,可添加AD =CB 即可. 【详解】 ∵AD ∥BC , ∴DAC BCA ∠=∠. ∵AC 为公共边, ·线○封○密○外∴只需AD =CB ,即可利用“边角边”证明△ABC ≌△CDA .故选:C .【点睛】本题考查平行线的性质,三角形全等的判定.理解“边角边”即为两边及其夹角是解答本题的关键.5、C【分析】利用成轴对称的两个点的坐标的特征,即可解题.【详解】根据A 点和B 点的纵坐标相等,即可知它们的对称轴为20122A B x x x ++===. 故选:C .【点睛】本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.6、D【分析】由这种工艺品的销售价每个降低x 元,可得出每个工艺品的销售利润为(38-x -22)元,销售量为(160+3x ×120)个,利用销售总利润=每个的销售利润×销售量,即可得出关于x 的一元二次方程,此题得解.【详解】解:∵这种工艺品的销售价每个降低x 元,∴每个工艺品的销售利润为(38-x -22)元,销售量为(160+3x ×120)个.依题意得:(38-x -22)(160+3x×120)=3640.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7、C【分析】根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①如图,开口向上,得0a >,12b x a =-=,得20b a =-<, 抛物线与y 轴交于负半轴,即0,0x y c ==<, 0abc ∴>, 故①错误; ②如图,抛物线与x 轴有两个交点,则240b ac ->; 故②正确; ③由对称轴是直线1x =,抛物线与x 轴的一个交点坐标为(3,0)A ,得到:抛物线与x 轴的另一个交点坐标为(1,0)-, 故③正确; ④如图所示,当1x =时,0y <, 21ax bx c ∴++=根的个数为1y =与2y ax bx c =++图象的交点个数, ·线○封○密·○外有两个交点,即21ax bx c++=有两个根,故④正确;综上所述,正确的结论有3个.故选:C.【点睛】主要考查抛物线与x轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.8、C【分析】把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.【详解】由题意知:n=2,m=3,则m+n=3+2=5故选:C【点睛】本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.9、A【分析】过点A作AD⊥BC与D,根据BD=4,1tan2B=,可求AD=BD1tan422B=⨯=,根据7ABCS=△,得出BC =7,可得DC =BC -BD =7-4=3可判断①;根据左视图矩形的面积为3×6=18可判断②;根据tan C23AD CD ==可判断③. 【详解】 解:过点A 作AD ⊥BC 与D , ∵BD =4,1tan 2B =, ∴AD =BD 1tan 422B =⨯=, ∵7ABC S =△, ∴112722ABC S BC AD BC =⋅=⨯=△, ∴BC =7, ∴DC =BC -BD =7-4=3, ∴①主视图中3m =正确; ∴左视图矩形的面积为3×6=18, ∴②正确; ∴tan C 23AD CD ==, ∴③正确;·线○封○密○外其中正确的个数为为3个.故选择A.【点睛】本题考查三视图与解直角三角的应用相结合,掌握三视图,三角形面积公式,正切定义,矩形面积公式是解题关键,本题比较新颖,难度不大,是创新题型.10、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.无理数包括无线不循环小数和开方不能开尽的数,由此即可判定选择项.【详解】解:A3=-,是整数,属于有理数,故本选项不合题意;B.0.131313…是无限循环小数,属于有理数,故本选项不合题意;C.227是分数,属于有理数,故本选项不合题意;D故选:D.【点睛】题目主要考查立方根,无理数,有理数,理解无理数的定义是解题关键.二、填空题1、x(13-2x)=20【分析】若设垂直于墙的一边长为x米,则平行于墙的一边长为(13-2x)米,根据长方形场地的面积为20平方米,即可得出关于x的一元二次方程,此题得解.【详解】解:若设垂直于墙的一边长为x 米,则平行于墙的一边长为(13-2x )米,依题意得:x (13-2x )=20.故答案为:x (13-2x )=20.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 2、480【分析】设滴翠剑茗单价为x 元,则云雾毛尖最高价位6(640)14x +⨯元,根据云雾毛尖的销售单价等于另外两种茶叶销售单价之和的614得出三种茶叶的单价,根据销售总额列出方程,解方程即可. 【详解】 解:第一批采制的茶叶中清明香、云雾毛尖、滴翠剑茗的数量(盒)之比为2:3:1, 第二批采制后清明香增加的数量占总增加数量的12,此时清明香总数量达到三种茶叶总量的49,而云雾毛尖和滴翠剑茗的总数量恰好相等, 即云雾毛尖、滴翠剑茗的数量各占518, ∴增加后清明香、云雾毛尖、滴翠剑茗的数量(盒)之比为455::8:5:591818=, 设总共有a 盒茶叶, ∴成本为4554000500420380918189a a a a ⨯+⨯+⨯=(元), 销售额应为40004640(116%)99a a ⨯+=(元), 清明香的销售额为412240640(1)989a a ⨯⨯-=(元), ·线○封○密○外另外两种茶的销售总额为46402240800993a a a -=(元), 设滴翠剑茗单价为x 元,则云雾毛尖单价为6(640)14x +⨯元, 因此可建立方程556800(640)1818143xa x a a +⨯+⨯=, 解得480x =,因此滴翠剑茗单价为480元,故答案为:480.【点睛】本题主要考查一元一次方程的知识,根据售价-成本=利润列出方程是解题的关键.3、北偏西60°【分析】根据题意作出图形,取BP 的中点D ,连接AD ,过点A 作AC a ⊥,过点B 作BE AC ⊥,交CA 的延长线于点E ,作A 关于a 的对称点A ',平移A P '至A Q ''处,则A Q PQ PB ''++最小,即三条水管长PQ PA PB ++的和最小,进而找到B 村的位置,根据方位角进行判断即可.【详解】解:如图,取BP 的中点D ,连接AD ,过点A 作AC a ⊥,过点B 作BE AC ⊥,交CA 的延长线于点E作A 关于a 的对称点A ',平移A P '至A Q ''处,则A Q PQ PB ''++最小,即三条水管长PQ PA PB ++的和最小,此时,,B P A '三点共线, ∴B 点在A P '的延长线上, 在A 村看点P 位置是南偏西30°, 30CAP ∴∠=︒ 60APC ∴∠=︒,2120APA APC '∠=∠=︒ 60APB ∴∠=︒ 1.6, 3.2AP PB == 1.6PD ∴= AP PD ∴= APD ∴是等边三角形 60DAP APC ∴∠=∠=︒, 1.6AD DP PA === DA a ∴∥ 1 1.62BD BP ∴== DA DB ∴= 60ADP ∠=︒ 120BDA ∴∠=︒ 30DAB DBA ∴∠=∠=︒ 9060EAB BAD ∴∠=︒-∠=︒ 即在A 村看B 村的位置是北偏西60° 故答案为:北偏西60° ·线○封○密·○外【点睛】本题考查了轴对称的性质,方位角的计算,等边三角形的性质与判定,等边对等角,根据题意作出图形是解题的关键.4、2【分析】根据OC 、CD 和中点A 、B 求出AC 和BC ,利用AB =AC -BC 即可.【详解】解:如图所示,10OC cm =,6CD cm =,点A 、点B 分别是线段OC 、CD 的中点,1=52AC OC ∴=,132BC CD ==, 2AB AC BC ∴=-=.故答案为:2.【点睛】本题考查线段的和差计算,以及线段的中点,能准确画出对应的图形是解题的关键.5、6##【分析】如图,过点E 作EF ⊥BC 于F ,过点A 作AH ⊥CB 交CB 的延长线于H .解直角三角形求出BH ,CH 即可解决问题.【详解】解:如图,过点E 作EF ⊥BC 于F ,过点A 作AH ⊥CB 交CB 的延长线于H .∵∠ABC=120°,∴∠ABH=180°﹣∠ABC=60°,∵AB=12,∠H=90°,∴BH=AB•cos60°=6,AH=AB•sin60°=∵EF⊥DF,DE=5,∴sin∠ADE=EFDE=45,∴EF=4,∴DF3,∵S△CDE=6,∴12·CD·EF=6,∴CD=3,∴CF=CD+DF=6,∵tan C=EFCF=AHCH,∴46,∴CH=∴BC=CH﹣BH=6.·线○封○密○外故答案为:6【点睛】本题主要考查了解直角三角形,根据题意构造合适的直角三角形是解题的关键.三、解答题1、6x =-【分析】先去分母,去括号,再移项、合并同类项,最后系数化为1即可得答案.【详解】去分母得:32(47)16x x =++,去括号得:381416x x =++,移项得:381416x x -=+,合并同类项得:530x -=,系数化1得:6x =-.【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题关键.2、34-【分析】根据二次根式的性质化简,有理数的乘方,零次幂,特殊角的三角函数值代入进行实数的运算即可【详解】()20120204cos 452⎛⎫---︒ ⎪⎝⎭1144=--114=-34=-【点睛】本题考查了二次根式的性质化简,有理数的乘方,零次幂,特殊角的三角函数值,正确的计算是解题的关键.3、(1)240tv=(2)80km/h(3)3.5小时【分析】(1)根据题意求得总路程为240km,根据时间等于路程除以速度列出函数关系式即可;(2)根据速度等于路程除以时间即可求解;(3)根据函数图像可知前1.5小时行驶70km,剩余路程除以速度即可求得时间,进而求得总时间(1)解:∵一司机驾驶汽车从甲地到乙地,他以60km/h的平均速度行驶4h到达目的地,∴甲地到乙地的路程为604240km⨯=240tv∴=(2)2403÷=80km/h(3)·线○封○密○外24070170km-=170852h÷=∴总时间为:1.52 3.5h+=【点睛】本题考查了反比例函数的应用,一次函数的应用,从函数图象获取信息是解题的关键.4、见解析【分析】欲证明AF=DE,只要证明△ABF≌△DCE即可;【详解】证明:∵BE=CF,∴BF=CE,∵AB∥CD,∴∠B=∠C,在△ABF和△DCE,A DB C BF CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△DCE,∴AF=DE.【点睛】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.5、125【分析】直接利用分指数幂的以及同底数幂的乘法和同底数幂的除法运算法则分别化简得出答案.【详解】解:,(433255=-⨯÷,423332555=⨯÷,4233325+-=,125=.【点睛】题目主要考查分数指数幂的运算及同底数幂的乘法和同底数幂的除法,熟练掌握各运算法则是解题关键.·线○封○密○外。
洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.2. 榫卯是古代中国建筑、家具及其它器械主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )A. B. C. D.3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A B.C. D. 5. 下列计算,结果正确的是( )A. B. C. D. 6. 不等式组的解集是( )A. B. C. D.的.5-1-454.3210⨯45.43210⨯55.43210⨯65.43210⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 8. 如图,在菱形中,,连接、,则的值为( )A.B.C.D.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得( )A. B. C.D.10.在中,,D 为上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C. D. 二、填空题(每小题3分,共15分)2220x x m -+-=3m ≥3m >3m ≤3m <ABCD 60ABC ∠=︒AC BD ACBD1224015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x=-Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEF AB11.x 的取值范围是_____.12. 计算的结果是________.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级平均中位众211a a a -++O AB O AB 120,ACD CD ∠=︒=ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF ()01320242--+-+()()()223a b a b a a b -+--统计量数数数甲b 乙a146根据以上信息,回答下列问题:(1)表格中的a =,b =;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.18. 已知:点P 是外一点.(1)尺规作图:如图,以直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为.19. 如图,菱形的边在x 轴正半轴上,点A的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一为155.3152.5155.3O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠OABC OC ()34,()0ky x x=>BC AB ()0ky x x=>AE OE AOE △条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是;的53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈xOy ()33G --,1ky x=(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .23. 【综合与实践】在一次综合实践活动课上,张老师组织学生开展“如何仅通过折纸的方法来确定特殊平行四边形纸片一边上的三等分点”的探究活动.【操作探究】“求知”小组的同学经过一番思考和讨论交流后,对正方形进行了如下操作:第1步:如图1所示,先将正方形纸片对折,使点A 与点B 重合,然后展开铺平,折痕;第2步:将边沿翻折到的位置;第3步:延长交于点H ,则点H 为边的三等分点.证明过程如下:连接,∵正方形沿折叠,∴① ,又∵,∴,∴.由题意可知E 是的中点,设,则,在中,可列方程:② ,(方程不要求化简)解得:③ ,即H 是边的三等分点.“励志”小组对矩形纸片进行了如下操作:第1步:如图2所示,先将矩形纸片对折,使点A 与点B 重合,然后展开铺平,折痕为;第2步:再将矩形纸片沿对角线翻折,再展开铺平,折痕为,沿翻折得折痕交于点G ;第3步:过点G 折叠矩形纸片,使折痕.为21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++ABCD ABCD EF BC CE GC EG AD AD CH ABCD CE 90D B CGH ∠=∠=∠=︒CH CH =CGH CDH ≌△△GH DH =AB 2AB a DH x ==,AE BE EG a ===Rt AEH DH =AD ABCD ABCD EF ABCD BD BD CE CE BD ABCD MN AD ∥【过程思考】(1)“求知”小组的证明过程中,三个空所填的内容分别是①: ,②:,③:;(2)“励志”小组经过上述操作,认为点M 为边的三等分点,请你判断“励志”小组的结论是否正确,并说明理由.【拓展提升】(3)如图3,在菱形中,,E 是上的一个三等分点,记点D 关于的对称点为,射线与菱形的边交于点F ,请直接写出的长.洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.【答案】D 【解析】【分析】此题考查了实数的大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小,据此判断.【详解】∵故选:D .2. 榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )AB ABCD 8,6AC BD ==BD AE D ¢ED 'ABCD D F '5-1-510-<-<<A. B. C. D.【答案】A 【解析】【分析】本题考查三视图,熟练掌握三视图的画法,是解题的关键.根据俯视图是从上向下观察到的图形,进行判断即可,注意,主视图中存在的线段,在俯视图中被遮住或是看不到的线段要用虚线表示.【详解】解:由题意,得:“卯”的俯视图为:.故选A .3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 【答案】C 【解析】【分析】本题主要考查科学记数法.科学记数法的表示形式为的形式,其中,n 为整数,据此解答即可.【详解】解:54.32万,故选:C .4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A. B.C. D. 【答案】D454.3210⨯45.43210⨯55.43210⨯65.43210⨯10n a ⨯110a ≤<5543200 5.43210==⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒【分析】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.利用平行线的性质及三角形外角的性质即可求解.【详解】解:∵,∴,∴,∵,∴;故选:D .5. 下列计算,结果正确的是( )A. B. C. D. 【答案】B 【解析】【分析】本题考查了积的乘方,合并同类项,同底数幂的除法,完全平方公式;根据以上运算法则进行计算即可求解.【详解】解:A . 与不是同类项,不能合并,故该选项不正确,不符合题意; B . ,故该选项正确,符合题意;C . ,故该选项不正确,不符合题意;D . ,故该选项不正确,不符合题意;故选:B .6. 不等式组的解集是( )A. B. C.D. AB OF ∥1180BFO ∠+∠=︒18015525BFO ∠=︒-︒=︒235POF ∠=∠=︒3352560POF BFO ∠=∠+∠=︒+︒=︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=3a 2a -()2222339a a a ==()2222ab a ab b +=++62624a a a a -÷==23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-【解析】【分析】此题考查了求不等式组的解集,求出每个不等式的解集,取公共部分即可.【详解】解:解不等式①得,解不等式②得,∴原不等式组的解集是故选:C7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 【答案】C 【解析】【分析】本题考查了一元二次方程的判别式,根据方程两个实数根得出,代入数值计算,即可作答.【详解】解:∵一元二次方程有两个实数根,∴,解得,故选:C .8. 如图,在菱形中,,连接、,则值为( )A.B.C.D.【答案】D 【解析】的23312x x x -<⎧⎨+≥⎩①②5x <1x ≥-15x -≤<2220x x m -+-=3m ≥3m >3m ≤3m <240b ac ∆=-≥2220x x m -+-=()()22424121240b ac m m ∆=-=--⨯⨯-=-≥3m ≤ABCD 60ABC ∠=︒AC BD ACBD12【分析】设AC 与BD 的交点为O ,由题意易得,,进而可得△ABC 是等边三角形,,然后问题可求解.【详解】解:设AC 与BD 的交点为O ,如图所示:∵四边形是菱形,∴,,∵,∴△ABC 是等边三角形,∴,∴,∴,∴,∴故选D .【点睛】本题主要考查菱形的性质、含30°角的直角三角形的性质及勾股定理,熟练掌握菱形的性质、含30°角的直角三角形的性质及勾股定理是解题的关键.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x 天可追上慢马,由题意得( )A. B. C. D. 【答案】B1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==BO =ABCD 1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==60ABC ∠=︒30,ABO AB AC ∠=︒=12AO AB =OB ==,2BD AC AO ==AC BD ==24015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x =-【解析】【分析】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.设快马x 天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马x 天可追上慢马,由题意得.故选:B .10. 在中,,D 为上一点,动点P 以每秒1个单位速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C.D. 【答案】A【解析】【分析】本题考查了二次函数图象,求二次函数解析式,在中,则,求得的长,设函数的顶点解析式,用待定系数法,求出函数表达式,即可求解.【详解】解:在中,则,当时,,解得:(负值已舍去),∴,∴抛物线经过点,∵抛物线顶点为:,的24015015012x x -=⨯Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEFABRt ABC△CD =,PC t=22222S PD t t ==+=+BC Rt ABC△CD =,PC t=22222S PD t t ==+=+6S =262t =+2t =2BC =()2,6()4,2设抛物线解析式为:,将代入,得:,解得:,∴,当时,(舍)或,∴,故选:A .二、填空题(每小题3分,共15分)11.x 的取值范围是_____.【答案】【解析】【分析】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.有意义,∴且,∴且,故答案为:.12. 计算的结果是________.【答案】【解析】【分析】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出各分母的最简公分母.原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】解:原式,故答案为:.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.()242S a t =-+()2,6()26242a =-+1a =()242S t =-+18y =()218420t t =-+=,8t =826AB =-=5x ≥50x -≥0x ≠5x ≥0x ≠5x ≥211a a a -++11a +2(1)(1)111a a a a a -+-==++11a +【答案】【解析】【分析】本题主要考查等可能事件的概率,画出树状图展示所有等可能的结果,是解题的关键.根据题意画出树状图得出所有等可能情况数和恰好选中前面两首歌曲的情况数,然后根据概率公式即可得出答案.【详解】解:将《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲分别用甲,乙,丙,丁表示,根据题意画图如下:共有12种等可能的结果数,其中恰好选中前面两首歌曲的有2种,则恰好选中甲、乙两位选手的概率,故答案为:.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)【答案】【解析】【分析】本题主要考查切线的性质以及扇形的面积计算,连接,根据切线的性质得出由得由三角形外角的性质得根据勾股定理得,再根据求解即可【详解】解:连接如图,1621126==16O AB O AB 120,ACD CD ∠=︒=2π3-OC 90,30,OCD OCD ∠=︒∠=︒OC OA =,OAC OCA ∠=∠60,BOC ∠=︒2OC ==OCD BOC S S S - 阴影扇形OC ,∵是的切线,∴∴∵∴∵∴,∴∴∴即∴∴,故答案为:15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.CD O ,OC CD ⊥90,OCD ∠=︒120,ACD ∠=︒1209030,ACO ACD OCD ∠=∠-∠=︒-︒=︒,OC OA ==30ACO OAC ∠=∠︒303060,COD OCA OAC ∴∠=∠+∠=︒+︒=︒30,CDO ∠=︒2,DO CO =222,CD CO DO +=(2224,CO CO +=2,CO ==OCD BOC S S S - 阴影扇形2160222360π⨯=⨯-23π=-2π3-ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF【答案】1或9【解析】【分析】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理等知识,分为:当点E 在上时,连接,可证得,从而,设,则,可求得,在中列出,进而求得的值;当点E 在的延长线上时,同样方法求得结果.【详解】解:∵四边形是矩形,∴当点E 在上时,连接,如图,∵,∴∴,∵,∴,∴,设,则,由旋转得:,∵,∴,∴,在中,由勾股定理得,,∴,∴,DF AF Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-4DE ===Rt DCF ()()222534x x -+=+BF FD ABCD 3,5,90,CD AB BC AD ABC BCD CDA ====∠=∠=∠=︒DF AF EF AE ⊥90,AEF ∠=︒90AEF B ∠=∠=°AE AB AF AF ==,Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-3AE AB ==EF AE ⊥90AED AEF ∠=∠=︒4DE ===Rt DCF 222CF CD DF +=()()222534x x -+=+1x =∴,如图,当点E 在的延长线上时,同理上可得:,,设,则,,∴,∴,∴,综上所述:或9.故答案为:1或9三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.【答案】(1);(2)【解析】【分析】本题主要考查了实数混合运算,整式乘法混合运算,解题的关键是熟练掌握运算法则,准确计算.(1)根据算术平方根定义,零指数幂和负整数指数幂运算法则进行计算即可;(2)根据平方差公式和单项式乘多项式运算法则进行计算即可.【详解】解:(1)1BF =FD EFBF =4DE =EF BF a ==4DF a =-5CF a =-()()222534a a -+=-9a =9BF =1BF =()01320242--+-+()()()223a b a b a a b -+--1122233a b ab-+()01320242--+-+13132=+-+;(2).17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级统计量平均数中位数众数甲b 乙a 146根据以上信息,回答下列问题:(1)表格中的a = ,b = ;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.【答案】(1)149,160(2)甲班成绩较好;甲、乙两班样本平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好(3)132人【解析】【分析】本题考查条形统计图、中位数、众数、平均数:(1)根据中位数的意义,将乙班的抽查的10人成绩排序找出处在中间位置的两个数的平均数即可为中位的112=()()()223a b a b a a b -+--()22243a b a ab =---22243a b a ab=--+2233a b ab -+=155.3152.5155.3数,从甲班成绩中找出出现次数最多的数即为众数;(2)根据平均数、中位数,众数可以分析得出;(3)根据题意,计算出两班级成绩为满分的学生的百分比,然后乘以总人数即可解答本题.【小问1详解】解:由题意得:乙班10名男生的跳绳成绩按大小顺序排列最中间的两个分数为146,153,故中位数;甲班10名男生的跳绳成绩出现次数最多的是160分,共出现2次,故众数;故答案为:149;160;【小问2详解】解:甲班成绩较好;理由如下:甲、乙两班样本的平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好;【小问3详解】解:(人),答:估计该校本次测试成绩满分的男生有132人.18. 已知:点P 是外一点.(1)尺规作图:如图,以为直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为 .【答案】(1)见解析(2)见解析 (3)或【解析】【分析】(1)如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;1461521492a +==160c =1124013220⨯=O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠65︒115︒OP OP OP O 'O 'O P 'PE PF(2)如图1,连接,由为直径,可得,即,,进而结论得证;(3)如图1,,由题意知,,由圆周角定理可得;由圆内接四边形可得,;计算求解即可.【小问1详解】解:如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;图1【小问2详解】证明:如图1,连接,∵为直径,∴,即,,∵是半径,∴,是的切线;【小问3详解】解:如图1,,由题意知,,∵,∴;由圆内接四边形可得,;综上所述,的度数为或,故答案为:或.【点睛】本题考查了作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质等知识.熟练掌握作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质是解题的关键.OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒12EDF EOF ∠=∠180ED F EDF '∠=︒-∠OP OP OP O 'O 'O P 'PE PF OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥OE OF ,PE PF O D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒ EFEF =1652EDF EOF ∠=∠=︒180115ED F EDF '∠=︒-∠=︒EDF ∠65︒115︒65︒115︒19. 如图,菱形的边在x 轴正半轴上,点A 的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.【答案】(1)13(2)【解析】【分析】本题考查反比例函数的综合,菱形的性质,垂直平分线的定义,中点坐标公式,三角形的面积求法等知识,运用数形结合思想是解题的关键.(1)先求出的长度,也就是菱形的边长,从而求出点的坐标,再用中点公式求出点D 的坐标,从而得解;(2)根据点的坐标求出点E 的横坐标,继而求出点E 的坐标,再利用割补法求面积即可.