高中数学 函数的基本性质
- 格式:docx
- 大小:111.00 KB
- 文档页数:5
2.1函数的基本性质一、教学目标1.结合具体函数,了解函数单调性的含义;2.会运用函数奇偶性的定义和函数的图象理解研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、教学重点1.回顾和理解函数的三大性质单调性、奇偶性以及周期性基础知识,掌握其概念的应用,一般是判断单调性、求参数或求值;2.掌握运用基础知识处理函数性质的综合应用题的解题思路. 其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.三、教学难点掌握周期性与抽象函数结合类的题型.高考对函数周期性的考查,常与抽象函数结合,题型主要以选择题或填空的形式出现,常涉及函数求值问题,且与函数的单调性、奇偶性相结合命题.四、教学过程(一)考情解读设计意图:对2016年广东开始高考卷之后的全国卷类型题进行整合,以表格形式呈现,一目了然,分析可得函数的基本性质是高考的常考内容,题型一般为选择填空,占分一般为5-10分.紧接着分析考点内容,明确复习方向.(二)知识梳理设计意图:对函数的单调性、奇偶性、周期性的定义、图像特点等进行梳理,把重点内容标红,并进行相应讲解,为后面的题型讲解奠定知识基础.1.单调函数的定义及几何意义2.函数的最值3.函数的奇偶性4.周期性(三)典例分析题型一:函数的单调性设计意图:精选了两道单调性的题目作为例题,例1为简单地应用单调性定义及函数图像特征判断单调性的题目,通过此题老师可带领学生总结判断函数单调性的方法:定义法、图像法等;例2为已知分段函数单调性求参数范围的题目,通过此题巩固应用单调性求参数、不等式等题型.【例1】(2021·全国甲卷)下列函数中是增函数的为()A .()f x x =-B .()23x f x ⎛⎫= ⎪⎝⎭C .()2f x x =D .()f x 【例2】已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( )A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭ 题型二:函数的奇偶性设计意图:精选了两道奇偶性的题目作为例题,例1为简单地应用奇偶性定义求参数的题目,通过此题老师可带领学生巩固奇偶性的定义及图像特征;例2为奇偶性与分段函数结合的题目,但只要把握奇偶性的定义,可很快解决,通过此题再次强化奇偶性相关知识.【例1】(2021·全国Ⅰ卷)已知函数()()322x x x a f x -=⋅-是偶函数,则a =______.【例2】(2019·全国Ⅰ卷)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+题型三:函数的周期性设计意图:由于周期性一般与抽象函数及奇偶性相结合,题目比较综合.这里选取了一道直接利用周期性定义进行求值的题目,教师通过此题引导学生回顾求值由内到外的原则及分段函数求值的相关知识,巩固周期性的定义,为下一题型综合题奠定基础.【例1】(2018·江苏卷)函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πcos ,02,21,20,2x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则()()15f f 的值为________. 题型四:函数性质的综合应用设计意图:精选了两道函数性质的综合应用的题型.例1为单调性与奇偶性相结合解不等式 的相关问题,教师可引导学生将此类已知单调性和奇偶性的抽象函数问题具体化画图来思考,紧紧扣住定义解题.例2为奇偶性与周期性相结合求值的题,通过此题再次巩固奇偶性和周期性的定义,将题目已知条件转化为熟悉的定义再去解题.()2017(,)(1)11(2)1A.[2,2] B.[1,1] C.[0,4] D.[1,3]f x f f x x ⋅-∞+∞ =- -- --【例1】(全国Ⅰ卷)函数在单调递减,且为奇函数,若,则满足的的取值范围是()≤≤ ()(,)(1)(1).(1)2(1)(2)(3)(502018A.50 B.0 C.2 D.0)5f x f x f f f f f f x -∞+∞ -=+=++++= ⋅-若,则…(【例2】(全国Ⅱ卷)已知是定义域为的奇函数,满足)(四)巩固练习设计意图:精选了三道题作为练习题.第一题考查单调性的判断和奇偶性定义,再次巩固函数基本性质的概念,为基础题.第二题为单调性与奇偶性相结合解不等式的相关问题,巩固数形结合思想.第三题为奇偶性和周期性相结合求值的题,为自编题,难度系数不高,巩固学生对周期性和奇偶性的概念理解,提高信心.1.(2020·全国Ⅰ卷)设函数()331f x x x =-,则()f x ( )A .是奇函数,且在()0,+∞单调递增B .是奇函数,且在()0,+∞单调递减C .是偶函数,且在()0,+∞单调递增D .是偶函数,且在()0,+∞单调递减2.