【小问1详解】解:∵A 点坐标∴∵四边形是菱形∴, ∴;【小问2详解】∵,∴反比例函数解析式是∵E 在AB 的垂直平分线上,A ,,OABC OC ()34,()0k y x x=>BC AB ()0k y x x =>AE OE AOE △8211OA C B 、A B 、()34,5OA =OABC ()50C ,()84B ,13,22D ⎛⎫∴ ⎪⎝⎭13k xy ==13k =()130y x x=>()34,()84B ,E 点横坐标为把 优人 得: 过A 作⊥ x 轴于 H ,的垂直平分线交x 轴于 F ,则.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).【答案】小聪的说法不正确,见解析【解析】【分析】本题考查了解直角三角形的应用.过C 作于D ,在中,利用三角函数的定义求得和的长,在中,求得,据此求得北岸健康步道的长度,即可判断.【详解】解:过C 作于D ,垂足为D,112,112x =()130y x x =>2611y =1126,211E ⎛⎫∴ ⎪⎝⎭AH AB AOE AOB FOEAEFH S S S S =+-△△△梯形112611133443221122⎛⎫⎛⎫=⨯⨯+⨯+⨯-- ⎪ ⎪⎝⎭⎝⎭8211=53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈CD AB ⊥Rt ACD △CD AD Rt BCD BD CD =CD AB ⊥由题意得:,,千米,在中,,千米千米,在中,,∴千米,∴千米,∴北岸健康步道的长度为,因此小聪的说法不正确.21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体的综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.【答案】(1)A 饰品的进价为20元/件,B 饰品的进价为25元/件 (2)①;②购进A 饰品数量300件,购进B 饰品的数量100件时,获利最大,最大利润为3350元【解析】【分析】本题考查二元一次方程组和一次函数的应用,分段函数等知识,审清题意找出等量关系并正确列的905337CAD ∠=︒-︒=︒45CBD ∠=︒5AC =Rt ACD △37CAD ∠=︒·sin 3750.63CD AC =︒≈⨯=cos3750.84AD AC =⋅︒≈⨯=Rt BCD 45CBD ∠=︒3BD CD ==7AB AD BD =+=77π314111022≈⨯≈>.()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩式和方程是解题的关键.(1)设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,根据题意列出方程组求解即可;(2)①由购进A 饰品的数量为x 件,得购进B 饰品的数量为件,再分当时和当时两种情况,根据总利润的计算公式求出总利润即可;②根据两种情况下的解析式分别求出最大值,再比较即可.【小问1详解】解:设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,由题意列方程组为: , 解得 答:A 饰品的进价为20元/件,B 饰品的进价为25元/件;【小问2详解】①购进A 饰品的数量为x 件,则购进B 饰品的数量为件,∴当时,;当时,,综上所述:这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式是;②当时, ∴当时,y 取最大值,此时(元).当时, ,当时y 取最大值,此时,∵,∴当,即购进A 饰品的数量为件,则购进B 饰品的数量为件时,y 取最大值元.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.()400x -150250x ≤≤250300x <≤9633053175a b a b +=⎧⎨+=⎩2025a b =⎧⎨=⎩()400x -150250x ≤≤()()()3020302540052000y x x x =-+--=+250300x <≤()()()()()302025030203250302540022750y x x x =-⨯+--⨯-+--=+()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩150250x ≤≤52000y x =+250x =525020003250y =⨯+=250300x <≤22750y x =+300x =230027503350y =⨯+=32503350<300x =3001003350xOy(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是 ;(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .【答案】(1) (2)是直角三角形,理由见解析(3)【解析】【分析】本题主要考查了二次函数与x 轴的交点问题,一次函数与反比例函数的交点问题,勾股定理,二次函数的性质等等:(1)利用待定系数法求出反比例函数解析式,再求出时,自变量的值即可得到答案;(2)先求出时的自变量的值,进而求出点A 和点B 的坐标,再把解析式化为顶点式得到点C 的坐标,最后利用勾股定理和勾股定理的逆定理证明即可得到结论;(3)把解析式化为顶点式得到抛物线的顶点坐标为,分以下几种情况:当时,抛物线的图象上至少存在一个“梦之点”;当时,直线与抛物线在范围内不存在交点;当抛物线恰好经过原点时,则,解得或,当时,联立解得或,符合题意;()33G --,1k y x =21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++()33,ABC 12m -<<1y x =21922y x x x =-++=222AC AB BC +=()m m ,02m <<222y x mx m m =-++2m ≥y x =222y x mx m m =-++02x <<222y x mx m m =-++20m m +=0m =1m =-0m =2y x y x⎧=⎨=⎩00x y ==⎧⎨⎩11x y =⎧⎨=⎩。
中考数学二调试卷一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣23.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9二.填空题(共12小题)7.如果=,那么的值为.8.计算:=.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为.12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1y2(填“>”、“<”或“=”)13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB=.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.三.解答题(共6小题)19.计算:20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.参考答案与试题解析一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)【分析】通过计算自变量为对应的函数值可得到抛物线y=x2﹣1与y轴交点的坐标.【解答】解:当x=0时,y=x2﹣1=﹣1,所以抛物线y=x2﹣1与y轴交点的坐标为(0,﹣1).故选:C.2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣2【分析】由抛物线的开口向下可得出a+2<0,解之即可得出结论.【解答】解:∵抛物线y=(a+2)x2开口向下,∴a+2<0,∴a<﹣2.故选:D.3.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.【分析】锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.【解答】解:∵∠C=90°,AC=5,AB=13,∴cos A==,故选:A.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米【分析】作BC⊥地面于点C,根据坡度的概念、勾股定理列式计算即可.【解答】解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,由勾股定理得,AC2+BC2=AB2,即(2x)2+x2=102,解得,x=2,即BC=2米,故选:C.5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.【分析】根据平面向量的定义即可解决问题.【解答】解:∵向量为单位向量,向量与单位向量的方向相反,∴.故选:B.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9【分析】根据已知条件先求得S△ABE:S△BED=2:1,再根据三角形相似求得S△ACD=S△ABE 即可求得.【解答】解:∵AD:ED=3:1,∴AE:AD=2:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴L△ABE:L△ACD=2:3,故选:B.二.填空题(共12小题)7.如果=,那么的值为.【分析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【解答】解:∵=,∴设a=2x,则b=3x,那么==.故答案为:.8.计算:=.【分析】通过去括号,移项合并同类项即可求得.【解答】解:原式==.故答案是:.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为﹣2 .【分析】把已知点的坐标代入抛物线解析式可求出a的值.【解答】解:把(1,0)代入y=ax2+2得a+2=0,解得a=﹣2.故答案为﹣2.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为m>1 .【分析】由于抛物线y=(m﹣1)x2有最低点,这要求抛物线必须开口向上,由此可以确定m的范围.【解答】解:∵抛物线y=(m﹣1)x2有最低点,∴m﹣1>0,即m>1.故答案为m>1.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为(1,2).【分析】首先根据对称轴是直线x=1,从而求得m的值,然后根据顶点式直接写出顶点坐标;【解答】解:∵抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,∴m=1,∴解析式y=(x﹣1)2+2,∴顶点坐标为:(1,2),故答案为:(1,2).12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1>y2(填“>”、“<”或“=”)【分析】利用二次函数的性质得到当x<﹣1时,y随x的增大而减小,然后利用自变量的大小关系得到y1与y2的大小关系.【解答】解:抛物线的对称轴为直线x=﹣1,而抛物线开口向上,所以当x<﹣1时,y随x的增大而减小,所以y1>y2.故答案为>.13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB= 6 .【分析】由sin A=知AB=,代入计算可得.【解答】解:∵在Rt△ABC中,sin A==,且BC=4,∴AB===6,故答案为:6.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为 6 .【分析】根据平行线分线段成比例、比例的基本性质解答即可.【解答】解:∵AB∥CD∥EF,∴=,∴=,∴DF=6,故答案为:6.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8 .【分析】连接BG并延长交AC于H,根据G为ABC的重心,得到=2,根据平行四边形的性质得到CE=DF=4,根据相似三角形的性质即可得到结论【解答】解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE= 2 .【分析】根据直角三角形的性质得到AD=CD=BD,根据等腰三角形的性质得到∠ACD=∠CAD,∠DCB=∠B,根据余角的性质得到∠CAE=∠B,于是得到结论.【解答】解:∵∠ACB=90°,CD为AB边上的中线,∴AD=CD=BD,∴∠ACD=∠CAD,∠DCB=∠B,∵AE⊥CD,∴∠CAE+∠ACD=∠B+∠CAD=90°,∴∠CAE=∠B,∴cot∠CAE=cot B===2,故答案为:2.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.【分析】根据两角对应相等的两三角形相似得出△ACP∽△CBP,利用相似三角形对应边的比相等即可求出PC.【解答】解:∵AB=AC,∵∠PCB=∠PBA,∴∠ACB﹣∠PCB=∠ABC﹣∠PBA,即∠ACP=∠CBP.在△ACP与△CBP中,,∴△ACP∽△CBP,∴=,∵AC=5,BC=8,PA=2,∴PC==.故答案为.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.【分析】根据正方形的性质得到AB=AD=4,根据勾股定理得到BD=AB=4,==2,过B作BF⊥DD1于F,根据相似三角形的性质得到EF=,求得DF=2+=,根据旋转的性质得到BD1=BD,∠D1BD=∠E1BE,BE1=BE,根据相似三角形的性质即可得到结论.【解答】解:∵正方形ABCD的边长为4,∴AB=AD=4,∴BD=AB=4,∵点E为边AB的中点,∴AE=AB=2,∴DE==2,过B作BF⊥DD1于F,∴∠DAE=∠EFB=90°,∵∠AED=∠BEF,∴△ADE∽△FEB,∴,∴=,∴EF=,∴DF=2+=,∵△BED绕着点B旋转至△BD1E1,∴BD1=BD,∠D1BD=∠E1BE,BE1=BE,∴DD1=2DF=,△D1BD∽△E1BE,∴=,∴=,∴EE1=,故答案为:.三.解答题(共6小题)19.计算:【分析】直接利用特殊角的三角函数值代入进而得出答案.【解答】解:原式====3+2.20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)直接求出图象与x轴的交点,进而得出平移规律.【解答】解:(1)y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x﹣1)2﹣8,故该函数的顶点坐标为:(1,﹣8);(2)当y=0时,0=2(x﹣1)2﹣8,解得:x1=﹣1,x2=3,即图象与x轴的交点坐标为:(﹣1,0),(3,0),故该抛物线沿x轴向左平移3个单位后经过原点,即m=3.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.【分析】(1)通过解Rt△ABC求得AC=8,解Rt△BCD得到CD=3,易得AD=AC﹣CD=5;(2)由平行线截线段成比例求得DE的长度,利用向量表示即可.【解答】解:(1)∵在Rt△ABC中,∠C=90°,cot A=,BC=6,∴==,则AC=8.又∵在Rt△BCD中,tan∠DBC=,∴==,∴CD=3.∴AD=AC﹣CD=5.(2)∵DE∥BC,∴==.∴DE=BC.∵=,=,∴=﹣=﹣.∴=﹣.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】过点C作CG⊥AB于G,得到四边形CFEG是矩形,根据矩形的性质得到EG=CF =0.45,设AD=x,求得AE=1.8﹣x,AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,根据三角函数的定义列方程即可得到结论.【解答】解:过点C作CG⊥AB于G,则四边形CFEG是矩形,∴EG=CF=0.45,设AD=x,∴AE=1.8﹣x,∴AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG===0.8,解得:x=0.35,∴AD=0.35米,AB=1.25米,答:AB和AD的长分别为1.25米,0.35米.23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.【分析】(1)由AB=AC,D是边BC的中点,利用等腰三角形的性质可得出∠ADC=90°,由同角的余角相等可得出∠ADE=∠DCE,结合∠AED=∠DEC=90°可证出△AED∽△DEC,再利用相似三角形的性质可证出DE•CD=AD•CE;(2)利用等腰三角形的性质及中点的定义可得出CD=BC,DE=2DF,结合DE•CD=AD•CE可得出=,结合∠BCE=∠ADF可证出△BCE∽△ADF,再利用相似三角形的性质可证出AF•BC=AD•BE.【解答】证明:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴=,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD=BC.∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴=.又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴=,∴AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.【分析】(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c,解之,得到b和c 的值,即可得到抛物线的表达式,根据抛物线的对称轴x=﹣,代入求值即可,(2)把点A(3,m)代入y=﹣x2+4x,求出m的值,得到点A的坐标,过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,根据三角形的面积和勾股定理,求出线段BD和AD的长,即可得到答案.(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,利用△BAC为等腰直角三角形得到∠CAB=45°,证明△ABE≌△BCF 得到BF=AE=3,BE=CF=1,则C(1,﹣1),根据待定系数法求出直线AC的解析式为y=2x﹣3,然后计算自变量为2对应的一次函数值得到D点坐标.【解答】解:(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c得:,解得:,即抛物线的表达式为:y=﹣x2+4x,它的对称轴为:x=﹣=2;(2)把点A(3,m)代入y=﹣x2+4x得m=﹣32+4×3=3,则点A的坐标为:(3,3),过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,如图1,AE=3,OE=3,BE=4﹣3=1,OA==3,AB==,∵S△OAB=×OB×AE=×OA×BD,∴BD===2,∴AD==,∴tan∠OAB==2;(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,∴BA=BC,∠ABC=90°,∴△BAC为等腰直角三角形,∴∠CAB=45°,∵∠ABE=∠BCF,∠AEB=∠BFC=90°,∴△ABE≌△BCF(AAS),∴BF=AE=3,BE=CF=1,∴C(1,﹣1),易得直线AC的解析式为y=2x﹣3,当x=2时,y=2x﹣3=1,∴D点坐标为(2,1).25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.【考点】LO:四边形综合题.【专题】16:压轴题;32:分类讨论;33:函数思想.【分析】(1)利用S△BEF=BF•AB=EF•BG,即可求解;(2)y====,tanα===,即可求解;(3)分GF=FC、CF=CG两种情况,求解即可.【解答】解:(1)将ABE沿BE翻折,点A落在对角线BD上的点G处,∴BG⊥EF,BG=AB=6,cos∠DBC ===,则:BF=9,S△BEF =BF•AB =EF•BG,即:9×6=6×EF,则EF=9;(2)过点A作AH⊥BG交于点H,连接AG,设:BF=a,在Rt△BGF中,cos∠GBF=cos α==,则tan α=,sin α=,y ====…①,tan α===,解得:a2=36+()2…②,把②式代入①式整理得:y =(x);(3)①当GF=FC时,FC=10﹣a=GF=a sin α=,把②式代入上式并解得:x =,②当CF=CG时,同理可得:x =;故:AD 的长为或.21。
湖南省湘潭市2020年中考数学模拟试卷(二)(解析版)一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.|﹣2|=()A.2 B.﹣2 C. D.2.(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x23.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形5.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A. B. C. D.16.如图,下列水平放置的几何体中,主视图是三角形的是()A. B. C. D.7.若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a<2 D.a>28.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2) D.(2,1)二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.化简:﹣=____________.10.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是____________.11.已知反比例函数y=的图象经过点(2,3),则此函数的关系式是____________.12.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为____________.13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为____________元.14.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是____________.15.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=____________.16.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为____________.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣|+(﹣)﹣1sin45°+()0.18.解不等式.19.先化简,再求值:÷(1+),其中x=﹣1.20.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.21.如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)22.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.24.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.25.(10分)(2020•湘潭模拟)如图,以矩形ABCD的对角线AC的中点O为圆心,OA 长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=a(a为大于零的常数),求BK的长.26.(10分)(2020•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?2020年湖南省湘潭市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.|﹣2|=()A.2 B.﹣2 C. D.【考点】绝对值.【分析】根据绝对值的性质可直接求出答案.【解答】解:根据绝对值的性质可知:|﹣2|=2.故选:A.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x2【考点】幂的乘方与积的乘方.【分析】原式利用积的乘方运算法则计算即可得到结果.【解答】解:原式=16x2,故选D.【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形【考点】命题与定理.【分析】根据平行四边形的性质对A进行判断;根据矩形的性质对B进行判断;根据菱形的性质对C进行判断;根据矩形的判定方法对D进行判断.【解答】解:A、平行四边形的对角线互相平分,所以A选项错误;B、矩形的对角线互相平分且相等,所以B选项错误;C、菱形的对角线互相垂直且平分,所以C选项正确;D、对角线相等的平行四边形是矩形,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部组成.熟练平行四边形和特殊平行四边形的判定与性质是解决此题的关键.5.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A. B. C. D.1【考点】列表法与树状图法.【分析】首先分别用A与B表示三角形与矩形,然后根据题意画树状图,由树状图求得所有等可能的结果与能拼成“小房子”(如图2)的情况,再利用概率公式求解即可求得答案,【解答】解:分别用A与B表示三角形与矩形,画树状图得:∵共有12种等可能的结果,能拼成“小房子”的有8种情况,∴任取两张纸片,能拼成“小房子”(如图2)的概率等于:=.故选A.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.如图,下列水平放置的几何体中,主视图是三角形的是()A. B. C. D.【考点】简单几何体的三视图.【分析】找到从正面看所得到的图形是三角形即可.【解答】解:A、主视图为长方形,故本选项错误;B、主视图为三角形,故本选项错误;C、主视图为长方形,故本选项错误;D、主视图为长方形,故本选项错误.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a<2 D.a>2【考点】根的判别式.【分析】根据判别式的意义得到△=12﹣4(﹣a+)<0,然后解不等式即可.【解答】解:∵关于x的方程x2+x﹣a+=0没有实数根,∴△=12﹣4(﹣a+)<0,解得:a<2,故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2) D.(2,1)【考点】菱形的性质;坐标与图形性质.【分析】点A的横坐等于OC的长的一半,点A的纵坐标与点B的纵坐标互为相反数.【解答】解:∵点C的坐标为(4,0),∴OC=4,∴点B的纵坐标是﹣1,∴A(2,1).故选D.【点评】本题综合考查了菱形的性质和坐标的确定,综合性较强.二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是4.【考点】三角形的面积.【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【解答】解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,=S△CGE+S△BGF=4.∴S阴影故答案为4.【点评】根据三角形的中线把三角形的面积分成相等的两部分,该图中,△BGF的面积=△BGD的面积=△CGD的面积,△AGF的面积=△AGE的面积=△CGE的面积.11.已知反比例函数y=的图象经过点(2,3),则此函数的关系式是y=.【考点】待定系数法求反比例函数解析式.【分析】已知反比例函数y=的图象经过点(2,3),则把(2,3)代入解析式就可以得到k的值.【解答】解:根据题意得:3=解得k=6,则此函数的关系式是y=.故答案为:y=.【点评】本题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点内容.12.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为.【考点】几何概率.【分析】根据题意,求得正方形与圆的面积,相比计算可得答案.【解答】解:根据题意,针头扎在阴影区域内的概率就是圆与正方形的面积的比值;由题意可得:正方形纸边长为4cm,其面积为16cm2,圆的半径为1cm,其面积为πcm2,故其概率为.【点评】本题考查几何概率的求法:注意圆、正方形的面积计算.用到的知识点为:概率=相应的面积与总面积之比.13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为500元.【考点】一元一次方程的应用.【分析】首先理解题意找出题中存在的等量关系:利润=售价﹣进价,根据此等量关系列方程即可.【解答】解:设该服装的标价为x元,则实际售价为80%x,根据等量关系列方程得:80%x﹣300=100,解得:x=500.故答案为:500.【点评】此题主要考查了一元一次方程的应用,理解利润、售价、进价三者之间的关系是解题关键.14.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是﹣2<x≤﹣1.【考点】一次函数与一元一次不等式.【分析】把所给两点代入一次函数解析式可得k,b的值,进而求不等式组的解集即可.【解答】解:∵直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣1.【点评】考查一次函数和一元一次不等式的相关问题;用待定系数法求得未知函数解析式是解决本题的突破点.15.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=80°.【考点】圆周角定理;垂径定理.【分析】根据垂径定理可得点B是中点,由圆周角定理可得∠BOD=2∠BAC,继而得出答案.【解答】解:∵,⊙O的直径AB与弦CD垂直,∴=,∴∠BOD=2∠BAC=80°.故答案为:80°.【点评】此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.16.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为.【考点】翻折变换(折叠问题).【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可.【解答】解:∵AB=3,AD=4,∴DC=3,BC=4∴AC==5,根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,22+x2=(4﹣x)2,解得:x=,故答案为:.【点评】此题主要考查了图形的翻着变换,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣|+(﹣)﹣1sin45°+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣2×+1=﹣+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤2,由②得,x>﹣.故不等式组的解集为:﹣<x≤2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.20.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.【考点】扇形统计图;用样本估计总体;条形统计图;中位数;众数.【分析】(1)根据A、B、C、D、E高度之比为3:4:5:6:2,求得B等和C等所占的百分比,再根据捐10元和15元的人数共27人求得总人数;根据中位数和众数的概念求解;(2)各部分所占的圆心角即为百分比×360°;(3)根据样本估计总体.【解答】解:(1)总人数=27÷=60(人);众数:20(元);中位数15(元).(2)捐款数为20元的D部分所在的扇形的圆心角的度数=×360°=108°;(3)D部分的学生人数=1000×=300(人);D部分学生的捐款总额=300×20=6000(元).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时也考查了中位数、众数、平均数的概念及根据样本估计总体.21.如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)过点B作BE⊥AC于点E,在Rt△ABE中利用三角函数求出AE,由AC=AE ﹣CE,可得出答案;(2)在Rt△ABE中,求出BE,即可计算每级台阶的高度h.【解答】解:如右图,过点B作BE⊥AC于点E,(1)在Rt△ABE中,AB=3m,cos12°≈0.9781,AE=ABcos12°≈2.934m=293.4cm,∴AC=AE﹣CE=293.4﹣60=233.4cm.答:AC的长度约为233.4cm.(2)h=BE=ABsin12°=×300×0.2079=20.79≈20.8cm.答:每级台阶的高度h约为20.8cm.【点评】本题考查了解直角三角形的应用,难度一般,解答本题的关键是根据坡度和坡角构造直角三角形,并解直角三角形.22.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【考点】全等三角形的判定与性质.【分析】首先得出BC=EF,利用平行线的性质∠B=∠DEF,再利用AAS得出△ABC≌△DEF,即可得出答案.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.【点评】此题主要考查了平行线的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)要证明方程有两个不相等的实数根,即证明△>0即可;(2)将x=1代入方程(x﹣3)(x﹣2)=|m|,求出m的值,进而得出方程的解.【解答】(1)证明:∵(x﹣3)(x﹣2)=|m|,∴x2﹣5x+6﹣|m|=0,∵△=(﹣5)2﹣4(6﹣|m|)=1+4|m|,而|m|≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴|m|=2,解得:m=±2,∴原方程为:x2﹣5x+4=0,解得:x1=1,x2=4.即m的值为±2,方程的另一个根是4.【点评】此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解的定义.25.(10分)(2020•湘潭模拟)如图,以矩形ABCD的对角线AC的中点O为圆心,OA 长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=a(a为大于零的常数),求BK的长.【考点】圆的综合题.【分析】(1)先根据平行线的性质和垂直的定义得出∠AED=90°,再根据矩形的性质判断出Rt△ADE≌Rt△CBK即可;(2)先利用勾股定理求出AC,再用三角形的面积公式求出BK即可.【解答】(1)∵DH∥KB,BK⊥AC,∴DE⊥AC,∴∠AED=90°,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EAD=∠KCB,在△ADE和△CBK中∴Rt△ADE≌Rt△CBK,∴AE=CK.(2)在Rt△ABC中,AB=a,AD=BC=a,∴AC===,∵S△ABC=AB×BC=AC×BK,∴BK===a.【点评】此题是圆的综合题,主要考查了矩形的性质,平行线的性质,垂直的定义,勾股定理,解本题的关键是判断出Rt△ADE≌Rt△CBK.26.(10分)(2020•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?【考点】一次函数的应用;分段函数.【分析】(1)从图中看,这是一个分段一次函数,40≤x≤60和60<x<100时,函数的表达式不同,每段函数都经过两点,使用待定系数法即可求出函数关系式;(2)利用(1)中的函数关系,当销售单价定为50元时,可计算出月销售量,设可安排员工m人,利润=销售额一生产成本﹣员工工资﹣其它费用,列出方程即可解;(3)先分情况讨论出利润的最大值,即可求解.【解答】解:(1)当40≤x≤60时,令y=kx+b,则,解得,故,同理,当60<x<100时,.故y=;(2)设公司可安排员工a人,定价50元时,由5=(﹣×50+8)(50﹣40)﹣15﹣0.25a,得30﹣15﹣0.25a=5,解得a=40,所以公司可安排员工40人;(3)当40≤x≤60时,利润w1=(﹣x+8)(x﹣40)﹣15﹣20=﹣(x﹣60)2+5,则当x=60时,w max=5万元;当60<x<100时,w2=(﹣x+5)(x﹣40)﹣15﹣0.25×80=﹣(x﹣70)2+10,∴x=70时,w max=10万元,∴要尽早还清贷款,只有当单价x=70元时,获得最大月利润10万元,设该公司n个月后还清贷款,则10n≥80,∴n≥8,即n=8为所求.【点评】本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,是一道综合性较强的代数应用题,能力要求比较高.。
福建省福州市中考数学模拟试卷(二)一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.不等式1﹣x>0的解集在数轴上表示正确的是()A. B. C.D.2.如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠53.下列交通标志图案是轴对称图形的是()A. B. C. D.4.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A. 1 B. 3 C. 1.5 D. 25.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A. B. 3 C. 2 D. 46.若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1 B. 0 C. 1 D. 27.下列计算正确的是()A. 2a+5a=7a B. 2x﹣x=1 C. 3+a=3a D. x2•x3=x68.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.9.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小10.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2二、填空题(共6小题,每题4分,满分24分)11.要使代数式有意义,则实数a的取值范围是.12.将直线y=2x+1平移后经过点,则平移后的直线解析式为.13.已知==3,==10,==15,…观察以上计算过程,寻找规律计算=.14.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是度.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为.16.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是.三、解答题(共10小题,满分96分)17.计算:+|﹣4|+(﹣1)0﹣()﹣1.18.先化简,再求值:﹣,其中a=+1,b=﹣1.19.解方程:x2+2x﹣3=0.20.如图,点A,C,D在同一条直线上,BC与AE交于点F,AE=AC,AD=BC,FA=FC.求证:∠B=∠D.21.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间 1小时左右 1.5小时左右 2小时左右 2.5小时左右人数 50 80 120 50根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)22.乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?23.已知钝角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.24.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;若CF=5,cos∠A=,求BE的长.25.如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.26.如图,在平面直角坐标系xOy中,已知抛物线y=a(x﹣1)(x﹣5)与x轴交于B、C两点,与y轴交于点A(0,4),抛物线的对称轴l与x轴相交于点M.(1)则a=;该抛物线的对称轴为;连接AC,在直线AC下方的抛物线上是否存在一点N,使△NAC的面积为14?若存在,请你求出点N的坐标;若不存在,请说明理由;(3)设P(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以A、O、M、P为顶点的四边形的四条边的长度是四个连续的正整数,求点P的坐标.福建省福州市中考数学模拟试卷(二)参考答案与试题解析一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.不等式1﹣x>0的解集在数轴上表示正确的是()A. B. C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.分析:根据解不等式的方法,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.解答:解;1﹣x>0,解得x<1,故选:A.点评:本题考查了在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角的定义得出结论.解答:解:∠1与∠5是同位角.故选:D.点评:本题主要考查了同位角的定义,熟记同位角,内错角,同旁内角,对顶角是关键.3.下列交通标志图案是轴对称图形的是()A. B. C. D.考点:轴对称图形.专题:常规题型.分析:根据轴对称的定义结合选项所给的特点即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A. 1 B. 3 C. 1.5 D. 2考点:中位数;算术平均数.分析:根据平均数的计算公式求出x的值,再把这组数据从小到大排列,根据中位数的定义即可得出答案.解答:解:∵数据0,1,1,x,3,4的平均数是2,∴(0+1+1+x+3+4)÷6=2,解得:x=3,把这组数据从小到大排列0,1,1,3,3,4,最中间两个数的平均数是(1+3)÷2=2,则这组数据的中位数是2;故选:D.点评:此题考查了中位数和平均数,根据平均数的计算公式求出x的值是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).5.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A. B. 3 C. 2 D. 4考点:垂径定理;圆周角定理;解直角三角形.专题:计算题.分析:如图,首先证得OA⊥BC;然后由圆周角定理推知∠C=30°,通过解直角△ACD可以求得CD的长度.则BC=2CD.解答:解:如图,设AO与BC交于点D.∵∠AOB=60°,,∴∠C=∠AOB=30°,又∵AB=AC,∴=∴AD⊥BC,∴BD=CD,∴在直角△ACD中,CD=AC•cos30°=2×=,∴BC=2CD=2.故选:C.点评:本题考查了解直角三角形,圆周角定理等知识点.推知△OAB是等边三角形是解题的难点,证得AD⊥BC是解题的关键.6.若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1 B. 0 C. 1 D. 2考点:因式分解-提公因式法.分析:利用提取公因式法分解因式的方法得出即可.解答:解:∵代数式x2+ax可以分解因式,∴常数a不可以取0.故选:B.点评:此题主要考查了提取公因式法分解因式,理解提取公因式法分解因式的意义是解题关键.7.下列计算正确的是()A. 2a+5a=7a B. 2x﹣x=1 C. 3+a=3a D. x2•x3=x6考点:同底数幂的乘法;合并同类项.分析:根据合并同类项、同底数幂的运算法则计算.解答:解:A、符合合并同类项法则,故本选项正确;B、2x﹣x=x≠1,故本选项错误;C、3和a不是同类项,故本选项错误;D、x2•x3≠x6=x5,故本选项错误.故选:A.点评:本题考查了同底数幂的乘法与合并同类项,熟悉合并同类项法则是解题的关键.8.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.考点:作图—复杂作图.分析:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D 正确.解答:解:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选:D.点评:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.9.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小考点:反比例函数的性质.专题:常规题型.分析:根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.解答:解:A、把点(1,1)代入反比例函数y=得2≠1不成立,故A选项错误;B、∵k=2>0,∴它的图象在第一、三象限,故B选项错误;C、图象的两个分支关于y=﹣x对称,故C选项错误.D、当x>0时,y随x的增大而减小,故D选项正确.故选:D.点评:本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.10.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2考点:扇形面积的计算;等边三角形的性质;切线的性质.专题:计算题;压轴题.分析:过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.解答:解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,.∴.由.∵由题意,∠DO1E=120°,得,∴圆形纸片不能接触到的部分的面积为=.故选:C.点评:本题考查了面积的计算、等边三角形的性质和切线的性质,是基础知识要熟练掌握.二、填空题(共6小题,每题4分,满分24分)11.要使代数式有意义,则实数a的取值范围是a≠﹣1.考点:分式有意义的条件.专题:计算题.分析:使代数式有意义的条件为a+1≠0,就可求得a的取值范围.解答:解:根据题意得:a+1≠0,所以a≠﹣1.故答案为a≠﹣1.点评:此题主要考查了分式的意义,要求掌握.只要令分式中分母不等于0,求得a的取值范围即可.12.将直线y=2x+1平移后经过点,则平移后的直线解析式为y=2x﹣3.考点:一次函数图象与几何变换.分析:根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点代入即可得出直线的函数解析式.解答:解:设平移后直线的解析式为y=2x+b.把代入直线解析式得1=2×2+b,解得 b=﹣3.所以平移后直线的解析式为y=2x﹣3.故答案为:y=2x﹣3.点评:本题考查了一次函数图象与几何变换及待定系数法去函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.13.已知==3,==10,==15,…观察以上计算过程,寻找规律计算=56.考点:规律型:数字的变化类.分析:对于C a b(b<a)来讲,等于一个分式,其中分母是从1到b的b个数相乘,分子是从a开始乘,乘b的个数.解答:解:∵==3,==10,==15,∴==56.故答案为:56.点评:此题主要考查了数字的变化规律,利用已知得出分子与分母之间的规律是解题关键.14.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是150度.考点:弧长的计算.分析:直接利用弧长公式l=即可求出n的值,计算即可.解答:解:根据l===20π,解得:n=150,故答案为:150.点评:本题考查了扇形弧长公式计算,注意公式的灵活运用是解题关键.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为1.考点:三角形中位线定理.分析:根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.解答:解:∵DE为△ABC的中位线,∠AFB=90°,∴DE=BC,DF=AB,∵AB=6,BC=8,∴DE=×8=4,DF=×6=3,∴EF=DE﹣DF=4﹣3=1.故答案为:1.点评:本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.16.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是0<m<2.考点:二次函数的图象;反比例函数的图象.专题:压轴题;图表型.分析:首先作出分段函数y=的图象,根据函数的图象即可确定m的取值范围.解答:解:分段函数y=的图象如图:故要使直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,常数m的取值范围为0<m<2,故答案为:0<m<2.点评:本题考查了二次函数的图象及反比例函数的图象,首先作出分段函数的图象是解决本题的关键,采用数形结合的方法确定答案是数学上常用的方法之一.三、解答题(共10小题,满分96分)17.计算:+|﹣4|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.先化简,再求值:﹣,其中a=+1,b=﹣1.考点:分式的化简求值.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分得到最简结果,将a与b的值代入计算即可求出值.解答:解:原式===a+b,当a=+1,b=﹣1时,原式=+1+﹣1=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.解方程:x2+2x﹣3=0.考点:解一元二次方程-因式分解法.专题:计算题.分析:观察方程x2+2x﹣3=0,可因式分解法求得方程的解.解答:解:x2+2x﹣3=0∴(x+3)(x﹣1)=0∴x1=1,x2=﹣3.点评:解方程有多种方法,要根据实际情况进行选择.20.如图,点A,C,D在同一条直线上,BC与AE交于点F,AE=AC,AD=BC,FA=FC.求证:∠B=∠D.考点:全等三角形的判定与性质.专题:证明题.分析:根据三角形全等得到对应角相等即可得出结论.解答:证明:∵FA=FC,∴∠FAC=∠FCA,在△ABC和△EDA中,,∴△ABC≌△EDA,∴∠B=∠D.点评:本题考查了全等三角形的判定与性质,找准对应边和对应角是解题的关键.21.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间 1小时左右 1.5小时左右 2小时左右 2.5小时左右人数 50 80 120 50根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)考点:加权平均数;用样本估计总体;频数(率)分布直方图;扇形统计图.专题:压轴题;图表型.分析:(1)先求出喝红茶的百分比,再乘总数.先让总数减其它三种人数,再根据数值画直方图.(3)用加权平均公式求即可.解答:解:(1)冰红茶的百分比为100%﹣25%﹣25%﹣10%=40%,冰红茶的人数为400×40%=160(人),即七年级同学最喜欢喝“冰红茶”的人数是160人;补全频数分布直方图如右图所示.(3)(小时).答:九年级300名同学完成家庭作业的平均时间约为1.8小时.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?考点:二元一次方程组的应用.分析:设运动服、运动鞋的标价分别为x元/套、y元/双,根据标价为480元的某款运动服装价格为400元,列方程组求解.解答:解:设运动服、运动鞋的标价分别为x元/套、y元/双,由题意得,,解得:.答:运动服、运动鞋的标价分别为300元/套、180元/双.点评:本题考查了二元一次方程的应用,解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,列方程求解.23.已知钝角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.考点:解直角三角形.分析:首先根据题意画出示意图,根据三角形外角的性质得出∠ACB=∠D+∠CAD,而∠ACB=2∠D,那么∠CAD=∠D,由等角对等边得到CA=CD,再根据等角的余角相等得出∠B=∠BAC,则AC=CB,BD=2AC=2×=3.然后解Rt△ABD,运用勾股定理求出AB==,利用正切函数的定义求出tanD==.解答:解:如图,∵∠ACB=∠D+∠CAD,∠ACB=2∠D,∴∠CAD=∠D,∴CA=CD.∵∠DAB=90°,∴∠B+∠D=90°,∠BAC+∠CAD=90°,∴∠B=∠BAC,∴AC=CB,∴BD=2AC=2×=3.在Rt△ABD中,∵∠DAB=90°,AD=2,∴AB==,∴tanD==.点评:本题考查了三角形外角的性质,等腰三角形的判定,余角的性质,解直角三角形,勾股定理,正切函数的定义,难度适中.求出BD的值是解题的关键.24.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;若CF=5,cos∠A=,求BE的长.考点:切线的判定.专题:几何综合题.分析:(1)连结OD.先证明OD是△ABC的中位线,根据中位线的性质得到OD∥AB,再由DE⊥AB,得出OD⊥EF,根据切线的判定即可得出直线EF是⊙O的切线;先由OD∥AB,得出∠COD=∠A,再解Rt△DOF,根据余弦函数的定义得到cos∠FOD==,设⊙O的半径为R,解方程=,求出R=,那么AB=2OD=,解Rt△AEF,根据余弦函数的定义得到cos∠A==,求出AE=,然后由BE=AB﹣AE即可求解.解答:(1)证明:如图,连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD,∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线;解:∵OD∥AB,∴∠COD=∠A.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD==,设⊙O的半径为R,则=,解得R=,∴AB=2OD=.在Rt△AEF中,∵∠AEF=90°,∴cos∠A===,∴AE=,∴BE=AB﹣AE=﹣=2.点评:本题考查了切线的判定,解直角三角形,三角形中位线的性质知识点.要证某线是圆的切线,已知此线过圆上某点,连结圆心与这点(即为半径),再证垂直即可.25.如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.考点:相似形综合题.专题:压轴题.分析:(1)过点C作CE⊥AB于E,根据CE=BC•sin∠B求出CE,再根据AD=CE即可求出AD;若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.分两种情况讨论:①当∠PCB=90°时,求出AP,再根据在Rt△ADP中∠DPA=60°,得出∠DPA=∠B,从而得到△ADP∽△CPB,②当∠CPB=90°时,求出AP=3,根据≠且≠,得出△PCB与△ADP不相似.(3)先求出S1=π•,再分两种情况讨论:①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM,在Rt△GBH中求出BG、BN、GN,在Rt△GMN中,求出MN=(x﹣1),在Rt△BMN中,求出BM2=x2﹣x+,最后根据S1=π•BM2代入计算即可.②当0<x≤2时,S2=π(x2﹣x+),最后根据S=S1+S2=π(x﹣)2+π即可得出S的最小值.解答:解:(1)过点C作CE⊥AB于E,在Rt△BCE中,∵∠B=60°,BC=4,∴CE=BC•sin∠B=4×=2,∴AD=CE=2.存在.若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.①当∠PCB=90°时,在Rt△PCB中,BC=4,∠B=60°,PB=8,∴AP=AB﹣PB=2.又由(1)知AD=2,在Rt△ADP中,tan∠DPA===,∴∠DPA=60°,∴∠DPA=∠CPB,∴△ADP∽△CPB,∴存在△ADP与△CPB相似,此时x=2.②∵当∠CPB=90°时,在Rt△PCB中,∠B=60°,BC=4,∴PB=2,PC=2,∴AP=8.则≠且≠,此时△PCB与△ADP不相似.(3)如图,因为Rt△ADP外接圆的直径为斜边PD,则S1=π•()2=π•,①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM.则BM为△PCB外接圆的半径.在Rt△GBH中,BH=BC=2,∠MGB=30°,∴BG=4,∵BN=PB=(10﹣x)=5﹣x,∴GN=BG﹣BN=x﹣1.在Rt△GMN中,∴MN=GN•tan∠MGN=(x﹣1).在Rt△BMN中,BM2=MN2+BN2=x2﹣x+,∴S2=π•BM2=π(x2﹣x+).②∵当0<x≤2时,S2=π(x2﹣x+)也成立,∴S=S1+S2=π•+π(x2﹣x+)=π(x﹣)2+π.∴当x=时,S=S1+S2取得最小值π.点评:此题考查了相似形综合,用到的知识点是相似三角形的性质与判定、二次函数的最值、勾股定理,关键是根据题意画出图形构造相似三角形,注意分类讨论.26.如图,在平面直角坐标系xOy中,已知抛物线y=a(x﹣1)(x﹣5)与x轴交于B、C两点,与y轴交于点A(0,4),抛物线的对称轴l与x轴相交于点M.(1)则a=;该抛物线的对称轴为x=3;连接AC,在直线AC下方的抛物线上是否存在一点N,使△NAC的面积为14?若存在,请你求出点N的坐标;若不存在,请说明理由;(3)设P(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以A、O、M、P为顶点的四边形的四条边的长度是四个连续的正整数,求点P的坐标.考点:二次函数综合题.分析:(1)首先把x=0,y=4代入y=a(x﹣1)(x﹣5),求出a的值是多少;然后求出B、C两点的坐标,确定出该抛物线的对称轴即可.首先过点N作NG∥y轴交AC于G,求出直线AC的解析式为:y=﹣x+4,设N点的横坐标是t,则此时点N(t,t2﹣+4)(0<t<5);然后求出△CAN面积的最大值为多少,判断出是否存在一点N,使△NAC的面积为14即可.(3)首先判断出以A、O、M、P为顶点的四边形有两条边:AO=4,OM=3,判断出以1、2、3、4为边或以2、3、4、5为边都不符合题意,所以四条边的长只能是3、4、5、6一种情况,然后证明以A、O、M、P为顶点的四边形的四条边的长是3、4、5、6成立,并求出P的坐标是多少即可.解答:解:(1)把x=0,y=4代入y=a(x﹣1)(x﹣5),可得a×(﹣1)×(﹣5)=4,解得a=;∵B、C两点的坐标分别是(1,0)、(5,0),∴该抛物线的对称轴为x=(5+1)÷2=3,即该抛物线的对称轴为x=3.如图1,过点N作NG∥y轴交AC于G,,抛物线y=(x﹣1)(x﹣5)=x2+4,由点A(0,4)和点C(5,0),可得直线AC的解析式为:y=﹣x+4,设N点的横坐标是t,则此时点N(t,t2﹣+4)(0<t<5),把x=t代入y=﹣x+4,可得G(t,﹣t+4),此时NG=﹣t+4﹣(t2﹣+4)=﹣t2+5t,∴S△ACN=S△ANG+S△CGN=×(﹣t2+5t)=﹣2+,∴当t=时,△CAN面积的最大值为:,∴存在一点N,使△NAC的面积为14.(3)如图2,,以A、O、M、P为顶点的四边形有两条边:AO=4,OM=3,又∵点P的坐标中x>5,∴MP>2,AP>2,∴以1、2、3、4为边或以2、3、4、5为边都不符合题意,∴四条边的长只能是3、4、5、6一种情况.在Rt△AOM中,AM==5,∵抛物线的对称轴过点M,∴在抛物线x>5的图象上有关于点A的对称点与M的距离为5,即PM=5,此时点P横坐标为6,即AP=6,∴以A、O、M、P为顶点的四边形的四条边的长是3、4、5、6成立,即P(6,4).故答案为:、x=3.点评:(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力;此题还考查了三角形的面积的求法,以及数形结合方法的应用,要熟练掌握.。
2024年中考第二次模拟考试数 学(考试时间:120分钟 试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 选择题一、选择题(共16分,每小题2分)第1~8题均有四个选项,符合题意的只有一个.1.截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )A .723.910⨯B .82.3910⨯C .92.3910⨯D .90.23910⨯2.下列图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .3.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒4.如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )A .0a b +<B .0b a -<C .22a b >D .22a b +<+5.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒6.已知关于x 的一元二次方程220x x a -+=有两个相等的实数根,则实数a 的值是( )A .1-B .1C .2D .37.不透明的袋子中装有2个红球和3个黄球,两种球除颜色外无其他差别,从中随机摸出一个小球,摸到黄球的概率是( )A .23B .34C .25D .358.如图,点A 、B 、C 在同一条线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,AB BC <,90A C ∠=∠=︒,EAB BCD ≌△△,连接DE ,设AB a =,BC b =,DE c =,给出下面三个结论:①a b c +<;②a b +>)a b c +>;上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③第Ⅱ卷 非选择题二、填空题(共16分,每小题2分)9x 可取的一个数是 .10.将2327m n n -因式分解为 .11.方程12131x x =+-的解为 .12.在平面直角坐标系xOy 中,点(A 1-1)y ,,()22B y ,在反比例函数()0k y k x =≠的图象上,且12y y >,请你写出一个符合要求的k 的值 .13.如图,在O 中,AB 是直径,CD AB ⊥,ACD ∠=60︒,2OD =,那么DC 的长等于 .14.如图,《九章算术》是中国古代数学专着,是《算经十书》(汉唐之间出现的十部古算书)中最重要的一种.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”,大意是:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?(椽,装于屋顶以支持屋顶盖材料的木杆)设这批椽有x株,根据题意可列分式方程为.CE=.连接15.如图,在矩形ABCD中,4AB=,5BC=,E点为BC边延长线一点,且3⊥于点H,则DH=.AE交边CD于点F,过点D作DH AE16.有黑、白各6张卡片,分别写有数字1至6把它们像扑克牌那样洗过后,数字朝下,如图排成两行,排列规则如下:①左至右,按数字从小到大的顺序排列;②黑、白卡片数字相同时,黑卡片放在左边.将第一行卡片用大写英文字母按顺序标注,第二行卡片用小写英文字母按顺序标注,则白卡片数字1摆在了标注字母 的位置,标注字母e 的卡片写有数字 .三、解答题(共68分,17~22题,每题5分,23~26题,每题6分,27~28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(本题5分)计算:()20211π 3.144cos302-⎛⎫-+--︒+ ⎪⎝⎭18.(本题5分)解不等式组:221352x x x x +<-⎧⎪⎨-<⎪⎩.19.(本题5分)先化简,再求值:21221121x x x x x x --⎛⎫+-÷ ⎪+++⎝⎭,其中1x =.20.(本题5分)如图,在ABC 中,60,ACB CD ∠=︒平分ACB ∠,过点D 作DE BC ⊥于点,E DF AC ⊥于点F ,点H 是CD 的中点,连接HE FH 、.(1)判断四边形DFHE的形状,并证明;(2)连接EF,若EF CD的长.21.(本题5分)已知,图①是一张可以缓解眼睛疲劳的视力远眺回形图,它是由多个大小不等的正方形构成的二维空间平面图,利用心理学空间知觉原理,通过变化图案可不断改变眼睛晶状体的焦距,强烈显示出三维空间的向远延伸的立体图形,调节人们的睫状体放松而保护视力.其中阴影部分是由能够缓解视疲劳的绿色构成,阴影之间的部分是空白区域.某体检中心想定做一张回形图,图②是选取的部分回形图的示意图,其中最大的正方形边长、两部分的面积相等,若空白区域需要三种不同的护眼浅色贴纸,铺为3m,且空白区域A B贴用纸费用分别为:A区域10元2/m,铺贴三个区域/m,B区域15元2/m,C区域20元2共花费150元,求C区域的面积.22.(本题5分)在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象经过点()0,1,()2,2-,与x 轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数y kx b =+(0k ≠)的值,直接写出m 的取值范围.23.(本题6分)为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a .这30名学生第一次竞赛成绩和第二次竞赛成绩得分统计图:b .这30名学生两次知识竞赛获奖情况相关统计表:参与奖优秀奖卓越奖人数101010第一次竞赛平均数828795人数21216第二次竞赛平均数848793(规定:分数90≥,获卓越奖;85≤分数90<,获优秀奖:分数85<,获参与奖)c .第二次竞赛获卓越奖的学生成绩如下:90 90 91 91 91 91 92 93 93 94 94 94 95 95 96 98d .两次竞赛成绩样本数据的平均数、中位数、众数如下表:平均数中位数众数第一次竞赛m 87.588第二次竞赛90n91根据以上信息,回答下列问题:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;(2)直接写出,m n 的值;(3)哪一次竞赛中初三年级全体学生的成绩水平较高?请说明你的理由(至少两个方面).24.(本题6分)如图,圆内接四边形ABCD 的对角线AC ,BD 交于点E ,BD 平分ABC ∠,BAC ADB ∠=∠.(1)求证DB 平分ADC ∠,并求BAD ∠的大小;(2)过点C 作CF AD ∥交AB 的延长线于点F .若AC AD =,2BF =,求此圆半径的长.25.(本题6分)兴寿镇草莓园是北京最大的草莓基地,通过一颗颗小草莓,促进了农民增收致富,也促进了农旅融合高质量发展.小梅家有一个草莓大棚,大棚的一端固定在离地面高1m 的墙体A 处,另一端固定在离地面高1m 的墙体B 处,记大棚的截面顶端某处离A 的水平距离为m x ,离地面的高度为m y ,测量得到如下数值:/mx 01245/m y 18311311383小梅根据学习函数的经验,发现y 是x 的函数,并对y 随x 的变化而变化的规律进行了探究.下面是小梅的探究过程,请补充完整:(1)在下边网格中建立适当的平面直角坐标系,描出表中各组数值所对应的点(),x y ,并画出函数的图象;解决问题:(2)结合图表回答,大棚截面顶端最高处到地面的距离高度为___________m ;此时距离A 的水平距离为___________m ;(3)为了草莓更好的生长需要在大棚内安装补光灯,补光灯采用吊装模式悬挂在顶部,已知补光灯在距离地面1.5m 时补光效果最好,若在距离A 处水平距离1.5m 的地方挂补光灯,为使补光效果最好补光灯悬挂部分的长度应是多少m ?(灯的大小忽略不计)26.(本题6分)在平面直角坐标系xOy 中,已知抛物线()22230y ax a x a =--≠.(1)求该抛物线的对称轴(用含a 的式子表示);(2)若1a =,当23x -<<时,求y 的取值范围;(3)已知()121,A a y -,()2,B a y ,()32,C a y +为该抛物线上的点,若()()13320y y y y -->,求a 的取值范围.27.(本题7分)如图,在ABC 中,AB AC =,()24590BAC αα∠=︒<<︒,D 是BC 的中点,E 是BD 的中点,连接AE .将射线AE 绕点A 逆时针旋转α得到射线AM ,过点E 作EF AE ⊥交射线AM 于点F .(1)①依题意补全图形;②求证:B AFE ∠=∠;(2)连接CF ,DF ,用等式表示线段CF ,DF 之间的数量关系,并证明.28.(本题7分)在平面直角坐标系xOy 中,O 的半径为1,对于直线l 和线段AB ,给出如下定义:若将线段AB 关于直线l 对称,可以得到O 的弦A B ''(A ',B '分别为A ,B 的对应点),则称线段AB 是O 的关于直线l 对称的“关联线段”.例如:在图1中,线段AB 是O 的关于直线l 对称的“关联线段”.(1)如图2,点1A ,1B ,2A ,2B ,3A ,3B 的横、纵坐标都是整数.①在线段11A B ,22A B ,33A B 中,O 的关于直线2y x =+对称的“关联线段”是______;②若线段11A B ,22A B ,33A B 中,存在O 的关于直线y x m =-+对称的“关联线段”,则m =______;(2)已知()0y b b =+>交x 轴于点C ,在ABC 中,3AC =,AB =若线段AB 是O的关于直线()0y b b =+>对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC 长.2024年中考第二次模拟考试数学·全解全析第Ⅰ卷 选择题一、选择题(共16分,每小题2分)第1~8题均有四个选项,符合题意的只有一个.1.截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )A .723.910⨯B .82.3910⨯C .92.3910⨯D .90.23910⨯2.下列图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .【答案】D【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此项不合题意;D.既是中心对称图形,又是轴对称图形,故此项符合题意.故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒【答案】B 【分析】根据∠AOC 和∠BOC 的度数得出∠AOB 的度数,从而得出答案.【详解】∵∠AOC =70°,∠BOC =30°,∴∠AOB =70°-30°=40°,∴∠AOD =∠AOB +∠BOD =40°+70°=110°.故选:B .【点睛】本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.4.如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )A .0a b +<B .0b a -<C .22a b >D .22a b +<+22a b <,∴C 选项的结论不成立;22a b +<+,∴D 选项的结论成立.故选:D .【点睛】本题主要考查了不等式的性质,有理数大小的比较法则,利用点在数轴上的位置确定出a ,b 的取值范围是解题的关键.5.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒【答案】C【分析】根据多边形的内角和公式()2180n -∙︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】 正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选:C .【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.6.已知关于x 的一元二次方程220x x a -+=有两个相等的实数根,则实数a 的值是( )A .1-B .1C .2D .3【答案】B【分析】本题考查一元二次方程根与判别式的关系,根据方程有两个相等的实数根,判别式等于0列式求解即可得到答案;【详解】解:∵一元二次方程220x x a -+=有两个相等的实数根,∴2(2)410a --⨯⨯=,解得:1a =,故选:B .7.不透明的袋子中装有2个红球和3个黄球,两种球除颜色外无其他差别,从中随机摸出一个小球,摸到黄球的概率是( )A .23B .34C .25D .358.如图,点A 、B 、C 在同一条线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,AB BC <,90A C ∠=∠=︒,EAB BCD ≌△△,连接DE ,设AB a =,BC b =,DE c =,给出下面三个结论:①a b c +<;②a b +>)a b c +>;上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③==+,∴DF AC a b∵DF DE<,+<,①正确,故符合要求;∴a b c∵EAB BCD≌△△,第Ⅱ卷非选择题二、填空题(共16分,每小题2分)9x可取的一个数是.∴x ﹣3≥0,∴x ≥3,∴x 可取x ≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.10.将2327m n n -因式分解为.【答案】()()333n m m +-【分析】先提公因式,再利用平方差公式可进行因式分解.【详解】解:2327m n n -=()239n m -=()()333n m m +-故答案为:()()333n m m +-.【点睛】本题考查了提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提.11.方程12131x x =+-的解为 .【答案】x =3【分析】根据分式方程的解法解方程即可;【详解】解:去分母得:3x ﹣1=2x +2,解得:x =3,检验:把x =3代入得:(x +1)(3x ﹣1)≠0,∴分式方程的解为x =3.故答案为:x =3.【点睛】本题考查了解分式方程:先将方程两边乘最简公分母将分式方程化为整式方程,再解整式方程,最后需要检验整式方程的解是不是分式方程的解.12.在平面直角坐标系xOy 中,点(A 1-1)y ,,()22B y ,在反比例函数()0k y k x=≠的图象上,且12y y >,请你写出一个符合要求的k 的值 .13.如图,在O 中,AB 是直径,CD AB ⊥,ACD ∠=60︒,2OD =,那么DC 的长等于 .AB是直径,CD丄AB∴=,CE DE=BD BC=60︒,∠ACDA∴∠=︒,30∴∠=∠=︒,DOE A26014.如图,《九章算术》是中国古代数学专着,是《算经十书》(汉唐之间出现的十部古算书)中最重要的一种.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”,大意是:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?(椽,装于屋顶以支持屋顶盖材料的木杆)设这批椽有x株,根据题意可列分式方程为.CE=.连接15.如图,在矩形ABCD中,4AB=,5BC=,E点为BC边延长线一点,且3⊥于点H,则DH=.AE交边CD于点F,过点D作DH AE16.有黑、白各6张卡片,分别写有数字1至6把它们像扑克牌那样洗过后,数字朝下,如图排成两行,排列规则如下:①左至右,按数字从小到大的顺序排列;②黑、白卡片数字相同时,黑卡片放在左边.将第一行卡片用大写英文字母按顺序标注,第二行卡片用小写英文字母按顺序标注,则白卡片数字1摆在了标注字母的位置,标注字母e的卡片写有数字.【答案】B;4【分析】根据排列规则依次确定白1,白2,白3,白4的位置,即可得出答案.【详解】解:第一行中B与第二行中c肯定有一张为白1,若第二行中c为白1,则左边不可能有2张黑卡片,∴白卡片数字1摆在了标注字母B的位置,∴黑卡片数字1摆在了标注字母A的位置,;第一行中C与第二行中c肯定有一张为白2,若第二行中c为白2,则a,b只能是黑1,黑2,而A为黑1,矛盾,∴第一行中C为白2;第一行中F与第二行中c肯定有一张为白3,若第一行中F为白3,则D,E只能是黑2,黑3,此时黑2在白2右边,与规则②矛盾,∴第二行中c 为白3,∴第二行中a 为黑2,b 为黑3;第一行中F 与第二行中e 肯定有一张为白4,若第一行中F 为白4,则D ,E 只能是黑3,黑4,与b 为黑3矛盾,∴第二行中e 为白4.故答案为:①B ,②4.【点睛】本题考查图形类规律探索,解题的关键是理解题意,根据所给规则依次确定出白1,白2,白3,白4的位置.三、解答题(共68分,17~22题,每题5分,23~26题,每题6分,27~28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(本题5分)计算:()20211π 3.144cos302-⎛⎫-+--︒+ ⎪⎝⎭18.(本题5分)解不等式组:221352x x x x +<-⎧⎪⎨-<⎪.∴不等式组的解集为35x <<.【点睛】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.19.(本题5分)先化简,再求值:21221121x x x x x x --⎛⎫+-÷ ⎪+++,其中1x =.20.(本题5分)如图,在ABC 中,60,ACB CD ∠=︒平分ACB ∠,过点D 作DE BC ⊥于点,E DF AC ⊥于点F ,点H 是CD 的中点,连接HE FH 、.(1)判断四边形DFHE 的形状,并证明;(2)连接EF ,若EF =CD 的长.四边形DFHE 是菱形,12OH OD DH ∴==,60HDE ∠=︒ ,633OE OD ∴===21.(本题5分)已知,图①是一张可以缓解眼睛疲劳的视力远眺回形图,它是由多个大小不等的正方形构成的二维空间平面图,利用心理学空间知觉原理,通过变化图案可不断改变眼睛晶状体的焦距,强烈显示出三维空间的向远延伸的立体图形,调节人们的睫状体放松而保护视力.其中阴影部分是由能够缓解视疲劳的绿色构成,阴影之间的部分是空白区域.某体检中心想定做一张回形图,图②是选取的部分回形图的示意图,其中最大的正方形边长为3m ,且空白区域AB 、两部分的面积相等,若空白区域需要三种不同的护眼浅色贴纸,铺贴用纸费用分别为:A 区域10元2/m ,B 区域15元2/m ,C 区域20元2/m ,铺贴三个区域共花费150元,求C 区域的面积.【答案】25m 【分析】本题考查一元一次方程的应用,设A 区域的面积为m x ,根据题意得出101520(92)150x x x ++-=,解得2x =,再求出C 区域的面积即可.【详解】解:设A 区域的面积为m x ,101520(92)150x x x ++-=,解得2x =,9225-⨯=,答:C 区域的面积是25m .22.(本题5分)在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象经过点()0,1,()2,2-,与x 轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数y kx b =+(0k ≠)的值,直接写出m 的取值范围.23.(本题6分)为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a.这30名学生第一次竞赛成绩和第二次竞赛成绩得分统计图:b .这30名学生两次知识竞赛获奖情况相关统计表:参与奖优秀奖卓越奖人数101010第一次竞赛平均数828795人数21216第二次竞赛平均数848793(规定:分数90≥,获卓越奖;85≤分数90<,获优秀奖:分数85<,获参与奖)c .第二次竞赛获卓越奖的学生成绩如下:90 90 91 91 91 91 92 93 93 94 94 94 95 95 96 98d .两次竞赛成绩样本数据的平均数、中位数、众数如下表:平均数中位数众数第一次竞赛m 87.588第二次竞赛90n 91根据以上信息,回答下列问题:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;(2)直接写出,m n 的值;(3)哪一次竞赛中初三年级全体学生的成绩水平较高?请说明你的理由(至少两个方面).【答案】(1)见详解;(2)88m =,90n =;(3)第二次【分析】(1)根据30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图可得横坐标(2)8210871095108830m ⨯+⨯+⨯==,∵第二次竞赛获卓越奖的学生有16人,成绩从小到大排列为:90,90,91,91,91,91,92,93,93,94,其中第1个和第2个数是30名学生成绩中第∴1(9090)902n =⨯+=,∴88m =,90n =;24.(本题6分)如图,圆内接四边形ABCD 的对角线AC ,BD 交于点E ,BD 平分ABC ∠,BAC ADB ∠=∠.(1)求证DB 平分ADC ∠,并求BAD ∠的大小;(2)过点C 作CF AD ∥交AB 的延长线于点F .若AC AD =,2BF =,求此圆半径的长.25.(本题6分)兴寿镇草莓园是北京最大的草莓基地,通过一颗颗小草莓,促进了农民增收致富,也促进了农旅融合高质量发展.小梅家有一个草莓大棚,大棚的一端固定在离地面高1m 的墙体A 处,另一端固定在离地面高1m 的墙体B 处,记大棚的截面顶端某处离A 的水平距离为m x ,离地面的高度为m y ,测量得到如下数值:/mx 01245/m y 18311311383小梅根据学习函数的经验,发现y是x的函数,并对y随x的变化而变化的规律进行了探究.下面是小梅的探究过程,请补充完整:(1)在下边网格中建立适当的平面直角坐标系,描出表中各组数值所对应的点(),x y,并画出函数的图象;解决问题:(2)结合图表回答,大棚截面顶端最高处到地面的距离高度为___________m;此时距离A的水平距离为___________m;(3)为了草莓更好的生长需要在大棚内安装补光灯,补光灯采用吊装模式悬挂在顶部,已知补光灯在距离地面1.5m时补光效果最好,若在距离A处水平距离1.5m的地方挂补光灯,为使补光效果最好补光灯悬挂部分的长度应是多少m?(灯的大小忽略不计)【答案】(1)见解析;(2)4;3;(3)为使补光效果最好补光灯悬挂部分的长度应是1.75m.【分析】(1)描点,连线,即可画出函数的图象;(2)结合图表回答,即可解答;x=,求得函数值,即可解答.(3)利用待定系数法求得抛物线的解析式,令 1.5【详解】(1)解:描点,连线,函数的图象如图所示,(2)解:根据图表知,大棚截面顶端最高处到地面的距离高度为距离为3m ;故答案为:4;3;(3)解:设抛物线的解析式为2y ax bx c =++,把()01,,813⎛⎫ ⎪⎝⎭,,1123⎛⎫⎪⎝⎭,,代入得,18342c a b c a b c ⎧⎪=⎪⎪++=⎨⎪⎪++=⎪⎩26.(本题6分)在平面直角坐标系xOy 中,已知抛物线()22230y ax a x a =--≠.(1)求该抛物线的对称轴(用含a 的式子表示);(2)若1a =,当23x -<<时,求y 的取值范围;(3)已知()121,A a y -,()2,B a y ,()32,C a y +为该抛物线上的点,若()()13320y y y y -->,求a 的取值范围.()32,C a y +在对称轴的右侧,当()121,A a y -在对称轴右侧时,21+2a a ->,解得:3a >,不符合题意,当()121,A a y -在对称轴左侧时,()21+2a a a a -->-,解得:1a <-;∴a 的取值范围是1a <-;综上所述:a 的取值范围是3a >或1a <-.【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.27.(本题7分)如图,在ABC 中,AB AC =,()24590BAC αα∠=︒<<︒,D 是BC 的中点,E 是BD 的中点,连接AE .将射线AE 绕点A 逆时针旋转α得到射线AM ,过点E 作EF AE ⊥交射线AM 于点F .(1)①依题意补全图形;②求证:B AFE ∠=∠;(2)连接CF ,DF ,用等式表示线段CF ,DF 之间的数量关系,并证明.【答案】(1)①见解析;②见解析;(2)CF DF =【分析】(1)①根据题意画出图形即可求解;②连接AD ,则AD BC ⊥于点D ,AD 平分BAC ∠,根据等腰三角形的性质以及三角形内角和定理得出BAD ∠=α,90B α∠=︒-,根据90AEF ∠=︒,得出90AFE α∠=︒-,则B AFE ∠=∠;(2)延长FE 至点H ,使得EH EF =,连接,BH AH ,CF ,倍长中线法证明HBE FDE ≌,进而证明AHB AFC ≌,即可得证.【详解】(1)解:①如图所示,②连接AD ,∵AB AC =,D 是BC 的中点,∴AD BC ⊥于点D ,AD 平分BAC ∠,∵()24590BAC αα∠=︒<<︒∴BAD ∠=α,90B α∠=︒-,∵EF AE ⊥,∴90AEF ∠=︒,90AFE α∠=︒-,∴B AFE ∠=∠;(2)CF DF =;证明如下,延长FE 至点H ,使得EH EF =,连接,BH AH ,CF ,∵E 为BD 的中点,E 为HF 的中点∴,EH EF EB ED ==,又HEB FED ∠=∠,∴HBE FDE ≌()SAS ,∴BH FD =,∵AE HF ⊥,EH EF =,∴AHF △是等腰三角形,则AH AF =,HAE FAE α∠=∠=,,∵2BAC HAF α∠=∠=,∴HAF BAF BAC BAF ∠-∠=∠-∠,即BAH CAF ∠=∠,∴AHB AFC ≌()SAS ,∴CF BH =,∴CF FD =.【点睛】本题考查了等腰三角形的性质与判定,旋转的性质,全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.28.(本题7分)在平面直角坐标系xOy 中,O 的半径为1,对于直线l 和线段AB ,给出如下定义:若将线段AB 关于直线l 对称,可以得到O 的弦A B ''(A ',B '分别为A ,B 的对应点),则称线段AB 是O 的关于直线l 对称的“关联线段”.例如:在图1中,线段AB 是O 的关于直线l 对称的“关联线段”.(1)如图2,点1A ,1B ,2A ,2B ,3A ,3B 的横、纵坐标都是整数.①在线段11A B ,22A B ,33A B 中,O 的关于直线2y x =+对称的“关联线段”是______;②若线段11A B ,22A B ,33A B 中,存在O 的关于直线y x m =-+对称的“关联线段”,则m =______;(2)已知()0y b b =+>交x 轴于点C ,在ABC 中,3AC =,AB =若线段AB 是O的关于直线()0y b b =+>对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC 长.发现线段11A B 的对称线段是⊙O 的弦,∴线段11A B ,22A B ,33A B 中,⊙O 的关于直线故答案为:11A B ;(2)已知()30y x b b =-+>交x 轴于点是O 的关于直线()30y x b b =-+>对称的以及相应的BC 长.解:∵直线()30y x b b =-+>交x 轴于点当0y =时,()030x b b =-+>,将点C 代入直线3y x b =-+中,得0解得:23b =,∵点B B ',关于323y x =-+对称∴22125BC B C '==+=,∴当A '为()10,时,如图,OC 最大,此时2024年中考第二次模拟考试数学·参考答案 第Ⅰ卷 选择题一、选择题(共16分,每小题2分)第1~8题均有四个选项,符合题意的只有一个.12345678BDBDCBDD第Ⅱ卷 非选择题二、填空题(共16分,每小题2分)9.如4等(答案不唯一,3x ≥)10.()()333n m m +-11.x =312.2-(答案不唯一)13.14.()621031x x-=1516.B ;4三、解答题(共68分,17~22题,每题5分,23~26题,每题6分,27~28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)【详解】解:原式1144=-+-+....................(2分)114=-++-....................(4分)4=.....................(5分)18.(5分)【详解】解:221352x xxx+<-⎧⎪⎨-<⎪⎩①②,解不等式①得:3x>,....................(2分)解不等式②得:5x<,....................(4分)∴不等式组的解集为35x<<.....................(5分)19.(5分)【详解】解:原式22121211(1)x x xx x x⎛⎫---=+÷⎪+++⎝⎭()()22112x x xx x-+=⋅+-....................(2分)()1x x=-+....................(3分)2x x=--,....................(4分)当1x=时,原式)1113=--+=-....................(5分)20.(5分)【详解】(1)解:四边形DFHE是菱形,理由如下:CD平分ACB∠,过点D作DE BC⊥于点E,DF AC⊥于点F,60ACB∠=︒,DF DE∴=,30FCD DCE∠=∠=︒,....................(1分)点H是CD的中点,FH CH DH∴==,EH CH DH==,FH HE∴=,30DCE∠=︒,DE CB⊥,60HDE∴∠=︒,DHE∴ 是等边三角形,DE HE DH∴==,DF DE HE FH∴===,∴四边形DFHE 是菱形;....................(2分)(2)解:连接EF ,交DH 于点O ,四边形DFHE 是菱形,12OH OD DH ∴==,12OF OE EF ===EF DH ⊥,....................(3分)60HDE ∠=︒,OD ∴===....................(4分)24CD DH OD ∴===....................(5分)21.(5分)【详解】解:设A 区域的面积为m x ,101520(92)150x x x ++-=,....................(1分)解得2x =,....................(2分)9225-⨯=,....................(3分)答:C 区域的面积是25m .....................(5分)22.(5分)【详解】(1)解: 一次函数(0)y kx b k =+≠的图象经过点(0,1),(2,2)-,∴122b k b =⎧⎨-+=⎩,解得121k b ⎧=-⎪⎨⎪=⎩,....................(1分)该一次函数的表达式为112y x =-+,....................(2分)令0y =,得1012x =-+,2x ∴=,(2,0)A ∴;....................(3分)(2)解:当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数(0)y kx b k =+≠的值,1212x m x ∴+>-+,....................(4分)4m ∴>-.....................(5分)23.(6分)【详解】(1)解:如图所示;....................(2分)(2)8210871095108830m ⨯+⨯+⨯==,....................(3分)∵第二次竞赛获卓越奖的学生有16人,成绩从小到大排列为:90,90,91,91,91,91,92,93,93,94,94,94,95,95,96,98,其中第1个和第2个数是30名学生成绩中第15和第16个数,∴1(9090)902n =⨯+=,∴88m =,90n =;....................(4分)(3)第二次竞赛,学生成绩的平均数、中位数和众数均高于第一次竞赛,故第二次竞赛中初三年级全体学生的成绩水平较高.....................(6分)24.(6分)【详解】(1)解:∵BAC ADB∠=∠∴ AB BC =,....................(1分)∴ADB CDB ∠=∠,即DB 平分ADC ∠.∵BD 平分ABC ∠,∴ABD CBD ∠=∠,....................(2分)∴ AD CD =,∴ AB AD BC CD +=+,即 BAD BCD =,∴BD 是直径,∴90BAD ∠=︒;....................(3分)(2)解:∵90BAD ∠=︒,CF AD ∥,∴180F BAD ∠+∠=︒,则90F ∠=︒.∵ AD CD =,∴AD DC =.∵AC AD =,∴AC AD CD ==,∴ADC △是等边三角形,则60ADC ∠=︒.....................(4分)∵BD 平分ADC ∠,∴1302CDB ADC ∠=∠=︒.∵BD 是直径,∴90BCD ∠=︒,则12BC BD =.∵四边形ABCD 是圆内接四边形,∴180ADC ABC ∠+∠=︒,则120ABC ∠=︒,∴60FBC ∠=︒,∴906030FCB ∠=︒-︒=︒,∴12FB BC =.....................(5分)∵2BF =,∴4BC =,∴28BD BC ==.∵BD 是直径,∴此圆半径的长为142BD =.....................(6分)25.(6分)【详解】(1)解:描点,连线,函数的图象如图所示, ....................(1分)(2)解:根据图表知,大棚截面顶端最高处到地面的距离高度为4m ;此时距离A 的水平距离为3m ;故答案为:4;3;....................(3分)(3)解:设抛物线的解析式为2y ax bx c =++,把()01,,813⎛⎫ ⎪⎝⎭,,1123⎛⎫ ⎪⎝⎭,,代入得,18311423c a b c a b c ⎧⎪=⎪⎪++=⎨⎪⎪++=⎪⎩,解得1321a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,....................(4分)∴抛物线的解析式为21213y x x =-++,令 1.5x =,则21331321 3.253224y ⎛⎫=-⨯+⨯+== ⎪⎝⎭,()3.25 1.5 1.75m -=,....................(5分)答:为使补光效果最好补光灯悬挂部分的长度应是1.75m .....................(6分)26.(6分)【详解】(1)解:∵抛物线解析式为()22230y ax a x a =--≠,。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、选择题:本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2021的相反数是()A.2021 B.﹣2021 C.12021D.−120212.如图所示的几何体,从上面看得到的图形是()A.B.C.D.3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108 B.4.4×109 C.0.44×1010 D.4.4×1084.下列甲骨文中,不是轴对称图形的是()A.B.C.D.5.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°6.下列运算正确的是()A.x2+x=2x3 B.(﹣2x3)2=4x6C.x2•x3=x6 D.(x+1)2=x2 +17.计算x2x−1−1x−1的结果是()A.x2﹣1 B.x﹣1 C.x+1 D.18.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃9.在同一平面直角坐标系中,函数y=x﹣k与y=kx(k为常数,且k≠0)的图象大致是()A.B.C.D.10.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为()A .20√3米B .10米C .10√3米D .20米11.如图,从一块直径为2m 的圆形铁皮⊙O 上剪出一个圆心角为90°的扇形ABC ,且点A 、B 、C 都在⊙O 上,则此扇形的面积是( )A .π2m 2B .√32πm 2C .πm 2D .2πm 212.已知抛物线y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①在a >0的条件下,无论a 取何值,点A 是一个定点;②在a >0的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于﹣2;④若AB =AC ,则a =1+√52. 其中正确的结论有( )个.A .1个B .2个C .3个D .4个二、填空题:本题共6小题,每小题4分,共24分.13.分解因式:m 2﹣3m = .14.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一次骰子,在骰子向上的一面上,出现的点数是偶数的概率是 .15.若一个多边形的内角和等于其外角和的2倍,则它是 边形.16.方程6x 1+2x =11−2x +3的解是 .17.小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行,小宁先出发5分钟后,小强骑自行车匀速回家,小宁开始跑步中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35分钟,两人之间的距离y (m )与小宁离开出发地的时间x (min )之间的函数图象如图所示,则当弟弟到家时,小宁离图书馆的距离为米.18.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,将△ABD绕着点B顺时针旋转45°得到△BEF,EF交CD于点G,连接BG交AC于点H,连接EH.则下列结论:①△BGE≌△BGC;②四边形EHCG是菱形;③△BDG的面积是8﹣4√2;④OH=2−√2.其中正确结论的序号是.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(13)−1−(√5−2)0+√12−tan60°.20.(6分)解不等式组:{2(x−1)+1<x+2x−12>−1把解集在数轴上表示出来,并写出所有整数解.21.(6分)如图,在菱形ABCD中,E、F分别是AD和AB的中点,连接BE、DF.求证:BE=DF.22.(8分)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.23.(8分)如图,平行四边形ABCD的边AD与经过A,B,C三点的⊙O相切(1)求证:点A平分BĈ;(2)延长DC交⊙O于点E,连接BE,若BE=4√13,⊙O半径为13,求BC的长.24.(10分)某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店,A种商品每件的售价为48元,B种商品每件的售价为31元,且商店将购进A、B共50件的商品全部售出后,要获得的利润超过348元,求A种商品至少购进多少件?25.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=6x的图象交于A(2,m),B(n,1)两点,连接OA,OB.(1)求这个一次函数的表达式;(2)求△OAB的面积;(3)问:在直角坐标系中,是否存在一点P,使以O,A,B,P为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.26.(12分)在正方形ABCD中,E为AD上一点,连接BE.(1)如图1,连接BD,延长BE至点F,使BF=BD,且AF∥BD,①若AB=√2,求AF的长度;②如图2,过点D作BF的垂线DG,垂足为点G,交AF于点H,分别延长BA,DH交于点P,连接PE,过点F作FQ⊥BD于Q.求证:BE=DG+√3FG;(2)如图3,延长DC至点R,使CR=AE,在四边形BCDE内有点M,∠BME=135°,点N为平面上一点,连接ND,MN,若AB=5,AE=1,请直接写出MN+ND+√2NR的最小值.27.(12分)如图1,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB=4.(1)求抛物线的解析式;(2)如图2,E是第三象限内抛物线上的动点,过点E作EF∥AC交抛物线于点F,过E作EG⊥x轴交AC于点M,过F作FH⊥x轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2021的相反数是()A.2021 B.﹣2021 C.12021D.−12021【分析】利用相反数的定义分析得出答案,只有符号不同的两个数叫做互为相反数.【解析】2021的相反数是:﹣2021.故选:B.2.如图所示的几何体,从上面看得到的图形是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解析】从上边看是一个六边形,中间为圆.故选:D.3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108 B.4.4×109 C.0.44×1010 D.4.4×108【分析】科学记数法的表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数.其中a是整数数位只有一位的数,10的指数n比原来的整数位数少1.【解析】4 400 000 000=4.4×109,故选:B.4.下列甲骨文中,不是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此可得结论.【解析】A.是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项不合题意;故选:B.5.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°【分析】根据平行线的性质和三角板的角度解答即可.【解析】∵DE∥AF,∴∠CED=∠EAF=46°,∵∠BAC=90°﹣30°=60°,∴∠BAF=∠BAC﹣∠EAF=60°﹣46°=14°,故选:C.6.下列运算正确的是()A.x2+x=2x3 B.(﹣2x3)2=4x6C.x2•x3=x6 D.(x+1)2=x2 +1【分析】利用合并同类项法则、积的乘方法则、同底数幂的乘法法则、完全平方公式逐个计算得结论.【解析】∵x2与x不是同类项,不能合并,故选项A错误;(﹣2x3)2=4x6,故选项B正确;x2•x3=x5≠x6,故选项C错误;(x+1)2=x2+2x+1≠x2+1,故选项D错误.故选:B.7.计算x2x−1−1x−1的结果是()A.x2﹣1 B.x﹣1 C.x+1 D.1【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解析】原式=(x+1)(x−1)x−1=x +1. 故选:C .8.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C .中位数是24℃D .平均数是26℃ 【分析】根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.【解析】由图可得,极差是:30﹣20=10℃,故选项A 错误,众数是28℃,故选项B 正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误, 平均数是:20+22+24+26+28+28+307=2537℃,故选项D 错误, 故选:B .9.在同一平面直角坐标系中,函数y =x ﹣k 与y =k x (k 为常数,且k ≠0)的图象大致是( ) A . B .C.D.【分析】根据题目中的函数解析式,利用分类讨论的方法可以判断哪个选项中图象是正确的,本题得以解决.【解析】∵函数y=x﹣k与y=kx(k为常数,且k≠0)∴当k>0时,y=x﹣k经过第一、三、四象限,y=kx经过第一、三象限,故选项A符合题意,选项B不符合题意,当k<0时,y=x﹣k经过第一、二、三象限,y=kx经过第二、四象限,故选项C、D不符合题意,故选:A.10.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为()A.20√3米B.10米C.10√3米D.20米【分析】首先证明BD=AD=20米,解直角三角形求出BC即可.【解析】∵∠BDC=∠A+∠ABD,∠A=30°,∠BDC=60°,∴∠ABD=60°﹣30°=30°,∴∠A=∠ABD,∴BD=AD=20米,∴BC=BD•sin60°=10√3(米),故选:C.11.如图,从一块直径为2m的圆形铁皮⊙O上剪出一个圆心角为90°的扇形ABC,且点A、B、C都在⊙O上,则此扇形的面积是( )A .π2m 2B .√32πm 2C .πm 2D .2πm 2【分析】根据题意,可以求得AB 和BC 的长,从而可以得到此扇形的面积.【解析】连接AC ,∵AB =CB ,∠ABC =90°,AC =2,∴AB =BC =√2,∴此扇形的面积是:90π×(√2)2360=π2m 2, 故选:A .12.已知抛物线y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①在a >0的条件下,无论a 取何值,点A 是一个定点;②在a >0的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于﹣2;④若AB =AC ,则a =1+√52. 其中正确的结论有( )个.A .1个B .2个C .3个D .4个【分析】①利用抛物线两点式方程进行判断;②根据根的判别式来确定a 的取值范围,然后根据对称轴方程进行计算;③利用顶点坐标公式进行解答;④利用两点间的距离公式进行解答.【解析】①y =ax 2+(2﹣a )x ﹣2=(x ﹣1)(ax +2).则该抛物线恒过点A (1,0).故①正确; ②∵y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴有2个交点,∴△=(2﹣a )2+8a =(a +2)2>0,∴a ≠﹣2.∴该抛物线的对称轴为:x =a−22a =12−1a .无法判定的正负.故②不一定正确;③根据抛物线与y 轴交于(0,﹣2)可知,y 的最小值不大于﹣2,故③正确;④∵A (1,0),B (−2a ,0),C (0,﹣2),∴当AB =AC 时,√(1+2a )2=√12+(−2)2,解得 a =1+√52.故④正确. 综上所述,正确的结论有3个.故选:C .二、填空题:本题共6小题,每小题4分,共24分.13.分解因式:m 2﹣3m = m (m ﹣3) .【分析】首先确定公因式m ,直接提取公因式m 分解因式.【解析】m 2﹣3m =m (m ﹣3).故答案为:m (m ﹣3).14.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一次骰子,在骰子向上的一面上,出现的点数是偶数的概率是 12 .【分析】骰子共有六个面,每个面朝上的机会是相等的,而偶数有2,4,6,根据概率公式即可计算.【解析】∵骰子六个面中偶数为2,4,6,∴P (向上一面为偶数)=36=12;故答案为:12. 15.若一个多边形的内角和等于其外角和的2倍,则它是 六 边形.【分析】根据多边形的内角和公式与外角和定理列出方程,然后解方程即可.【解析】设这个多边形是n 边形,根据题意得,(n ﹣2)•180°=2×360°,解得n =6.故答案为:六.16.方程6x1+2x =11−2x+3的解是x=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解析】去分母得:6x(1﹣2x)=1+2x+3(1+2x)(1﹣2x),整理得:6x﹣12x2=1+2x+3﹣12x2,解得:x=1,经检验x=1是分式方程的解.故答案为:x=1.17.小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行,小宁先出发5分钟后,小强骑自行车匀速回家,小宁开始跑步中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35分钟,两人之间的距离y(m)与小宁离开出发地的时间x(min)之间的函数图象如图所示,则当弟弟到家时,小宁离图书馆的距离为1500米.【分析】根据题意和函数图象可以求得小宁的跑步速度和步行速度,从而可以求得小宁由跑步变为步行的时刻,进而求得小强骑车速度,再根据题意即可得到则当弟弟到家时,小宁离图书馆的距离.【解析】由图可得,小宁跑步的速度为:(4500﹣3500)÷5=200m/min,则步行速度为:200×12=100m/min,设小宁由跑步变为步行的时刻为a分钟,200a+(35﹣a)×100=4500,解得,a=10,设小强骑车速度为xm/min,200(10﹣5)+(10﹣5)x=3500﹣1000,解得,x=300,即小强骑车速度为300m/min,小强到家用的时间为:4500÷300=15min,则当弟弟小强到家时,小宁离图书馆的距离为:4500﹣10×200﹣(5+15﹣10)×100=1500m,故答案为:1500.18.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,将△ABD绕着点B顺时针旋转45°得到△BEF,EF交CD于点G,连接BG交AC于点H,连接EH.则下列结论:①△BGE≌△BGC;②四边形EHCG是菱形;③△BDG的面积是8﹣4√2;④OH=2−√2.其中正确结论的序号是①②④.【分析】由正方形的性质可得AB=BC=AD=2,AC=BD=2√2,AO=BO=CO=DO=√2,AC⊥BD,由旋转的性质可得AB=BE=2,AD=EF=2,∠BEF=∠BAD=90°,由“HL”可证Rt△BEG≌Rt△BCG,可得∠EBG=∠CBG=22.5°,由“SAS”可证△BEH≌△BCH,可得CH=EH=EG=CG,∠BCH=∠BEH =45°,可求OH=2−√2,由等腰三角形的性质可求EH=√2OH=2√2−2,可求△BDG的面积.即可求解.【解析】∵四边形ABCD是正方形,∴AB=BC=AD=2,AC=BD=2√2,AO=BO=CO=DO=√2,AC⊥BD,∵将△ABD绕着点B顺时针旋转45°得到△BEF,∴AB=BE=2,AD=EF=2,∠BEF=∠BAD=90°,∴BE=BC=2,在Rt△BEG和Rt△BCG中,{BE=BCBG=BG,∴Rt△BEG≌Rt△BCG(HL),故①正确;∴∠EBG=∠CBG=22.5°,∴∠BGC=67.5°,∠GHC=∠GBC+∠ACB=67.5°,∴∠BGC=∠GHC,∴CH=CG,在△BEH和△BCH中,{BE =BC ∠EBH =∠CBH BH =BH,∴△BEH ≌△BCH (SAS ),∴EH =CH ,∠BCH =∠BEH =45°,∴CH =EH =EG =CG ,∴四边形EHCG 是菱形,故②正确,∵∠BEH =45°,∠EOH =90°,∴∠OEH =∠OHE =45°,∴OH =OE =BE ﹣OB =2−√2,故④正确;∴EH =√2OH =2√2−2,∴CG =EH =2√2−2,∴DG =CD ﹣CG =4﹣2√2,∴△BDG 的面积=12×DG ×BC =12×(4﹣2√2)×2=4﹣2√2,故③错误, 故答案为:①②④.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(13)−1−(√5−2)0+√12−tan60°.【分析】直接利用负指数幂的性质以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解析】原式=3−1+2√3−√3=2+√3.20.(6分)解不等式组:{2(x −1)+1<x +2x−12>−1把解集在数轴上表示出来,并写出所有整数解. 【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.【解析】{2(x −1)+1<x +2①x−12>−1②, 解不等式①得x <3,解不等式②得x >﹣1,∴不等式组的解集为﹣1<x <3,数轴表示为:整数解为:0,1,2.21.(6分)如图,在菱形ABCD中,E、F分别是AD和AB的中点,连接BE、DF.求证:BE=DF.【分析】证明△AFD≌△AEB(SAS),即可得出BE=DF.【解析】证明:∵四边形ABCD是菱形,∴AB=AD,∵E、F分别是AD和AB的中点,∴AF=12AB,AE=12AD,∴AF=AE,又∵∠F AD=∠EAB,∴△AFD≌△AEB(SAS),∴BE=DF.22.(8分)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.【分析】(1)用羽毛球的人数除以所占的百分比即可得出答案;(2)用总人数减去其他项目的人数求出足球的人数,从而补全统计图;(3)根据题意画出树状图得出所有等可能的情况数和他俩选择不同项目的情况数,然后根据概率公式即可得出答案.【解析】(1)此次共调查的学生有:40÷72°360°=200(名); (2)足球的人数有:200﹣40﹣60﹣20﹣30=50(人),补全统计图如下:(3)根据题意画树状图如下:共有25种等可能的情况数,其中他俩选择不同项目的有20种,则他俩选择不同项目的概率是2025=45.23.(8分)如图,平行四边形ABCD的边AD与经过A,B,C三点的⊙O相切̂;(1)求证:点A平分BC(2)延长DC交⊙O于点E,连接BE,若BE=4√13,⊙O半径为13,求BC的长.【分析】(1)连接OA交BC于F.只要证明OF⊥BC即可解决问题.(2)连接OB.连接OA交BC于F.首先证明BE=AB,设OF=x,则AF=13﹣x,可得132﹣x2=(4√13)2−(13−x)2,解方程可求出OF,则BF可求出,由垂径定理可得结果.【解析】(1)证明:如图1,连接OA交BC于F.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠CFO,∵AD是⊙O的切线,∴∠OAD=90°,∴∠OFC=90°,∴OF⊥BC,̂,∴OA平分BĈ=AĈ.即AB(2)如图2,连接OB.∵AB ∥DE ,∴∠BCE =∠ABC ,∴BÊ=AC ̂=AB ̂, ∴BE =AB =4√13,∵OA ⊥BC ,∴AB 2﹣AF 2=BF 2,OB 2﹣OF 2=BF 2,设OF =x ,则AF =13﹣x ,∴132﹣x 2=(4√13)2−(13−x)2,解得:x =5,∴BF =2−OF 2=√132−52=12,∴BC =2BF =24.24.(10分)某商店欲购进A 、B 两种商品,已知购进A 种商品5件和B 种商品4件共需300元;若购进A 种商品6件和B 种商品8件共需440元;(1)求A 、B 两种商品每件的进价分别为多少元?(2)若该商店,A 种商品每件的售价为48元,B 种商品每件的售价为31元,且商店将购进A 、B 共50件的商品全部售出后,要获得的利润超过348元,求A 种商品至少购进多少件?【分析】(1)设A 种进价为x 元,B 种进价为y 元.由购进A 种商品5件和B 种商品4件需300元和购进A 种商品6件和B 种商品8件需440元建立两个方程,构成方程组求出其解就可以;(2)设购进A 种商品a 件,则购进B 种商品(50﹣a )件.根据获得的利润超过348元,建立不等式求出其解即可.【解析】(1)设A 种进价为x 元,B 种进价为y 元.由题意,得{5x +4y =3006x +8y =440, 解得:{x =40y =25, 答:A 种进价为40元,B 种进价为25元.(2)设购进A 种商品a 件,则购进B 种商品(50﹣a )件.由题意,得8a +6(50﹣a )>348,解得:a >24,答:至少购进A 种商品24件.25.(10分)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=6x的图象交于A (2,m ),B (n ,1)两点,连接OA ,OB .(1)求这个一次函数的表达式;(2)求△OAB 的面积;(3)问:在直角坐标系中,是否存在一点P ,使以O ,A ,B ,P 为顶点的四边形是平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)由点A ,B 在反比例函数图象上,求出m ,n ,进而求出A ,B 坐标,再代入一次函数解析式中,即可得出结论;(2)利用三角形的面积的差即可得出结论;(3)分三种情况:利用平移的特点,即可得出结论.【解析】(1)∵点A (2,m ),B (n ,1)在反比例函数y 2=6x 上,∴2m =6,n =6,∴m =3,∴A (2,3),B (6,1),∵点A (2,3),B (6,1)在一次函数y 1=kx +b 上,∴{2k +b =36k +b =1, ∴{k =−12b =4, ∴一次函数的表达式为y 1=−12x +4;(2)如图1,记一次函数y 1=−12x +4的图象与x ,y 轴的交点为点D ,C ,针对于y1=−12x+4,令x=0,则y1=4,∴C(0,4),∴OC=6,令y1=0,则−12x+4=0,∴x=8,∴D(8,0),∴OD=8,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∵A(2,3),B(6,1),∴AE=2,BF=1,∴S△AOB=S△COD﹣S△AOC﹣S△BOD=12OC•OD−12OC•AE−12OD•BF=12×4×8−12×4×2−12×8×1=8;(3)存在,如图2,当AB和OB为邻边时,点B(6,1)先向左平移6个单位再向下平移1个单位到点O(0,0),则点A 也先向左平移6个单位再向下平移1个单位到点P(2﹣6,3﹣1),即P(﹣4,2);当OA和OB为邻边时,点O(0,0)先向右平移2个单位再向上平移3个单位到点A(2,3),则点B也先向右平移2个单位再向上平移3个单位到点P'(6+2,1+3),即P'(8,4);当AB和OA为邻边时,点A(2,3)先向右平移4个单位再向下平移2个单位到点B(6,1),则点O也先向右平移4个单位再向下平移2个单位到点P''(0+4,0﹣2),即P'(4,﹣2);点P的坐标为(﹣4,2)或(4,﹣2)或(8,4).26.(12分)在正方形ABCD中,E为AD上一点,连接BE.(1)如图1,连接BD,延长BE至点F,使BF=BD,且AF∥BD,①若AB=√2,求AF的长度;②如图2,过点D作BF的垂线DG,垂足为点G,交AF于点H,分别延长BA,DH交于点P,连接PE,过点F作FQ⊥BD于Q.求证:BE=DG+√3FG;(2)如图3,延长DC至点R,使CR=AE,在四边形BCDE内有点M,∠BME=135°,点N为平面上一点,连接ND,MN,若AB=5,AE=1,请直接写出MN+ND+√2NR的最小值.【分析】(1)①过点F作FG⊥AB,与BA的延长线交于点G,由勾股定理求得BD,根据正方形的性质和平行线的性质求得△AGF为等腰直角三角形,在Rt△BGF中根据勾股定理列出x的方程便可得出结果;②证明△ABE≌△ADP,得BE=DP,AE=AP,再由平行线得△BFQ的面积与△ABC的面积相等,从而得FQ与FB的比值,得∠DBF=30°,连接PF,证明△APF≌△AEF,得∠EFP=60°,根据三角函数关系得出PG=√3FG,便可得结论;(2)将△DNR绕点R顺时针旋转90°得△RPQ,作△BME的外接圆⊙O,连接OM、NP、PQ,连接OQ 与⊙O交于M',连接QR,延长AB与QR的延长线交于点K,过O作OL⊥QR于点L,作OF⊥AB于F,作OG⊥BE于点G,与AB交于点H,连接OA,OB,当当O、M、N、P、Q五点共线时,OM+MN+ND+√2NR =OQ的值最小,求出此时的OQ和OM便可求得MN+ND+√2NR的最小值.【解析】(1)①过点F作FG⊥AB,与BA的延长线交于点G,如图1,∵四边形ABCD为正方形,AB=√2,∴∠DAG=∠BAD=∠ADC=∠ABC=90°,BD平分∠ADC和∠ABC,AB=AD=√2,∴∠ADB=45°,BD=√AB2+AD2=2,∵AF∥BD,∴∠DAF=∠ADB=45°,∴∠GAF=45°,∴∠AGF=∠GAF=45°,∴AG=GF,不妨设AG=GF=x,则BG=x+√2,∵BG2+GF2=BF2,BF=BD=2,∴x2+(x+√2)2=22,解得,x=√6−√22,或x=−√6+√22(舍),∴AF=√2AG=√3−1;②连接PF和DF,如图2,∵DG⊥BF,∴∠DGE=∠BAE=90°,∵∠AEB=∠DEG,∴∠ABE=∠GDE,∵∠BAE=∠DAP=90°,AB=AD,∴△ABE≌△ADP(ASA),∴BE=DP,AE=AP,设AB=a,则BF=BE=√2a,∵AF∥BD,∴S△FBD=S△ABD,∴12×√2a⋅FQ=12a2,∴FQ=√22a,∴sin∠QBF=FQBF=√22a√2a=12,∴∠QBF=30°,∵AF∥BD,∴∠AFB=∠DBF=30°,∠EAF=∠ADB=45°,∴∠EAF=∠P AF=45°,∵AF=AF,∴△AEF≌△APF(SAS),∴∠AFE=∠AFP=30°,∴∠EFP=60°,∴PG=√3FG,∵DG+PG=DP=BE,∴BE=DG+√3FG;(2)将△DNR绕点R顺时针旋转90°得△RPQ,作△BME的外接圆⊙O,连接OM、NP、PQ,连接OQ 与⊙O交于M',连接QR,延长AB与QR的延长线交于点K,过O作OL⊥QR于点L,作OF⊥AB于F,作OG⊥BE于点G,与AB交于点H,连接OA,OB,如图3,则QR=DR,RK=BC,KL=OF,CR=BK,OL=FK,∵OE=OM=OB,∴∠OEM=∠OME,∠OBM=∠OMB,∵∠BME=135°,∴∠OEM+∠OBM=∠OME+∠OMB=135°,∴∠BOE=90°,∵四边形ABCD是正方形,AB=5,∴AB=BC=CD=AD=RK=6,∵AE=CR=1,∴QR=DR=5+1=6,BK=1,∴BE=√AB2+AE2=√26,∴OG=BG=12BE=12√26,OA=OB=OM'=√22BE=√13,∵∠BGH=∠BAE=90°,∠HBG=∠EBA,∴△BGH∽△BAE,∴GHAE=BGBA=BHBE,即GH1=12√265=√26,∴GH=110√26,BH=135,∴OH=OG﹣GH=25√26,∵∠OFH=∠BGH=90°,∠OHF=∠BHG,∴△OHF∽△BHG,∴HFHG=OHBH=OFBG,即HF110√26=25√26135=OF12√26,∴HF=25,OF=2,∴KL=OF=2,OL=FK=FH+BH+BK=4,∴QL=QR+RK+KL=12,∴OQ=√OL2+QL2=√42+122=4√10,由旋转知,∠PRN=90°,PR=RN,PQ=DN,∴PN=√2RN,∵OM+MN+ND+√2NR=OM+MN+PN+PQ≥OQ,∴当O、M、N、P、Q五点共线时,OM+MN+ND+√2NR=OQ=4√10的值最小,∵OM=OB=√13,∴MN+ND+√2NR的最小值为:4√10−√13.27.(12分)如图1,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB=4.(1)求抛物线的解析式;(2)如图2,E是第三象限内抛物线上的动点,过点E作EF∥AC交抛物线于点F,过E作EG⊥x轴交AC于点M,过F作FH⊥x轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由.【分析】(1)x2﹣(a+1)x+a=0,则AB=√(x1+x2)2−4x1x2=(a﹣1)2=16,即可求解;(2)设点E(m,m2+2m﹣3),点F(﹣3﹣m,m2+4m),四边形EMNF的周长S=ME+MN+EF+FN,即可求解;(3)分当点Q在第三象限、点Q在第四象限两种情况,分别求解即可.【解析】(1)x2﹣(a+1)x+a=0,则x1+x2=a+1,x1x2=a,则AB=√(x1+x2)2−4x1x2=(a﹣1)2=16,解得:a=5或﹣3,抛物线与y轴负半轴交于点C,故a=5舍去,则a=﹣3,则抛物线的表达式为:y=x2+2x﹣3…①;(2)由y=x2+2x﹣3得:点A、B、C的坐标分别为:(﹣3,0)、(1,0)、(0,﹣3),设点E(m,m2+2m﹣3),OA=OC,故直线AC的倾斜角为45°,EF∥AC,直线AC的表达式为:y=﹣x﹣3,则设直线EF的表达式为:y=﹣x+b,将点E的坐标代入上式并解得:直线EF的表达式为:y=﹣x+(m2+3m﹣3)…②,联立①②并解得:x=m或﹣3﹣m,故点F(﹣3﹣m,m2+4m),点M、N的坐标分别为:(m,﹣m﹣3)、(﹣3﹣m,m+3),则EF=√2(x F﹣x E)=√2(﹣2m﹣3)=MN,四边形EMNF的周长S=ME+MN+EF+FN=﹣2m2﹣(6+4√2)m﹣6√2,∵﹣2<0,故S有最大值,此时m=−3+2√22,故点E的横坐标为:−3+2√22;(3)①当点Q在第三象限时,﹣﹣﹣﹣当QC 平分四边形面积时, 则|x Q |=x B =1,故点Q (﹣1,﹣4); ﹣﹣﹣﹣当BQ 平分四边形面积时, 则S △OBQ =12×1×|y Q |,S 四边形QCBO =12×1×3+12×3×|x Q |, 则2(12×1×|y Q |)=12×1×3+12×3×|x Q |, 解得:x Q =−32,故点Q (−32,−154);②当点Q 在第四象限时, 同理可得:点Q (−5+√372,15−3√372); 综上,点Q 的坐标为:(﹣1,﹣4)或(−32,−154)或(−5+√372,15−3√372).。
安徽省合肥XX中学中考数学模拟试卷(二)一、选择题1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)63.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥5.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60°C.70°D.80°8.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x ﹣1=0的实根x0所在的范围是()A.B.C.D.二、填空题9.据了解,截止5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为.10.分解因式:a3﹣4ab2=.11.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.13.在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=.14.如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为.15.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O 恰好落在上的点D处,折痕交OA于点C,则的长为.16.已知关于x的方程的解是负数,则n的取值范围为.17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.三、解答题19.(1)计算:;(2)先化简,再求值:(x+1)(2x﹣1)﹣(x﹣3)2,其中x=﹣2.20.已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.21.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得元购物券,最多可得元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.22.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 3.41 90% 20%乙组7.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.23.如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.24.某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.25.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.26.如图,抛物线y=x2﹣2x﹣8交y轴于点A,交x轴正半轴于点B.(1)求直线AB对应的函数关系式;(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB 和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.27.如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.28.如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n两个量之间的同一关系.(1)根据劳格数的定义,填空:d(10)=,d(10﹣2)=;(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).根据运算性质,填空:=(a为正数),若d(2)=0.3010,则d(4)=,d(5)=,d(0.08)=;(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5 3 5 6 8 9 12 27d(x)3a﹣b+c 2a﹣b a+c 1+a﹣b﹣c 3﹣3a﹣3c 4a﹣2b 3﹣b﹣2c 6a﹣3b安徽省合肥XX中学中考数学模拟试卷(二)参考答案与试题解析一、选择题1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】倒数.【专题】常规题型.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)6【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;有理数的乘方的意义,对各选项计算后利用排除法求解.【解答】解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.【点评】本题考查同底数幂的乘法、幂的乘方和有理数乘方的定义,熟练掌握运算性质是解题的关键.3.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近【考点】概率的意义.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、“明天下雨的概率为80%”指的是明天下雨的可能性是80%,错误;B、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.D、正确故选D.【点评】正确理解概率的含义是解决本题的关键.4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥【考点】由三视图判断几何体.【分析】如图所示,根据三视图的知识可使用排除法来解答.【解答】解:如图,俯视图为三角形,故可排除C、B.主视图以及侧视图都是矩形,可排除D.故选A.【点评】本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.5.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.【考点】平行线的判定与性质.【分析】根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形【考点】多边形内角与外角.【分析】首先求得外角的度数,然后利用360除以外角的度数即可求解.【解答】解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选C.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60°C.70°D.80°【考点】菱形的性质;全等三角形的判定与性质;线段垂直平分线的性质.【专题】几何综合题.【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.8.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x ﹣1=0的实根x0所在的范围是()A.B.C.D.【考点】反比例函数与一次函数的交点问题.【专题】压轴题.【分析】首先根据题意推断方程x3+2x﹣1=0的实根是函数y=x2+2与的图象交点的横坐标,再根据四个选项中x的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x3+2x﹣1=0的实根x所在范围.【解答】解:方程x3+2x﹣1=0,∴x2+2=,∴它的根可视为y=x2+2和的图象交点的横坐标,当x=时,y=x2+2=2,y==4,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==3,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==2,此时抛物线的图象在反比例函数上方;当x=1时,y=x2+2=3,y==1,此时抛物线的图象在反比例函数上方.故方程x3+2x﹣1=0的实根x所在范围为:<x<.故选:C.【点评】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.二、填空题9.据了解,截止5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为 4.5×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将450000用科学记数法表示为4.5×105.故答案为:4.5×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】观察原式a3﹣4ab2,找到公因式a,提出公因式后发现a2﹣4b2符合平方差公式的形式,再利用平方差公式继续分解因式.【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).【点评】本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.11.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=400.【考点】反比例函数的应用.【分析】首先利用待定系数法求得v与P的函数关系式,然后代入P求得v值即可.【解答】解:∵在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,∴设P=∵当V=200时,p=50,∴k=VP=200×50=10000,∴P=当P=25时,得v==400故答案为:400.【点评】本题考查了反比例函数的应用,解题的关键是利用待定系数法求得反比例函数的解析式.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有1200条鱼.【考点】用样本估计总体.【分析】先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有30条鱼做上标记,即可得出答案.【解答】解:∵打捞200条鱼,发现其中带标记的鱼有5条,∴有标记的鱼占×100%=2.5%,∵共有30条鱼做上标记,∴鱼塘中估计有30÷2.5%=1200(条).故答案为:1200.【点评】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.13.在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=6.【考点】解直角三角形;等腰三角形的性质.【分析】根据题意做出图形,过点A作AD⊥BC于D,根据AB=AC=5,sin∠ABC=0.8,可求出AD的长度,然后根据勾股定理求出BD的长度,继而可求出BC的长度.【解答】解:过点A作AD⊥BC于D,如图∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,则BD==3,∴BC=BD+CD=3+3=6.故答案为:6.【点评】本题考查了解直角三角形的知识,难度一般,解答本题的关键是构造直角三角形并解直角三角形以及勾股定理的应用.14.如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为30.【考点】等腰梯形的性质.【分析】首先过点A作AE∥BC于点E,由在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,可得四边形ADCE是平行四边形,△ABE是等边三角形,继而求得AB=AD=CD=BE=CE=6.继而求得答案.【解答】解:过点A作AE∥BC于点E,∵在梯形ABCD中,AD∥BC,∴四边形ADCE是平行四边形,∴AD=EC,AE=CD,∵AB=CD,∴AB=AE,∵∠ABC=60°,∴△ABE是等边三角形,∴AB=BE,∵AB=AD,∴AD=AB=CD=BE=CE=BC=×12=6,∴梯形ABCD的周长为:AB+AD+CD+BC=30.故答案为:30.【点评】此题考查了等腰梯形的性质、等边三角形的判定与性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.15.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O 恰好落在上的点D处,折痕交OA于点C,则的长为5π.【考点】弧长的计算;翻折变换(折叠问题).【分析】如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°﹣∠DOB=50°;然后由弧长公式弧长的公式l=来求的长.【解答】解:如图,连接OD.根据折叠的性质知,OB=DB.又∵OD=OB,∴OD=OB=DB,即△ODB是等边三角形,∴∠DOB=60°.∵∠AOB=110°,∴∠AOD=∠AOB﹣∠DOB=50°,∴的长为=5π.故答案是:5π.【点评】本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB 是等边三角形是解答此题的关键之处.16.已知关于x的方程的解是负数,则n的取值范围为n<2且n≠.【考点】分式方程的解.【分析】求出分式方程的解x=n﹣2,得出n﹣2<0,求出n的范围,根据分式方程得出n﹣2≠﹣,求出n,即可得出答案.【解答】解:,解方程得:x=n﹣2,∵关于x的方程的解是负数,∴n﹣2<0,解得:n<2,又∵原方程有意义的条件为:x≠﹣,∴n﹣2≠﹣,即n≠.故答案为:n<2且n≠.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出n﹣2<0和n﹣2≠﹣,注意题目中的隐含条件2x+1≠0,不要忽略.17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为6.【考点】勾股定理;矩形的性质.【分析】设矩形一条边长为x,则另一条边长为x﹣2,然后根据勾股定理列出方程式求出x的值,继而可求出矩形的面积.【解答】解:设矩形一条边长为x,则另一条边长为x﹣2,由勾股定理得,x2+(x﹣2)2=42,整理得,x2﹣2x﹣6=0,解得:x=1+或x=1﹣(不合题意,舍去),另一边为:﹣1,则矩形的面积为:(1+)(﹣1)=6.故答案为:6.【点评】本题考查了勾股定理及矩形的性质,难度适中,解答本题的关键是根据勾股定理列出等式求处矩形的边长,要求同学们掌握矩形面积的求法.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.【考点】垂径定理;含30度角的直角三角形;勾股定理.【专题】压轴题.【分析】延长ME交⊙O于G,根据圆的中心对称性可得FN=EG,过点O作OH⊥MG于H,连接MO,根据圆的直径求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根据垂径定理可得MG=2MH,从而得解.【解答】解:如图,延长ME交⊙O于G,∵E、F为AB的三等分点,∠MEB=∠NFB=60°,∴FN=EG,过点O作OH⊥MG于H,连接MO,∵⊙O的直径AB=6,∴OE=OA﹣AE=×6﹣×6=3﹣2=1,OM=×6=3,∵∠MEB=60°,∴OH=OE•sin60°=1×=,在Rt△MOH中,MH===,根据垂径定理,MG=2MH=2×=,即EM+FN=.故答案为:.【点评】本题考查了垂径定理,勾股定理的应用,以及解直角三角形,作辅助线并根据圆的中心对称性得到FN=EG是解题的关键,也是本题的难点.三、解答题19.(1)计算:;(2)先化简,再求值:(x+1)(2x﹣1)﹣(x﹣3)2,其中x=﹣2.【考点】整式的混合运算—化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.【分析】(1)根据负整数指数幂的性质和特殊角的三角函数值代入计算即可;(2)利用整式的乘法和完全平方公式展开化简后代入求值即可.【解答】解(1)原式=4﹣2×+2=4+;(2)原式=2x2﹣x+2x﹣1﹣x2+6x﹣9=x2+7x﹣10,当x=﹣2时,原式=4﹣14﹣10=﹣20.【点评】本题考查了实数的运算、负整数指数幂及特殊角的三角函数值,属于基础题,应重点掌握.20.已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】先利用加减消元法求出x、y,然后列出不等式组,再求出两个不等式的解集,然后求公共部分即可.【解答】解:,①×3得,15x+6y=33a+54③,②×2得,4x﹣6y=24a﹣16④,③+④得,19x=57a+38,解得x=3a+2,把x=3a+2代入①得,5(3a+2)+2y=11a+18,解得y=﹣2a+4,所以,方程组的解是,∵x>0,y>0,∴,由①得,a>﹣,由②得,a<2,所以,a的取值范围是﹣<a<2.【点评】本题考查的是二元一次方程组的解法,一元一次不等式组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得20元购物券,最多可得80元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图即可求得该顾客最少可得20元购物券,最多可得80元购物券;(2)由(1)中的树状图即可求得所有等可能的结果与该顾客所获购物券金额不低于50元的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则该顾客最少可得20元购物券,最多可得80元购物券;故答案为:20,80;(2)∵共有16种等可能的结果,该顾客所获购物券金额不低于50元的有10种情况,∴该顾客所获购物券金额不低于50元的概率为: =.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.17.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是甲组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.【考点】条形统计图;加权平均数;中位数;方差.【专题】计算题.【分析】(1)将甲组成绩按照从小到大的顺序排列,找出第5、6个成绩,求出平均数即为甲组的中位数;找出乙组成绩,求出乙组的平均分,填表即可;(2)观察表格,成绩为7分处于中游略偏上,应为甲组的学生;(3)乙组的平均分高于甲组,中位数高于甲组,方差小于甲组,所以乙组成绩好于甲组.【解答】解:(1)甲组的成绩为:3,6,6,6,6,6,7,8,9,10,甲组中位数为6,乙组成绩为5,5,6,7,7,8,8,8,8,9,平均分为(5+5+6+7+7+8+8+8+8+9)=7.1(分),填表如下:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.1 7.5 1.69 80% 10%(2)观察上表可知,小明是甲组的学生;(3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组.故答案为:(1)6;7.1;(2)甲【点评】此题考查了条形统计图,加权平均数,中位数,以及方差,弄清题意是解本题的关键.23.如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形;正方形的判定;相似三角形的判定与性质.【专题】证明题.【分析】(1)根据旋转的性质得到∠DCE=90°,CD=CE,利用等角的余角相等得∠BCD=∠ACE,然后根据“SAS”可判断△BCD≌△ACE,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论;(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.【解答】证明:(1)∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°,∵线段CD绕点C顺时针旋转90°至CE位置,∴∠DCE=90°,CD=CE,∵∠ACB=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,∴△BCD≌△ACE,∴∠B=∠CAE=45°,∴∠BAE=45°+45°=90°,∴AB⊥AE;(2)∵BC2=AD•AB,而BC=AC,∴AC2=AD•AB,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴∠CDA=∠BCA=90°,而∠DAE=90°,∠DCE=90°,∴四边形ADCE为矩形,∵CD=CE,∴四边形ADCE为正方形.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰直角三角形的性质、三角形全等、相似的判定与性质以及正方形的判定.24.某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.【考点】分式方程的应用.【分析】首先设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,然后根据九(1)班人数比九(2)班多8人,即可得方程:﹣=8,解此方程即可求得答案.【解答】解:设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,则:﹣=8,解得:x=25,经检验,x=25是原分式方程的解.九(2)班的人均捐款数为:(1+20%)x=30(元)答:九(1)班人均捐款为25元,九(2)班人均捐款为30元.【点评】本题考查分式方程的应用.注意分析题意,找到合适的等量关系是解决问题的关键.25.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.【考点】切线的性质;圆周角定理;解直角三角形.【分析】(1)由BF是⊙O的切线,利用弦切角定理,可得∠1=∠C,又由∠ABF=∠ABC,可证得∠2=∠C,即可得AB=AC;(2)首先连接BD,在Rt△ABD中,解直角三角形求出AB的长度;然后在Rt△ABE中,解直角三角形求出AE的长度;最后利用DE=AD﹣AE求得结果.【解答】(1)证明:∵BF是⊙O的切线,∴∠1=∠C,∵∠ABF=∠ABC,即∠1=∠2,∴∠2=∠C,∴AB=AC;(2)解:如图,连接BD,在Rt△ADB中,∠BAD=90°,∵cos∠ADB=,∴BD====5,。
湖北省襄阳市谷城县中考数学模拟试卷(2)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各数中,﹣3的倒数是()A.3 B.C.D.﹣32.(3分)下列运算正确的是()A.a2+a3=a5 B.(a+2b)2=a2+2ab+b2C.a6÷a3=a2D.(﹣2a3)2=4a63.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④4.(3分)不等式组的解集在数轴上表示为()A.B.C.D.5.(3分)下列各数中最小的数是()A.B.﹣1 C.D.06.(3分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A.B.C.D.7.(3分)5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人,如表是苏炳添近五次大赛参赛情况:则苏炳添这五次比赛成绩的众数和中位数分别为()比赛日期﹣8﹣4﹣5﹣21﹣9﹣28﹣5﹣20﹣5﹣31比赛地点英国伦敦中国北京韩国仁川中国北京美国尤金成绩(秒)10.1910.0610.1010.069.99A.10.06秒,10.06秒B.10.10秒,10.06秒C.10.06秒,10.10秒D.10.08秒,10.06秒8.(3分)如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°9.(3分)已知AC⊥BC于C,BC=a,CA=b,AB=c,下列图形中⊙O与△ABC的某两条边或三边所在的直线相切,则⊙O的半径为的是()A.B.C.D.10.(3分)在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.12.(3分)在﹣2、1、﹣3这三个数中,任选两个数的积作为k的值,使反比例函数y=的图象在第一、三象限的概率是.13.(3分)若干个工人装卸一批货物,每个工人的装卸速度相同,如果这些工人同时工作,则需10小时装卸完毕;现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸完毕,且最后参加的一个人装卸的时间是第一个人的,则按改变的方式装卸,自始至终共需时间小时.14.(3分)如图,从热气球上看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为90m,则这栋楼高为(精确到0.1 m).15.(3分)四边形ABCD是正方形,点E是直线AB上的一动点,且△AEC是以AC为腰的等腰三角形,则∠BCE的度数为.16.(3分)如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分别为边AB、AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为.三.解答题(共9小题,满分59分)17.(6分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.18.(6分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1?19.(6分)已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;(3)当kx+b>时,请根据图象直接写出x的取值范围.20.(6分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数.(3)请估计全校共征集作品的什数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.(7分)如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.22.(8分)如图,在△ABC中,AB=8,BC=5,AC=7,点D在△ABC的外接圆⊙O上,BC=BD,CD交AB于点E.(1)求证:△ABC∽△CBE.(2)求BE的长.23.(10分)重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:z(元/m2)5052545658…x(年)12345…(1)求出z与x的函数关系式;(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.(参考数据:,,)24.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E 在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.25.已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.湖北省襄阳市谷城县中考数学模拟试卷(2)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:∵相乘得1的两个数互为倒数,且﹣3×﹣=1,∴﹣3的倒数是﹣.故选:B.2.【解答】解:∵a2+a3≠a5,∴选项A不正确;∵(a+2b)2=a2+4ab+b2,∴选项B不正确;∵a6÷a3=a3,∴选项C不正确;∵(﹣2a3)2=4a6,∴选项D正确.故选:D.3.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.4.【解答】解:,由①得,x>1,由②得,x≥2,故此不等式组得解集为:x≥2.在数轴上表示为:.故选:A.5.【解答】解:根据实数比较大小的方法,可得﹣<﹣<﹣1<0,∴各数中最小的数是:﹣.故选:C.6.【解答】解:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.故选:A.7.【解答】解:在这一组数据中10.06是出现次数最多的,故众数是10.06;而将这组数据从小到大的顺序排列为:9.99,10.06,10.06,10.10,10.19,处于中间位置的那个数是10.06,那么由中位数的定义可知,这组数据的中位数是10.06.故选:A.8.【解答】解:∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC﹣∠ADE=30°.故选:C.9.【解答】解:设⊙O的半径为r,A、∵⊙O是△ABC内切圆,=(a+b+c)•r=ab,∴S△ABC∴r=;B、如图,连接OD,则OD=OC=r,OA=b﹣r,∵AD是⊙O的切线,∴OD⊥AB,即∠AOD=∠C=90°,∴△ADO∽△ACB,∴OA:AB=OD:BC,即(b﹣r):c=r:a,解得:r=;C、连接OE,OD,∵AC与BC是⊙O的切线,∴OE⊥BC,OD⊥AC,∴∠OEB=∠ODC=∠C=90°,∴四边形ODCE是矩形,∵OD=OE,∴矩形ODCE是正方形,∴EC=OD=r,OE∥AC,∴OE:AC=BE:BC,∴r:b=(a﹣r):a,∴r=;D、解:设AC、BA、BC与⊙O的切点分别为D、F、E;连接OD、OE;∵AC、BE是⊙O的切线,∴∠ODC=∠OEC=∠DCE=90°;∴四边形ODCE是矩形;∵OD=OE,∴矩形ODCE是正方形;即OE=OD=CD=r,则AD=AF=b﹣r;连接OB,OF,由勾股定理得:BF2=OB2﹣OF2,BE2=OB2﹣OE2,∵OB=OB,OF=OE,∴BF=BE,则BA+AF=BC+CE,c+b﹣r=a+r,即r=.故选:C.10.【解答】解:解法一:逐项分析A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x===<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x===<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二:系统分析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.12.【解答】解:画树状图得:∵共有6种等可能的结果,任选两个数的积作为k的值,使反比例函数y=的图象在第一、三象限的有2种情况,∴任选两个数的积作为k的值,使反比例函数y=的图象在第一、三象限的概率是:=.故答案为:.13.【解答】解:设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活x+小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,…,平均每人干活的时间也是小时,根据题设,得=10,解得x=16(小时);设共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y﹣1)t小时,按题意,得16﹣(y﹣1)t=16×,即(y﹣1)t=12,解此不定方程得,,,,,,即参加的人数y=2或3或4或5或7或13.故答案为:16.14.【解答】解:过点A作AD⊥BC,垂足为D.在Rt△ADC中,有CD=ADtan60°=AD=90,在Rt△ABD中,有BD=ADtan30°=AD=30.故这栋楼高BC为90+30=120≈207.8(m).故答案为:207.8m.15.【解答】解:当AC=AE时,以A为圆心,AC为半径作圆交直线AB于点E,当E在BA的延长线时,∴∠EAC=135°,∴∠BEC=22.5°,∴∠BCE=∠BCA+∠BEC=67.5°当E在AB的延长线时,∴∠EAC=45°,∴∠ACE=67.5°∴∠BCE=∠ACE﹣∠ACB=22.5°当AC=CE时,当以C为圆心AC为半径作圆交直线AB于点E ∴∠EAC=∠CEA=45°,∴∠BCE=45°,故答案为:67.5°或45°或22.5°16.【解答】解:连接BH、BH1,∵∠ACB=90°,∠CAB=30°,BC=2,∴AB=4,∴AC==2,在Rt△BHC中,CH=AC=,BC=2,根据勾股定理可得:BH=;∴S扫=S扇形BHH1﹣S扇形BOO1==π.三.解答题(共9小题,满分59分)17.【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y ﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z ﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.18.【解答】解:(1)设经过x秒,使△PBQ的面积等于8cm2,依题意有(6﹣x)•2x=8,解得x1=2,x2=4,经检验,x1,x2均符合题意.故经过2秒或4秒,△PBQ的面积等于8cm2;(2)设经过y秒,线段PQ能否将△ABC分成面积相等的两部分,依题意有△ABC的面积=×6×8=24,(6﹣y)•2y=12,y2﹣6y+12=0,∵△=b2﹣4ac=36﹣4×12=﹣12<0,∴此方程无实数根,∴线段PQ不能否将△ABC分成面积相等的两部分;(3)①点P在线段AB上,点Q在线段CB上(0<x<4),设经过m秒,依题意有(6﹣m)(8﹣2m)=1,m2﹣10m+23=0,解得m1=5+,m2=5﹣,经检验,m1=5+不符合题意,舍去,∴m=5﹣;②点P在线段AB上,点Q在射线CB上(4<x<6),设经过n秒,依题意有(6﹣n)(2n﹣8)=1,m2﹣10n+25=0,解得n1=n2=5,经检验,n=5符合题意.③点P在射线AB上,点Q在射线CB上(x>6),设经过k秒,依题意有(k﹣6)(2k﹣8)=1,k2﹣10k+23=0,解得k1=5+,k2=5﹣,经检验,k1=5﹣不符合题意,舍去,∴k=5+;综上所述,经过(5﹣)秒,5秒,(5+)秒后,△PBQ的面积为1.19.【解答】解:(1)过P 作PC ⊥y 轴于C , ∵P (,n ), ∴OC=n ,PC=, ∵tan ∠BOP=, ∴n=4, ∴P (,4),设反比例函数的解析式为y=, ∴a=4,∴反比例函数的解析式为y=, ∴Q (4,),把P (,4),Q (4,)代入y=kx +b 中得,,∴,∴直线的函数表达式为y=﹣x +;(2)过Q 作QD ⊥y 轴于D ,则S △POQ =S 四边形PCDQ =×(+4)×(4﹣)=;(3)由图象知, 当﹣x +>时,或x <020.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为:抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,C班有24﹣(4+6+4)=10件,补全条形图如图所示,扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;故答案为:150°;(3)∵平均每个班=6件,∴估计全校共征集作品6×30=180件.(4)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好选取的两名学生性别相同的概率为=.21.【解答】(1)解:∵四边形ABCD是平行四边形,∴∠D=∠B,∵BF=DE,∠DCE=∠BCF,∴△CDE≌△CBF(AAS),∴CD=CB,∴▱ABCD是菱形,∴AD=AB,∴AD﹣DE=AB﹣BF,即AE=AF,∵∠A=60°,∴△AEF是等边三角形,∵EF=2,=×22=;∴S△AEF(2)证明:如图2,延长DP交BC于N,连结FN,∵四边形ABCD是菱形,∴AD∥BC,∴∠EDP=∠PNC,∠DEP=∠PCN,∵点P是CE的中点,∴CP=EP.∴△CPN≌△EPD,∴DE=CN,PD=PN.又∵AD=BC.∴AD﹣DE=BC﹣CN,即AE=BN.∵△AEF是等边三角形,∴∠AEF=60°,EF=AE.∴∠DEF=120°,EF=BN.∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=60°,∴∠ABC=120°,∴∠ABC=∠DEF.又∵DE=BF,BN=EF.∴△FBN≌△DEF,∴DF=NF,∵PD=PN,∴PF⊥PD.22.【解答】(1)证明:∵BC=BD,∴∠BCE=∠BDC.∵∠BDC=∠BAC,∴∠BCE=∠BAC.∵∠CBE=∠ABC,∴△ABC∽△CBE.(2)解:∵△ABC∽△CBE,∴=,即=,∴BE=.23.【解答】解:(1)由题意,z与x是一次函数关系,设z=kx+b(k≠0)把(1,50),(2,52)代入,得∴,∴z=2x+48.(2)当1≤x≤6时,设收取的租金为W1百万元,则W1=()•(2x+48)=∵对称轴∴当x=3时,W1最大=243(百万元)当7≤x≤10时,设收取的租金为W2百万元,则W2=()•(2x+48)=∵对称轴∴当x=7时,W2最大=(百万元)∵243>∴第3年收取的租金最多,最多为243百万元.(3)当x=6时,y=百万平方米=400万平方米当x=10时,y=百万平方米=350万平方米∵第6年可解决20万人住房问题,∴人均住房为:400÷20=20平方米.由题意:20×(1﹣1.35a%)×20×(1+a%)=350,设a%=m,化简为:54m2+14m﹣5=0,△=142﹣4×54×(﹣5)=1276,∴∵,∴m1=0.2,(不符题意,舍去),∴a%=0.2,∴a=20答:a的值为20.24.【解答】解:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=2,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠ABF=45°,∴△CEA∽△BFA,∴y====(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE===,∴x=,∴AB=x+2=.25.【解答】解:(1)∵抛物线y=ax2+bx﹣2(a≠0)过点A,B,∴,解得:,∴抛物线的解析式为:y=x2﹣x﹣2;∵y=x2﹣x﹣2=(x﹣)2﹣,∴C(,﹣).(2)如图1,以AB为直径作圆M,则抛物线在圆内的部分,能使∠APB为钝角,∴M(,0),⊙M的半径=.∵P′是抛物线与y轴的交点,∴OP′=2,∴MP′==,∴P′在⊙M上,∴P′的对称点(3,﹣2),∴当﹣1<m<0或3<m<4时,∠APB为钝角.(3)方法一:存在;抛物线向左或向右平移,因为AB、P′C′是定值,所以A、B、P′、C′所构成的多边形的周长最短,只要AC′+BP′最小;第一种情况:抛物线向右平移,AC′+BP′>AC+BP,第二种情况:向左平移,如图2所示,由(2)可知P(3,﹣2),又∵C(,﹣)∴C'(﹣t,﹣),P'(3﹣t,﹣2),∵AB=5,∴P″(﹣2﹣t,﹣2),要使AC′+BP′最短,只要AC′+AP″最短即可,点C′关于x轴的对称点C″(﹣t,),设直线P″C″的解析式为:y=kx+b,,解得∴直线y=x+t+,当P″、A、C″在一条直线上时,周长最小,∴﹣+t+=0∴t=.故将抛物线向左平移个单位连接A、B、P′、C′所构成的多边形的周长最短.方法二:∵AB、P′C′是定值,∴A、B、P′、C′所构成的四边形的周长最短,只需AC′+BP′最小,①若抛物线向左平移,设平移t个单位,∴C′(﹣t,﹣),P″(﹣2﹣t,﹣2),∵四边形P″ABP′为平行四边形,∴AP″=BP′,AC′+BP′最短,即AC′+AP″最短,C′关于x轴的对称点为C″(﹣t,),C″,A,P″三点共线时,AC′+AP″最短,K AC′=K AP″,,∴t=.②若抛物线向右平移,同理可得t=﹣,∴将抛物线向左平移个单位时,A、B、P′、C′所构成的多边形周长最短.。
2022年最新中考数学三年真题模拟 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列解方程的变形过程正确的是( )A .由321x x =-移项得:321x x +=-B .由4321x x +=-移项得:3214x x -=-C .由3121123x x -+=+去分母得:3(31)12(21)x x -=++D .由()42311x --=去括号得:4621x -+= 2、下列分式中,最简分式是( ) A .()()3485x y x y -+ B .22y x x y -+ C .2222x y x y xy ++ D .()222x y x y -+ 3、分式方程133x m x x +=--有增根,则m 为( ) A .0 B .1 C .3 D .6 4、日历表中竖列上相邻三个数的和一定是( ). A .3的倍数 B .4的倍数 C .7的倍数 D .不一定 ·线○封○密○外5、在2201922(8),(1),3,|1|,|0|,5--------中,负数共有( )个. A .4 B .3 C .2 D .16、如图,已知12,AB AB BC =⊥于点B ,AB AD ⊥于点A ,5,10AD BC ==.点E 是CD 的中点,则AE 的长为( )A .6B .132C .5D 7、计算3.14-(-π)的结果为( ) .A .6.28B .2πC .3.14-πD .3.14+π8、一元二次方程254x x +=-的一次项的系数是( )A .4B .-4C .1D .59、某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个.设甲种陀螺单价为x 元,根据题意列方程为( )A .60006000405x x =+- B .60006000405x x =-- C .60006000405x x =++ D .60006000405x x =-+ 10、若把分式2x y x y+-中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .不变 C .缩小10倍 D .缩小20倍第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC 中,BC=3cm ,∠BAC=60°,那么△ABC 能被半径至少为 cm 的圆形纸片所覆盖.2、已知圆锥的底面周长为4cm π,母线长为3cm .则它的侧面展开图的圆心角为________度.3、以下说法:①两点确定一条直线;②两点之间直线最短;③若||a a =-,则0a <;④若a ,b 互为相反数,则a ,b 的商必定等于1-.其中正确的是_________.(请填序号)4、如图,在ABC 中,2,,AB AC B C BD CE ∠∠====,F 是AC 边上的中点,则AD EF -________1.(填“>”“=”或“<”)5、用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是_____. 三、解答题(5小题,每小题10分,共计50分) 1、如图,在数轴上记原点为点O ,已知点A 表示数a ,点B 表示数b ,且a ,b 满足()2560a b ++-=,我们把数轴上两点之间的距离,用表示两点的大写字母表示,如:点A 与点B 之间的距离记作AB . (1)=a ______,b =______; (2)若动点P ,Q 分别从A ,B 同时出发向右运动,点P 的速度为每秒2个单位长度,点Q 的速度为每秒1个单位长度,当点P 和点Q 重合时,P ,Q 两点停止运动.当点P 到达原点O 时,动点R 从原点O 出发,以每秒3个单位长度的速度也向右运动,当点R 追上点Q 后立即返回,以同样的速度向点P 运动,遇到点P 后再立即返,以同样的速度向点Q 运动,如此往返,直到点P 、Q 停止运动时,点R 也停止运动,求在此过程中点R 行驶的总路程,以及点R 停留的最后位置在数轴上所对应的有理数; ·线○封○密·○外(3)动点M从A出发,以每秒1个单位的速度沿数轴在A,B之间运动,同时动点N从B出发,以每秒2个单位的速度沿数轴在A,B之间往返运动,当点M运动到B时,M和N两点停止运动.设运动时间为t秒,是否存在t值,使得OM ON=?若存在,请直接写出t值;若不存在,请说明理由.2、为鼓励居民节约用水,昆明市主城区居民生活用水推行每月阶梯水费收费制度,具体执行方案如下(注:自2021年1月4日起执行):(1)一户居民二月份用水8立方米,则需缴水费______元;(2)某用户三月份缴水费67元,则该用户三月份所用水量为多少立方米?(3)某户居民五、六月份共用水29立方米,缴纳水费129元,已知该用户六月份用水量大于五月份,且五、六月份的用水量均小于17.5立方米.求该户居民五、六月份分别用水多少立方米?3、综合与探究如图,直线243y x=-+与x轴,y轴分别交于B,C两点,抛物线243y ax x c=++经过B,C两点,与x轴的另一个交点为A(点A在点B的左侧),抛物线的顶点为点D.抛物线的对称轴与x轴交于点E.(1)求抛物线的表达式及顶点D的坐标;(2)点M是线段BC上一动点,连接DM并延长交x轴交于点F,当:1:4FM FD=时,求点M的坐标;(3)点P 是该抛物线上的一动点,设点P 的横坐标为m ,试判断是否存在这样的点P ,使90PAB BCO ∠+∠=︒,若存在,请直接写出m 的值;若不存在,请说明理由.4、如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于点A (-1,0)和点B (3,0),与y 轴交于点C ,顶点为点D .(1)求该抛物线的表达式及点C 的坐标; (2)联结BC 、BD ,求∠CBD 的正切值; (3)若点P 为x 轴上一点,当△BDP 与△ABC 相似时,求点P 的坐标. 5、已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长2AB =(单位长度),慢车长4CD =(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车头A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是b .若快车AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以2个单位长度/秒的速度向左匀速继续行驶,且8a +与()216b -互为相反数.(1)求此时刻快车头A 与慢车头C 之间相距多少单位长度? ·线○封○密·○外(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头A 和C 相距8个单位长度.(3)此时在快车AB 上有一位爱动脑筋的六年级学生乘客P ,他发现行驶中有一段时间t 秒钟,他的位置P 到两列火车头A ,C 的距离和加上到两列火车尾B ,D 的距离和是一个不变的值(即PA PC PB PD +++为定值).你认为学生P 发现的这一结论是否正确?若正确,求出这个时间及定值:若不正确,请说明理由.-参考答案-一、单选题1、D【分析】对于本题,我们可以根据解方程式的变形过程逐项去检查,必须符合变形规则,移项要变号.【详解】解析:A .由321x x =-移项得:321x x -=-,故A 错误;B .由4321x x +=-移项得:3214x x -=--,故B 错误;C.由3121123x x -+=+去分母得:()()3316221x x -=++,故C 错误; D.由()42311x --=去括号得:4621x -+= 故D 正确.故选:D .【点睛】本题主要考查了解一元一次方程变形化简求值,解题关键是:必须熟练运用移项法则.2、C【详解】【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】A 、分式的分子与分母中的系数34和85有公因式17,可以约分,故A 错误;B 、22y x x y -+=y x y x x y +-+()()=y −x ,故B 错误;C 、分子分母没有公因式,是最简分式,故C 正确;D 、()222x y x y -+=()2x y x y x y +-+()()=x yx y -+,故D 错误, 故选C . 【点睛】本题考查了最简分式,熟练掌握最简分式的概念是解题的关键.分式的化简过程,首先要把分子分母分解因式,然后进行约分.3、C【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的值,让最简公分母x −3=0,得到x =3,然后代入整式方程算出m 的值. 【详解】 解:方程两边都乘x −3,得x+x-3=m ∵原方程有增根, ∴最简公分母x −3=0, 解得x =3, 将x =3代入x+x-3=m ,得m =3, 故m 的值是3. 故选C . 【点睛】 本题考查了分式方程的增根.增根问题可按如下步骤进行:·线○封○密○外①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.4、A【分析】设中间的数字为x ,表示出前一个与后一个数字,求出和即可做出判断.【详解】解:设日历中竖列上相邻三个数的中间的数字为x ,则其他两个为x-7,x+7,则三个数之和为x-7+x+x+7=3x ,即三数之和为3的倍数.故选:A .【点睛】本题考查列代数式,解题的关键是知道日历表中竖列上相邻三个数的特点.5、A【分析】首先将各数化简,然后根据负数的定义进行判断.【详解】解:∵-(-8)=8,2019)1(1=--,293=--,-|-1|=-1,-|0|=0,224=-55-, ∴负数共有4个.故选A . 【点睛】 此题考查的知识点是正数和负数,关键是判断一个数是正数还是负数,要把它化简成最后形式再判断.负数是指小于0的数,注意0既不是正数,也不是负数. ·线6、B【分析】延长AE 交BC 于点F ,根据已知条件证明()ASA ADE FCE ≌,得出,5AE FE AD CF ===,根据勾股定理求出AF 的长度,可得结果.【详解】如图,延长AE 交BC 于点F ,∵,AB BC AB AD ⊥⊥,∴//AD BC ,∴D C ∠=∠,∵点E 是CD 的中点,∴DE CE =,在ADE 和FCE △中,,,,D C DE CE AED FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ADE FCE ≌,∴,5AE FE AD CF ===,∴1055BF BC CF =-=-=,在Rt ABF中,13AF ===,∵点E 是AF 的中点, ∴11322AE AF ==, 故选:B .【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识点,熟练运用全等三角形的判定定理以及性质是解本题的关键.7、D【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】解: 3.14-(-π)= 3.14+π.故选:D .【点睛】本题考查减法运算,熟记减去一个数等于加上这个数的相反数是解题的关键.8、A【分析】方程整理为一般形式,求出一次项系数即可.【详解】方程整理得:x 2+4x +5=0,则一次项系数为4.故选A . 【点睛】 本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次·线项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.9、C【分析】首先设甲种陀螺单价为x元,则乙种陀螺单价为(5)x+元,根据关键语句“单独买甲种比单独买乙种可多买40个”可得方程60006000405x x=++.【详解】首先设甲种陀螺单价为x元,则乙种陀螺单价为(5)x+元,根据题意可得:60006000405x x=++,故选:C.【点睛】本题考查由实际问题抽象出分式方程,解题的关键是正确解读题意,抓住题目中的关键语句,找出等量关系,列出方程.10、B【分析】把x和y都扩大10倍,根据分式的性质进行计算,可得答案.【详解】解:分式2x yx y+-中的x和y都扩大10倍可得:1021010(2)2101010()x y x y x yx y x y x y+⨯++==---,∴分式的值不变,故选B.【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.二、填空题1【分析】作圆O 的直径CD ,连接BD ,根据圆周角定理求出60D ∠=︒,根据锐角三角函数的定义得出sin BC D CD∠=,代入求出CD 即可. 【详解】解:作圆O 的直径CD ,连接BD ,∵圆周角∠A、∠D 所对弧都是BC ,∴∠D=∠A=60°.∵CD 是直径,∴∠DBC=90°. ∴sin∠D=BC CD. 又∵BC=3cm,∴sin60°=3CD ,解得:CD= ∴Ocm ).∴△ABC的圆形纸片所覆盖.【点睛】 本题考查了圆周角定理,三角形的外接圆与外心,锐角三角函数的定义的应用,关键是利用外接圆直径构造直角三角形求半径. 2、240·线【分析】根据弧长=圆锥底面周长=4π,弧长=180n r π计算. 【详解】由题意知:弧长=圆锥底面周长=4πcm ,3180n π⨯=4π,解得:n =240. 故答案为240.【点睛】本题考查了的知识点为:弧长=圆锥底面周长及弧长与圆心角的关系.3、①【分析】分别利用直线的性质以及线段的性质和相反数、绝对值的性质分别分析得出答案.【详解】①两点确定一条直线,正确;②两点之间直线最短,错误,应为两点之间线段最短;③若||a a =-,则0a ≤,故③错误;④若a ,b 互为相反数,则a ,b 的商等于1-(a ,b 不等于0),故④错误. 故答案为:①.【点睛】此题主要考查了直线的性质以及线段的性质和相反数、绝对值,正确掌握相关定义是解题关键.4、<【分析】连接AE ,先证明△≌△ADB AEC 得出AD AE =,根据三角形三边关系可得结果.【详解】如图,连接AE ,在ADB △和AEC 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴()SAS ADB AEC ≌,∴AD AE =,在AEF 中,AE EF AF -<,∴AD EF AF -<,∵F 是AC 边上的中点, ∴112AF AC ==, ∴1AD EF -<,故答案为:<.【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,熟知全等三角形的判定定理与性质是解题的关键.5、2【详解】 解:扇形的弧长=0208161π⨯=2πr, ∴圆锥的底面半径为r=2.故答案为2.三、解答题1、(1)5,6-(2)点R行驶的总路程为25.5;R停留的最后位置在数轴上所对应的有理数为17(3)13t=或113或7或11【分析】(1)根据非负数的意义分析即可;(2)根据题意,,,P Q R三点重合,则只需计算P点的位置以及运动时间即可;(3)根据题意分情况讨论,根据情况建立一元一次方程解决问题.(1)()2560a b++-=5,6a b∴=-=故答案为:5,6-(2)当点P到达原点O时,动点R从原点O出发,则P到达O点需要:52 2.5÷=秒则此时Q点的位置为2.568.5+=设t秒后停止运动,则28.5t t=+解得8.5t=·线○封○密○外此时P 点的位置在28.517⨯=,即R 点也在P 点位置,其对应的有理数为:17R 点的运动时间为8.5,速度为3个单位长度每秒,则总路程为8.5325.5⨯=(3)存在,t 的值为:111,7,1133, 理由如下:()6511--=,111÷11=∴11秒后,M N 点停止运动①当,O M 分别位于O 的两侧时,如图,此时,OM ON =M 表示的有理数为5t -+,N 表示的有理数为62t -5620t t ∴-++-= 解得13t = ②当,M N 重合时,即第一次相遇时,如图,则562t t -+=- 解得113t = ③当N 点从A 点返回时,则点N 表示的有理数为()5211216t t -+-=-若此时点M 未经过点O ,则5t <则2165t t -=-+解得11t =,则此种情况不存在则此时点M 已经过点O ,5t >,如图,则()21650t t -+-+= 解得7t = ④当,M N 在O 点右侧重合时,如图,则2165t t -=-+ 解得11t=此时点,M N 都已经到达点B ,此时即,,M N B 三点重合,,M N 停止运动故t 的值为:111,7,1133, 【点睛】 本题考查了绝对值的非负性,用数轴上的点表示有理数,两点之间的距离,动点问题,一元一次方程的应用,数形结合是解题的关键. 2、·线○封○密○外(1)33.6元(2)15立方米(3)12立方米,17立方米【分析】(1)用水8立方米,未超过12.5立方米,按照每立方米4.2元求解即可;(2)由12.5×4.2=52.5<67说明该居民用水超过12.5立方米,设用水为x 立方米,根据水费为67元列出方程:12.5×4.2+(x -12.5)×5.8=67,求解即可;(3)分29立方米全部用在5月份、全部用在6月份、一部分用水在5月份一部分用水在6月份3种情况分类讨论求解.(1)解:∵每月用水量小于或等于12.5时每立方米按4.2元收费,一户居民用水为8立方米, ∴需要交纳的水费为:8×4.2=33.6元.(2)解:∵12.5×4.2=52.5<67元,∴三月份该居民用水超过12.5立方米,设该居民用水为x 立方米,由题意可知:12.5×4.2+(x -12.5)×5.8=67,解出:x =15(立方米),故该居民三月份用水为15立方米.(3)解:①假设五、六月份都在第一阶梯时:12.5225⨯=(立方米),∵25<29(不符合舍去);②假设五、六月份都在第二阶梯时:()12.52 4.22912.52 5.8128.2⨯⨯+-⨯⨯=(元),∵128.2<129(不符合舍去);③假设五月份在第一阶梯、六月份在第二阶梯时:设五月份用水量为x 立方米,六月份为()29x -立方米,由题意得:()4.212.5 4.22912.5 5.8129x x +⨯+--⨯=, 解得:12x =; 此时五月份用水量为12立方米,六月份用水量为291217-=立方米,符合题意, ∴五月份用水量为12立方米,六月份用水量为291217-=立方米. 【点睛】 本题考查一元一次方程的应用,解决本题的关键是读懂题意,得出每月用水量在三个不同阶梯时的水费进而求解. 3、(1)214-433y x x =++,16(2,)3;(2)44,3⎛⎫ ⎪⎝⎭;(3)存在,m 的值为4或8 【分析】(1)分别求出,B C 两点坐标代入抛物线243y ax x c =++即可求得a 、c 的值,将抛物线化为顶点式,即可得顶点D 的坐标; (2)作MG x ⊥轴于点G ,可证ΔMGF ∽DEF ∆,从而可得FM MG FD DE =,代入:1:4FM FD =,163DE =,可求得43MG =,代入243y x =-+可得4x =,从而可得点M 的坐标; (3)由90PAB BCO ∠+∠=︒,90CBO BCO ∠+∠=︒可得∠=∠PAB CBO ,由,B C 两点坐标可得42tan 63∠==CBO ,所以2tan 3∠=PAB ,过点P 作PQ ⊥AB ,分点P 在x 轴上方和下方两种情况即可求解. 【详解】(1)当0x =时,得4y =,∴点C 的坐标为(0,4),当0y =时,得2403x -+=,解得:6x =, ·线○封○密○外∴点B 的坐标为(6,0),将,B C 两点坐标代入,得43660,3 4.a c c ⎧+⨯+=⎪⎨⎪=⎩ 解,得1,34.a c ⎧=-⎪⎨⎪=⎩ ∴抛物线线的表达式为214- 4.33y x x =++ ∵()()222141116444442.33333y x x x x x =-++=--+-+=--+ ∴顶点D 坐标为16(2,)3. (2)作MG x ⊥轴于点G ,∵MFG DFE ∠=∠,90MGF DEF ∠=∠=︒, ∴ΔMGF ∽DEF ∆. ∴FM MG FD DE=. ∴11643MG =. ∴43MG = 当43y =时,42-433x =+ ∴4x =.∴点M 的坐标为44,3⎛⎫ ⎪⎝⎭.(3)∵90PAB BCO ∠+∠=︒,90CBO BCO ∠+∠=︒, ∴∠=∠PAB CBO , ∵点B 的坐标为(6,0),点C 的坐标为(0,4), ∴42tan 63∠==CBO , ∴2tan 3∠=PAB ,过点P 作PQ ⊥AB ,当点P 在x 轴上方时,214122323-++=+m m m解得m =4符合题意,当点P 在x 轴下方时,214122323--=+m m m解得m =8符合题意,∴存在,m 的值为4或8.【点睛】·线○封○密○外本题考查了抛物线解析式的求法,抛物线的性质,三角形相似的判定及性质,三角函数的应用,解题的关键是准确作出辅助线,利用数形结合的思想列出相应关系式.4、(1)223y x x =--,点C 的坐标为(0,-3)(2)13(3)(-3,0)或(-13,0)【分析】(1)把A 、B 两点坐标代入函数求出b ,c 的值即可求函数表达式;再令x =0,求出y 从而求出C 点坐标;(2)先求B 、C 、D 三点坐标,再求证△BCD 为直角三角形,再根据正切的定义即可求出;(3)分两种情况分别进行讨论即可.(1)解:(1)将A (-1,0)、B (3,0)代入2++=y x bx c ,得10930.b c b c -+=⎧⎨++=⎩, 解得:23.b c =-⎧⎨=-⎩, 所以,223y x x =--.当x =0时,3y =-.∴点C 的坐标为(0,-3).(2)解:连接CD ,过点D 作DE ⊥y 轴于点E ,∵()2223=14=----y x x x ,∴点D 的坐标为(1,-4).∵B (3,0)、C (0,-3)、D (1,-4),E (0,-4),∴OB =OC =3,CE =DE =1, ∴BC=BD= ∴222+18220=+==BC DC DB . ∴∠BCD =90°. ∴tan ∠CBD=13DC BC ==.(3) 解:∵tan ∠ACO=13AO OC =, ∴∠ACO =∠CBD . ∵OC =OB ,∴∠OCB =∠OBC =45°.∴∠ACO+∠OCB =∠CBD+∠OBC . 即:∠ACB =∠DBO . ∴当△BDP 与△ABC 相似时,点P 在点B 左侧. (i )当=AC DB CB BP 时, ·线○封○密○外= ∴BP =6.∴P (-3,0).(ii )当=AC BP CB DB时,= ∴BP =103. ∴P (-13,0).综上,点P 的坐标为(-3,0)或(-13,0).【点睛】本题是二次函数的综合题,掌握相关知识是解题的关键.5、(1)14单位长度;(2)0.75秒或2.75秒;(3)正确,这个时间是0.5秒,定值是6单位长度.【分析】(1)根据非负数的性质求出a =﹣6,b =8,求差即可求解;(2)根据时间=路程和÷速度和,设行驶t 秒钟两列火车行驶到车头A 和C 相距8个单位长度,列方程即可求解;(3)由于PA +PB =AB =2,只需要PC +PD 是定值,从快车AB 上乘客P 与慢车CD 相遇到完全离开之间都满足PC +PD 是定值,依此分析即可求解.(1)解:(1)∵|a +6|与(b ﹣8)2互为相反数,∴|a +6|+(b ﹣8)2=0,∴a +6=0,b ﹣8=0,解得a =﹣6,b =8.∴此时刻快车头A 与慢车头C 之间相距8﹣(﹣6)=14(单位长度); 答:此时快车头A 与慢车头C 之间相距14单位长度; (2) 解:设行驶t 秒钟两列火车行驶到车头A 和C 相距8个单位长度,两车相遇前可列方程为 62148t t +=-, 解得,0.75t =. 两车相遇后可列方程为 62148t t +=+, 解得, 2.75t =. 答:再行驶0.75秒或2.75秒两列火车行驶到车头AC 相距8个单位长度; (3) 正确, ∵PA +PB =AB =2, 当P 在CD 之间时,PC +PD 是定值4,即路程为4,所以,行驶时间t =4÷(6+2) =4÷8 =0.5(秒), 此时PA +PC +PB +PD =(PA +PB )+(PC +PD )=2+4=6(单位长度). ·线○封○密○外故这个时间是0.5秒,定值是6单位长度.【点睛】本题考查了一元一次方程的应用,数轴、绝对值和偶次方的非负性,熟练掌握行程问题的等量关系:时间=路程÷速度,根据数形结合的思想理解和解决问题.。
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、填空题(每小题3分,共24分)1.如果|a |+a =0,则22(1)a a -+=______.2.已知x 2-x -1=0,则代数式-x 3+2x 2+2002的值为______.3.若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________.4.升国旗时,某同学站在离旗杆底部18米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为45°,若该同学双眼离地面1.6米,则旗杆高度为_______米.5.如图,某涵洞截面是抛物线型,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离CO =2.4m ,在图中直角坐标系内涵洞截面所在抛物线的表达式是______________.6.已知一个圆的弦切角等于40°,那么这个弦切角所夹的弧所对的圆心角的度数是______.7.如图,在Rt △ABC 中,腰AC =BC =1,按下列方法折叠Rt △ABC ,点B 不动,使BC 落在AB 上,点A 不动,使AB 落在AC 的延长线上;点C 不动,使CA 落在CB 上,设点A 、B 、C 对应的落点分别为A ′、B ′、C ′,则△A ′B ′C ′的面积是______.8.如图,⊙O 1的半径是⊙O 2的直径,⊙O 1的半径O 1C 交⊙O 2于B ,若AB 的度数是48°,那么AC 的度数是______.二、选择题(每小题3分,共18分)9.已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是( )A. 3B. 4C. 5D. 610.在一次汽车性能测试中,型号不同甲、乙两辆汽车同时从A 地出发,匀速向距离560千米的B 地行驶,结果甲车7小时到达,乙车8小时到达,则两车行驶时离A 地的距离s (千米)与行驶时间t (小时)的函数关系对应的图象大致是( )A B.C. D.11.两圆的圆心坐标分别为(3,0)、(0,4),直径分别为4和6,则这两圆的位置关系是( )A. 外离B. 相交C. 外切D. 内切12.在Rt ABC 中,C Rt ∠=∠,若30A ∠=,则cos sin A B +等于( ) A. 312 B. 1 3 D. 21213.在直角坐标系中,O 为坐标原点,A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 的个数共有( )A. 4个B. 3个C. 2个D. 1个14.当今材料科学已发展到纳米时代,1纳米等于1米的十亿分之一,我国科学家已研制成功直径为0.4纳米的碳米管,如果用科学记数法表示这种碳米管的直径,应为()A. 4×10-9米B. 0.4×10-8米C. 4×10-10米D. 0.4×10-9米三、解答题(15~19每小题8分,共40分)15.解方程21023x xx x-+=-.16.某校初二年级四个班的同学外出植树一天,已知每小时5个女生种3棵树,3个男生种5棵树,各班人数如图所示,则植树最多的是初二几班.17.声音在空气中传播的速度y(米/秒)是气温x (摄氏度)的一次函数,下表列出了一组不同气温时的音速.气温x/摄氏度0 5 10 15 20音速y/(米/秒) 331 334 337 340 343(1)求y 与x之间的函数关系式(2)气温x=22(摄氏度)时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地相距多远?18.某广场有一块长50米、宽30米的空地,现要将它改造为花园,请你设计一个修建方案,使满足下列条件:(1)正中间留出一条宽2米的道路(如图);(2)道路两旁修建花坛,且花坛总面积占整个面积(不包括道路)的一半;(3)设计好的整个图形既是轴对称图形,又是中心对称图形.(计算结果精确到0.1米).19.已知:△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)如图 (1)所示,当P 在线段AB 上时,求证:P A ·PB =PE ·PF ;(2)如图 (2)所示,当P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.四、解答题(每题9分,共18分)20.先仔细阅读下列材料,然后回答问题:如果a >0,b >0,那么(a -b )2≥0,即a +b -2ab ≥0 得2a b +≥ab ,其中,当a =b 时取等号,我们把2a b +称为a 、b 算术平均数, ab 称为a 、b 的几何平均数. 如果a >0,b >0,c >0,同样可以得到3a b c ++≥3abc ,其中,当a =b =c 时取等号于是就有定理:几个正数的算术平均数不小于它们的几何平均数.请用上述定理解答问题:把边长为30 cm 的正方形纸片的4角各剪去一个小正方形,折成无盖纸盒(如图)(1)设剪去的小正方形边长为x cm ,无盖纸盒的容积为V ,求V 与x 的函数关系式及x 的取值范围.(2)当x 为何值时,容积V 有最大值,最大值是多少?21.以△ABC 的边AC 为直径的半圆交AB 边于D 点,∠A 、∠B 、∠C 所对边长为a 、b 、c ,且二次函数y =12(a +c )x 2-bx +12(c -a )顶点在x 轴上,a 是方程z 2+z -20=0的根. (1)证明:∠ACB =90°;(2)若设b =2x ,弓形面积S 弓形AED =S 1,阴影面积为S 2,求(S 2-S 1)与x 的函数关系式;(3)在(2)条件下,当BD为何值时,(S2-S1)最大?答案与解析一、填空题(每小题3分,共24分)1.如果|a |+a =0______.【答案】-2a +1【解析】【分析】由0a a +=得到0,a ≤ 根据0a ≤ 【详解】解:0,a a +=,a a ∴=-0,a ∴≤10,a ∴-<1112.a a a a a =-+=--=-故答案为:12.a -a =是解题的关键.2.已知x 2-x -1=0,则代数式-x 3+2x 2+2002值为______.【答案】2003【解析】【分析】由210x x --=得到221,1,x x x x -==+把原多项式降次处理,进而可得答案.【详解】解:210,x x --=221,1,x x x x ∴-==+32222002(1)22002x x x x x ∴-++=-+++22002120022003.x x =-+=+=故答案为:2003.【点睛】本题考查的是代数式的值,把待求值的代数式进行降次处理是解题的关键.3.若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________.【答案】1 (答案不唯一,满足02m <<均可)【解析】【分析】一次函数()2y m x m =-+的图象经过第一、二、四象限,列出不等式组200,m m -<⎧⎨>⎩求解即可. 【详解】解:一次函数()2y m x m =-+的图象经过第一、二、四象限,200m m -<⎧⎨>⎩解得:02m <<m 值可以是1.故答案为:1(答案不唯一,满足02m <<均可).【点睛】此题主要考查了一次函数图象,一次函数y kx b =+的图象有四种情况:①当0,0k b >>时,函数y kx b =+的图象经过第一、二、三象限;②当0,0k b ><时,函数y kx b =+的图象经过第一、三、四象限;③当0,0k b <>时,函数y kx b =+的图象经过第一、二、四象限;④当0,0k b <<时,函数y kx b =+的图象经过第二、三、四象限.4.升国旗时,某同学站在离旗杆底部18米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为45°,若该同学双眼离地面1.6米,则旗杆高度为_______米.【答案】19.6【解析】【分析】由题意可知,在直角三角形中,已知角和邻边,要求出对边,直接用正切即可解答.【详解】解:根据题意可得:旗杆高度为1.6+18×tan45°=1.6+18=19.6(m ).故答案为:19.6.【点睛】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.5.如图,某涵洞的截面是抛物线型,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离CO =2.4m ,在图中直角坐标系内涵洞截面所在抛物线的表达式是______________.【答案】y =-154x 2 【解析】 【详解】解:设涵洞所在抛物线的解析式为y=ax 2,由题意可知点B 坐标为(0.8,-2.4),代入得-2.4=a×0.82 解得a=-154, 所以y=-154x 2 故答案为:y =-154x 2 【点睛】本题考查二次函数的应用.6.已知一个圆的弦切角等于40°,那么这个弦切角所夹的弧所对的圆心角的度数是______.【答案】80°【解析】【分析】根据题意画出图形,利用切线的性质与等腰三角形的性质可得答案.【详解】解:如图,AB 为O 的切线,切点为,40,DAB ∠=︒,OA AB ∴⊥90,OAB ∴∠=︒50,OAD ∴∠=︒,OA OD =50,OAD ODA ∴∠=∠=︒80.AOD ∴∠=︒故答案为:80°.【点睛】本题考查了切线的性质定理,等腰三角形的性质,掌握以上知识点是解题的关键.7.如图,在Rt △ABC 中,腰AC =BC =1,按下列方法折叠Rt △ABC ,点B 不动,使BC 落在AB 上,点A 不动,使AB 落在AC 的延长线上;点C 不动,使CA 落在CB 上,设点A 、B 、C 对应的落点分别为A ′、B ′、C ′,则△A ′B ′C ′的面积是______.【答案】12【解析】分析】 过'C 作''C H AB ⊥,利用轴对称的性质求解''',,,BC AB AC 利用勾股定理求解',C H 由''''''A B C ABB AB C S S S ∆∆∆=-可得答案.【详解】解:如图:过'C 作''C H AB ⊥,结合题意知:'AC H ∆是等腰直角三角形,由对折知:'1,BC BC ==Rt△ABC 中,腰AC =BC =1, 2,AB ∴='21,AC ∴=-'22(21)1,22C H ∴=-=- ''12212(1),2222AC B S ∆∴=⨯-=- 由对折知:'2,AB AB =='1221,22ABB S ∆∴=⨯⨯= ''''''2211(),2222A B C ABB AB C S S S ∆∆∆∴=-=--= 故答案为:12.【点睛】本题考查的是轴对称的性质,勾股定理,图形面积的计算,掌握轴对称的性质是解题的关键. 8.如图,⊙O 1的半径是⊙O 2的直径,⊙O 1的半径O 1C 交⊙O 2于B ,若AB 的度数是48°,那么AC 的度数是______.【答案】24°【解析】【分析】连接2BO ,得到等腰21O O B ∆,结合已知条件求解21O O B ∠,从而可得答案.【详解】解:如图,连接2,BOAB 的度数是48°, 248,AO B ∴∠=︒212,O O O B =212124,O O B O BO ∴∠=∠=︒AC ∴的度数是24︒,故答案是:24.︒【点睛】本题考查的是等腰三角形的性质,弧的度数等于它所对的圆心角的度数,掌握以上知识点是解题的关键.二、选择题(每小题3分,共18分)9.已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是( )A. 3B. 4C. 5D. 6【答案】D【解析】【分析】本题主要考查了多边形内角与外角.n 边形的内角和可以表示成(n-2)•180°,外角和为360°,根据题意列方程求解.【详解】解:设多边形的边数为n ,依题意,得(n-2)•180°=2×360°,解得n=6,故选D【点睛】错因分析较易题.失分原因:没有掌握多边形的内角和与外角和公式.逆袭突破多边形的性质,详见逆袭必备P24必备23.10.在一次汽车性能测试中,型号不同的甲、乙两辆汽车同时从A地出发,匀速向距离560千米的B地行驶,结果甲车7小时到达,乙车8小时到达,则两车行驶时离A地的距离s(千米)与行驶时间t(小时)的函数关系对应的图象大致是()A. B.C. D.【答案】C【解析】【分析】由甲乙列车同时出发,符合条件的有,C D,又因为甲车7小时到达,乙车8小时到达,所以甲车所花的时间少于乙车所花的时间,从而可得答案.【详解】解:因为甲乙列车同时出发,所以两个图像都经过原点,符合条件的有,C D,又因为甲车7小时到达,乙车8小时到达,所以甲车所花的时间少于乙车所花的时间,而图表示乙车还没有到达地,不符合题意,所以正确答案为C.故选C.【点睛】本题考查的是实际问题中的一次函数图像问题,掌握自变量的范围对函数图像的影响,以及路程与时间图像中,速度的大小对图像的影响,掌握以上知识是解题的关键.11.两圆的圆心坐标分别为(3,0)、(0,4),直径分别为4和6,则这两圆的位置关系是()A. 外离B. 相交C. 外切D. 内切【答案】C【解析】【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),外离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差).【详解】解:∵两圆直径分别为4和6,∴两圆的半径分别为2和3.∵两圆的圆心坐标分别为(3,0)、(0,4),∴根据勾股定理,得两圆的圆心距离为5.∵2+3=5,即两圆圆心距离等于两圆半径之和, ∴这两圆的位置关系是是外切.故选C .【点睛】本题考查勾股定理,两圆的位置关系.12.在Rt ABC 中,C Rt ∠=∠,若30A ∠=,则cos sin A B +等于( )B. 1 【答案】C【解析】解:∠B =90°﹣∠A =90°﹣30°=60°,则cos A +sin B =22+.故选C . 13.在直角坐标系中,O 为坐标原点,A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 的个数共有( )A. 4个B. 3个C. 2个D. 1个【答案】A【解析】【分析】有三种情况:当OA=OP 时,以O 为圆心,以OA 为半径画弧交x 轴于两点;当OA=AP 时,以A 为圆心,以OA 为半径画弧交x 轴于一点;当OP=AP 时,根据线段垂直平分线的性质作OA 的垂直平分线,交x 轴于点P ,综上即可得答案.【详解】如图,当OA=OP 时,以O 为圆心,以OA 为半径画弧交x 轴于两点(P 2、P 3),当OA=AP 时,以A 为圆心,以OA 为半径画弧交x 轴于一点(P 1),当OP=AP 时,作OA 的垂直平分线,交x 轴于一点(P 4).∴符合使△AOP 为等腰三角形的点P 有4个,故选A.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.14.当今材料科学已发展到纳米时代,1纳米等于1米的十亿分之一,我国科学家已研制成功直径为0.4纳米的碳米管,如果用科学记数法表示这种碳米管的直径,应为( )A. 4×10-9米B. 0.4×10-8米C. 4×10-10米D. 0.4×10-9米【答案】C【解析】【分析】 科学记数法的形式是:10n a ⨯ ,其中110,a ≤<为整数,所以4,a =,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数,本题小数点往右移动到4的后面,所以10.n =-【详解】解:0.4纳米910810.40.4104101010--=⨯=⨯=⨯⨯ 米. 故选C .【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响. 三、解答题(15~19每小题8分,共40分)15.解方程21023x x x x -+=-. 【答案】x 1=-1,x 2=3.【解析】【分析】去分母把方程化为整式方程,得到整式方程的解,检验可得答案.【详解】解:21023x x x x -+=- 223(2)310(2),x x x x ∴-+=-2230,x x ∴--=(3)(1)0,x x ∴-+=121, 3.x x ∴=-=经检验:121,3x x =-=都是原方程的根,所以原方程的根是121,3x x =-=.【点睛】本题考查的是分式方程的解法,掌握把分式方程化为整式方程再求解,并检验是解题关键. 16.某校初二年级四个班的同学外出植树一天,已知每小时5个女生种3棵树,3个男生种5棵树,各班人数如图所示,则植树最多的是初二几班.【答案】三班.【解析】【分析】由条形统计图得到各班的男女学生人数,由每班男、女生种树的速度相同,所以每班人数减去相同的女生数和男生数,计算剩下的男生与女生种的数的数量即可得到答案.【详解】解:由图可知一班 二班 三班 四班 女生数(人)22 18 13 15 男生数(人)18 20 22 21因为每班男、女生种树的速度相同,所以每班人数减去相同的女生数和男生数,比较结果不变,每个班减去13个女生和18个男生,一班余下女生9人,可植树35×9=525(棵).二班余下女生5人和男生2人,可植树35×5+53×2=613(棵).三班余下男生4人,可植树53×4=623(棵).四班余下女生2人和男生3人,可植树35×2+53×3=615(棵).所以种树最多的班级是三班. 【点睛】本题考查的是条形统计图的应用,掌握条形统计图的特点是解题的关键.17.声音在空气中传播的速度y (米/秒)是气温x (摄氏度)的一次函数,下表列出了一组不同气温时的音速.(1)求y 与 x 之间的函数关系式(2)气温x=22(摄氏度)时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地相距多远?【答案】(1)33315y x =+(2)1721 【解析】【分析】(1)由表中的数据可知,温度每升高5℃,声速就提高3米/秒,所以y 是x 的一次函数,利用待定系数法即可求出该函数解析式;(2)令x=22,求出此时的声速y ,然后利用路程=速度×时间即可求出该距离.【详解】(1)根据表中数据可知y 与x 成一次函数关系,故设y=kx+b ,取两点(0,331),(5,334)代入关系式得 3313345b k b =⎧⎨=+⎩,解得35331k b ⎧=⎪⎨⎪=⎩, ∴函数关系式为y=35x+331; (2)把x=22代入y=35x+331, 得y=35×22+331=344.2, 334.2×5=1721m ,∵光速非常快,传播时间可以忽略,故此人与燃放烟花的所在地相距约1721m .【点睛】本题考查了一次函数的应用,解题的关键是仔细分析表中的数据,利用待定系数法求出函数解析式.18.某广场有一块长50米、宽30米的空地,现要将它改造为花园,请你设计一个修建方案,使满足下列条件:(1)正中间留出一条宽2米的道路(如图);(2)道路两旁修建花坛,且花坛总面积占整个面积(不包括道路)的一半;(3)设计好的整个图形既是轴对称图形,又是中心对称图形.(计算结果精确到0.1米).【答案】x 的值约取3.9米.【解析】【分析】如图,设计成下图所示,设设花坛的边与空地之间的距离为米,由题意列出方程求解即可.【详解】解:设计成如下图方案.设花坛的边与空地之间的距离为米,由题意可列方程: (502)30(5024)(302),2x x -⨯---=227900,x x ∴-+= 解得: 123.93,2.1x x ≈≈(舍去),x 的值约取3.9米.花坛四周与空地的距离,中间与道路的距离都约为3.9米.【点睛】本题考查轴对称图形与中心对称图形,考查了一元二次方程的解法,掌握以上知识是解题的关键. 19.已知:△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)如图 (1)所示,当P 在线段AB 上时,求证:P A ·PB =PE ·PF ;(2)如图 (2)所示,当P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.【答案】(1)证明见解析;(2)对谁成立,证明见解析【解析】【分析】(1)利用圆周角、弦切角间的关系证明△APF ∽△BPE ,根据相似三角形的性质证明 PA •PB=PE •PF 成立.(2)当点P 在线段BA 的延长线上时,(1)的结论仍成立.先证明∠AFP=∠PBE ,再由∠BPE=∠FPA ,可得△PAF ∽△PEB ,根据成比例线段证明 PA •PB=PE •PF 成立.【详解】证明:(1) 如图1,连接,BO 延长BO 与圆交于,H∵EB 为⊙O 的切线,90,ABE HBA ∴∠+∠=︒ BH 为⊙O 的直径,90,BAH ∴∠=︒90,AHB ABH ∴∠+∠=︒,AHB ACB ∠=∠90,ACB ABH ∴∠+∠=︒∴∠ACB=∠ABE ,∵EF ∥BC ,∴∠AFP=∠ACB ,故∠AFP=∠ABE .∠APF=∠EPB ,∴△APF ∽△BPE , ,PA PF PE PB∴= ∴PA•PB=PE•PF .(2)结论成立,理由如下:∵EB 为⊙O 的切线,结合(1)问:∴∠ACB=∠ABT ,∵EF ∥BC ,∴∠ACB =∠AFP ,,ACB ABT AFP ∴∠=∠=∠∴∠AFP=∠PBE .∠BPE=∠FPA ,△PAF ∽△PEB ,,PA PF PE PB ∴= ∴PA•PB=PE•PF .当点P 在线段BA 的延长线上时,(1)的结论仍成立.【点睛】本题主要考查圆的相交弦及切线的性质,用三角形全等证明线段间的关系,体现了数形结合的数学思想,属于中档题.四、解答题(每题9分,共18分)20.先仔细阅读下列材料,然后回答问题:如果a >0,b >0,那么(a -b )2≥0,即a +b -2ab ≥0 得2a b +≥ab ,其中,当a =b 时取等号,我们把2a b +称为a 、b 的算术平均数, ab 称为a 、b 的几何平均数. 如果a >0,b >0,c >0,同样可以得到3a b c ++≥3abc ,其中,当a =b =c 时取等号于是就有定理:几个正数的算术平均数不小于它们的几何平均数.请用上述定理解答问题:把边长为30 cm 的正方形纸片的4角各剪去一个小正方形,折成无盖纸盒(如图)(1)设剪去的小正方形边长为x cm ,无盖纸盒的容积为V ,求V 与x 的函数关系式及x 的取值范围.(2)当x 为何值时,容积V 有最大值,最大值多少?【答案】(1)V =4x (15-x )2(0<x <15);(2)当剪去的小正方形边长为5 cm 时,无盖空盒的容积最大为2×103 cm 3 【解析】【分析】(1)由剪去的小正方形边长为x cm ,表示纸盒的底边与高,利用容积公式得到答案,(2)利用3a b c ++3abc 【详解】解:(1) 设剪去的小正方形边长为x cm ,纸盒底边为(302),x cm -纸盒的高是,xcmV =x (30-2x )(30-2x )=4x (15-x )2(0<x <15),(2) V =332(15)(15)22(15)(15)2210,3x x x x x x +-+-⎡⎤••--≤=⨯⎢⎥⎣⎦这时,当2x =15-x ,即x =5时取等号.∴ 当剪去的小正方形边长为5 cm 时,无盖空盒的容积最大为2×103 cm 3 【点睛】本题考查的是阅读题型,掌握题干给的信息解决实际问题,同时考查了列函数关系式,求函数的最大值等问题,知识迁移能力是解题关键.21.以△ABC 的边AC 为直径的半圆交AB 边于D 点,∠A 、∠B 、∠C 所对边长为a 、b 、c ,且二次函数y =12(a +c )x 2-bx +12(c -a )顶点在x 轴上,a 是方程z 2+z -20=0的根. (1)证明:∠ACB =90°;(2)若设b =2x ,弓形面积S 弓形AED =S 1,阴影面积为S 2,求(S 2-S 1)与x 的函数关系式;(3)在(2)的条件下,当BD 为何值时,(S 2-S 1)最大?【答案】(1)证明见解析;(2)S 2-S 1=-2πx 2+4x ;(3)BD 244ππ+. 【解析】【分析】(1)由抛物线的顶点在轴上,得到0,∆= 从而可得结论.(2)利用a 是z 2+z -20=0的根,求解的值,再利用S 2-S 1=S △ABC -(S 半圆-S 1)-S 1=S △ABC -S 半圆,从而可得答案,(3)由(2)的函数关系式求解(21S S -)最大时,,a b c ,利用直径所对的圆周角是直角,得到,BCD BAC ∆∆利用相似三角形的性质可得答案. 【详解】(1)因为二次函数y =12(a +c )x 2-bx +12(c -a )的顶点在x 轴上, ∴ Δ=0,即:b 2-4×12(a +c )×12(c -a )=0, ∴ c 2=a 2+b 2,得∠ACB =90°.(2)∵ z 2+z -20=0.∴ z 1=-5,z 2=4,∵ a >0,得a =4.设b =AC =2x ,有S △ABC =12AC ·BC =4x ,S 半圆=12π x 2∴ S 2-S 1=S △ABC -(S 半圆-S 1)-S 1=S △ABC -S 半圆=-2πx 2+4x (3) S 2-S 1=-2π(x -4π)2+8π, ∴ 当x =4π时,(S 2-S 1)有最大值8π. 这时,b =8π,a =4,c =244ππ+, 如图,连接,CDAC 为圆的直径,90,90,ADC CDB ∴∠=︒∠=︒90,ACB ∠=︒,BCD BAC ∴∆∆,BC BD BA BC∴= BD =22244BC a BA c ππ+==. 当BD 为22444ππ++时,(S 2-S 1)最大. 【点睛】本题考查二次函数与轴只有一个交点的性质,考查一元二次方程的解法,二次函数的最值,三角形相似的判定与性质,直径所对的圆周角是直角等知识点,掌握相关的知识点是解题的关键.。
湖北省广水市数学中考模拟试题(一)一、选择题(本大题共10小题,每小题3分,共30分。
每小题给出的四个选项中,只有一个是正确的)1.(3分)|﹣2|的值是()A.﹣2B.2C.D.﹣2.(3分)下列计算正确的是()A.(a+2)(a﹣2)=a2﹣2B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2D.(a﹣b)2=a2﹣2ab+b23.(3分)一个几何体的三视图如图所示,这个几何体是()A.棱柱B.正方形C.圆柱D.圆锥4.(3分)假设五个相异正整数的平均数是15,中位数是18,则这五个相异正整数中的最大数的最大值为()A.24B.32C.35D.405.(3分)下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩.④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点之间,线段最短”来解释的现象正确的选项是()A.①B.②C.③D.④6.(3分)画正三角形ABC(如图)水平放置的直观图△A′B′C′,正确的是()A.B.C.D.7.(3分)已知一个两位数,它的十位上的数字x比个位上的数字y大1,若对调个位与十位上的数字,得到的新数比原数小9,求这个两位数,所列方程组正确的是()A.B.C.D.8.(3分)如图所示,图(1)中含“○”的矩形有1个,图(2)中含“○”的矩形有7个,图(3)中含“○”的矩形有17个,按此规律,图(6)中含“○”的矩形有()A.70B.71C.72D.739.(3分)关于二次函数y=2x2﹣mx+m﹣2,以下结论:①抛物线交x轴有交点;②不论m取何值,抛物线总经过点(1,0);③若m>6,抛物线交x轴于A、B两点,则AB>1;④抛物线的顶点在y=﹣2(x﹣1)2图象上.其中正确的序号是()A.①②③④B.①②③C.①②④D.②③④10.(3分)如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=2,则MF的长是()A.B.C.1D.二、填空题(本小题共6小题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号的横线上.)11.(3分)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数字27500用科学记数法表示为.12.(3分)下列问题你能肯定的是(填“能”或“不能”):(1)钝角大于锐角:;(2)直线比线段长:;(3)多边形的外角和都是360°:;(4)明天会下雨:.13.(3分)如图所示,线段AB与CD都是⊙O中的弦,其中=108°,AB=a,=36°,CD=b,则⊙O的半径R=.14.(3分)点P是△ABC中AB边上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与△ABC相似.满足这样条件的直线最多有条.15.(3分)在平面直角坐标系中,点A、B的坐标分别为(2,0 ),(4,0),点C的坐标为(m,m)(m为非负数),则CA+CB的最小值是.16.(3分)甲、乙两人从A地出发前往B地,甲先出发1分钟后,乙再出发,乙出发一段时间后返回A地取物品,甲、乙两人同时达到B地和A地,并立即掉头相向而行直至相遇,甲、乙两人之间相距的路程y(米)与甲出发的时间x (分钟)之间的关系如图所示,则甲、乙两人最后相遇时,乙距B地的路程是米.三、解答题(本题共9小题,共72分,解答应写出必要演算步骤、文字说明或证明过程.)17.(5分)计算:()﹣2﹣(﹣π)0+﹣|﹣2|.18.(6分)解分式方程:(1)+=2(2)+=.19.(6分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=.(1)求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.20.(7分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)21.(8分)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.(8分)如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).23.(10分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?24.(10分)如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD 的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.25.(12分)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y 轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C 的坐标为(0,),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.参考答案与试题解析一、1.B.2.D 3.C.4.C.5.B.6.D.7.D.8.B.9.A 10.D.二、11.2.75×104.12.(1)能;(2)不能;(3)能;(4)不能.13.a﹣b或.14.4.15.2.16.320.三、解答题(本题共9小题,共72分,解答应写出必要演算步骤、文字说明或证明过程.)17.(5分)计算:()﹣2﹣(﹣π)0+﹣|﹣2|.【解答】解:原式=9﹣1+3﹣2=9.18.(6分)解分式方程:(1)+=2(2)+=.【解答】解:(1)去分母得:3x+3+2x2﹣2x=2x2﹣2,解得:x=﹣5,经检验:x=﹣5为原方程的解,(2)去分母得:(x+2)2+16=(x﹣2)2,整理得:8x=﹣16,解得:x=﹣2,经检验:x=﹣2为原方程的增根,则原方程无解.19.(6分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=.(1)求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.【解答】解:(1)由题意B(﹣2,),把B(﹣2,)代入y=中,得到k=﹣3,∴反比例函数的解析式为y=﹣.(2)结论:P在第二象限,Q在第四象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第四象限.20.(7分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)【解答】解:如图,延长EF交AB于点G.设AB=x米,则BG=AB﹣2=(x﹣2)米.则EG=(AB﹣2)÷tan∠BEG=(x﹣2),CA=AB÷tan∠ACB=x.则CD=EG﹣AC=(x﹣2)﹣x=20.解可得:x=10+3.答:古塔AB的高为(10+3)米.21.(8分)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有40名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.【解答】解:(1)参加初赛的选手共有:8÷20%=40(人),B组有:40×25%=10(人).频数分布直方图补充如下:故答案为40;(2)C组对应的圆心角度数是:360°×=108°,E组人数占参赛选手的百分比是:×100%=15%;(3)画树状图得:∵共有12种等可能的结果,抽取的两人恰好是一男生和一女生的有8种结果,∴抽取的两人恰好是一男生和一女生的概率为=.22.(8分)如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).【解答】(1)证明:连接DE,OD.∵BC相切⊙O于点D,∴∠CDA=∠AED,∵AE为直径,∴∠ADE=90°,∵AC⊥BC,∴∠ACD=90°,∴∠DAO=∠CAD,∴AD平分∠BAC;(2)∵在Rt △ABC 中,∠C=90°,AC=BC ,∴∠B=∠BAC=45°,∵BC 相切⊙O 于点D ,∴∠ODB=90°,∴OD=BD ,∴∠BOD=45°,设BD=x ,则OD=OA=x ,OB=x , ∴BC=AC=x +1,∵AC 2+BC 2=AB 2,∴2(x +1)2=(x +x )2, ∴x=,∴BD=OD=,∴图中阴影部分的面积=S △BOD ﹣S 扇形DOE =﹣=1﹣.23.(10分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本. (1)求出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?【解答】解:(1)设y=kx +b ,把(22,36)与(24,32)代入得:,解得:,则y=﹣2x+80;(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,则(x﹣20)(﹣2x+80)=150,整理得:x2﹣60x+875=0,(x﹣25)(x﹣35)=0,解得:x1=25,x2=35,∵20≤x≤28,∴x=35(不合题意舍去),答:每本纪念册的销售单价是25元;(3)由题意可得:w=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,此时当x=30时,w最大,又∵售价不低于20元且不高于28元,2(28﹣30)2+200=192∴x<30时,y随x的增大而增大,即当x=28时,w最大=﹣(元),答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.24.(10分)如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.【解答】解:(1)∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∠A=∠C=90°,在Rt△ABD中,BD=10,∵E、F分别是AB、BD的中点,∴EF∥AD,EF=AD=4,BF=DF=5,∴∠BEF=∠A=90°=∠C,EF∥BC,∴∠BFE=∠DBC,∴△BEF∽△DCB;(2)如图1,过点Q作QM⊥EF于M,∴QM∥BE,∴△QMF∽△BEF,∴,∴,∴QM=(5﹣2t),=PF×QM=(4﹣t)×(5﹣2t)=0.6=,∴S△PFQ∴t=(舍)或t=2秒;(3)当点Q在DF上时,如图2,PF=QF,∴4﹣t=5﹣2t,∴t=1当点Q在BF上时,PF=QF,如图3,∴4﹣t=2t﹣5,∴t=3PQ=FQ时,如图4,∴,∴t=,PQ=PF时,如图5,∴,∴t=,综上所述,t=1或3或或秒时,△PQF是等腰三角形.25.(12分)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y 轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.【解答】解:(1)y=mx2﹣2mx﹣3m,=m(x﹣3)(x+1),∵m≠0,∴当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)设C1:y=ax2+bx+c,将A,B,C三点坐标代入得:,解得:,故C1:y=x2﹣x﹣;如图,过点P作PQ∥y轴,交BC于Q,由B、C的坐标可得直线BC的解析式为y=x﹣,设p(x,x2﹣x﹣),则Q(x,x﹣),PQ=x﹣﹣(x2﹣x﹣)=﹣x2+x,S△PBC=S△PCQ+S△PBQ=PQ•OB=×3×(﹣x2+x)=﹣+x=﹣(x﹣)2+,当x=时,S max=,∴P()(3)y=mx2﹣2mx﹣3m=m(x﹣1)2﹣4m,顶点M坐标(1,﹣4m),当x=0时,y=﹣3m,∴D(0,﹣3m),B(3,0),∴DM2=(0﹣1)2+(﹣3m+4m)2=m2+1,MB2=(3﹣1)2+(0+4m)2=16m2+4,BD2=(3﹣0)2+(0+3m)2=9m2+9,当△BDM为直角三角形时,分两种情况:①当∠BDM=90°时,有DM2+BD2=MB2,解得m1=﹣1,m2=1(∵m<0,∴m=1舍去);②当∠BMD=90°时,有DM2+MB2=BD2,解得m1=﹣,m2=(舍去),综上,m=﹣1或﹣时,△BDM为直角三角形.。