(2014·全国Ⅰ卷)已知偶函数f x ()在[0,)+∞单调递减,f (2)0=.若f x >(-1)0,则x 的取值范围是__________.()()()()()3R ,R,4,22,2022=A.2022 B.2 C.2022 D.2f x x f x f x f f ∈ +=-= --.已知函数是上的奇函数对任意都有若则()(五)总结提升设计意图:制作了本节课的思维导图,引导同学们再次巩固函数基本性质高考重点考查的题型及其对应方法.五、作业设计设计意图:作业选取了两道单选题,一道多选题,四道填空题.题一考查单调性判断和奇偶性定义;题二考查奇偶性的定义,深化概念;题三考查单调性解不等式,为单调性的应用类题;题四考查奇偶性应用求解析式;题五考查偶函数的定义,跟2021出现的题目非常相像,说明研究高考题的重要性,值得深思;题六考查周期性的定义,为周期性和奇偶性的简单综合题;题七需要将题目所给等式经过化简才能变为周期性的定义的模式,进一步深化周期性与奇偶性的概念及其应用.。
高中数学必修1函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
第二章 函数§2.1 函数及其性质一、函数的基本性质:1. 函数图像的对称性(1) 奇函数与偶函数:奇函数图像关于坐标原点对称,对于任意x D ∈,都有()()f x f x -=-成立;偶函数的图像关于y 轴对称,对于任意x D ∈,都有()()f x f x -=成立。
(2) 原函数与其反函数:原函数与其反函数的图像关于直线y x =对称。
若某一函数与其反函数表示同一函数时,那么此函数的图像就关于直线y x =对称。
(3) 若函数满足()(2)f x f ax =-,则()f x 的图像就关于直线x a =对称;若函数满足()(2)f x f a x =--,则()f x 的图像就关于点(,0)a 对称。
(4) 互对称知识:函数()()y f x a y f a x =-=-与的图像关于直线x a =对称。
2.函数的单调性函数的单调性是针对其定义域的某个子区间而言的。
判断一个函数的单调性一般采用定义法、导数法或借助其他函数结合单调性的性质(如复合函数的单调性)特别提示:函数(0)ay x a x=+>的图像和单调区间。
3.函数的周期性对于函数()y f x =,若存在一个非零常数T ,使得当x 为定义域中的每一个值时,都有()()f x T f x +=成立,则称()y f x =是周期函数,T 称为该函数的一个周期。
若在所有的周期中存在一个最小的正数,就称其为最小正周期。
(1) 若T 是()y f x =的周期,那么()nT n Z ∈也是它的周期。
(2) 若()y f x =是周期为T 的函数,则()(0)y f ax b a =+≠是周期为Ta的周期函数。
(3) 若函数()y f x =的图像关于直线x a x b ==和对称,则()y f x =是周期为2()a b -的函数。
(4) 若函数()y f x =满足()()(0)f x a f x a +=-≠,则()y f x =是周期为2a 的函数。
高中数学教案函数的基本概念和性质高中数学教案:函数的基本概念和性质函数是数学中非常重要的一个概念,它在各个学科和实际生活中都有着广泛的应用。
本教案将介绍函数的基本概念和性质,帮助学生全面理解和掌握函数的本质和运用。
一、函数的引入和定义函数最早是由数学家高斯引入的,它描述了两个数集之间的一种特殊关系。
通常情况下,我们将函数表示为y=f(x),其中x是自变量,y是因变量。
x的取值范围称为定义域,而y的取值范围称为值域。
函数可以用图像、映射、表格或公式等形式来表示。
二、函数的图像和性质函数的图像是将函数的各个取值与对应的值域点在坐标系中标出所得到的图形。
根据函数图像的不同形态,可以得出函数的性质。
其中,常见的函数类型有线性函数,二次函数,指数函数和对数函数等。
不同的函数类型有其独特的特点和变化规律,对于理解和应用函数非常重要。
三、函数的基本性质1. 定义域和值域:函数的定义域和值域反映了函数的取值范围。
对于函数来说,每一个自变量都有且只有一个对应的因变量。
2. 奇偶性:函数的奇偶性是指函数在布尔对称轴上是否对称。
其中,奇函数满足f(-x) = -f(x),而偶函数则有f(-x) = f(x)。
3. 单调性:函数的单调性揭示了函数随自变量变化时的增减规律。
函数可以是增函数、减函数或常函数。
4. 极值:函数的极值指的是函数在其定义域内达到的最大值或最小值。
极大值对应局部最大值,极小值对应局部最小值。
5. 零点:函数的零点是指函数取值为0的自变量值。
寻找函数的零点对于解方程和求解实际问题具有重要意义。
四、函数的应用函数在实际生活中具有广泛的应用价值,例如在经济学、物理学、生物学等领域中。
通过函数,我们可以分析和描述事物之间的数学关系,进而解决实际问题。
函数的应用包括但不限于以下几个方面:1. 函数建模:将实际问题抽象成函数,利用函数的性质进行问题建模和求解。
2. 函数图像分析:通过观察函数的图像,分析函数的特点、极值、零点等,并进行数据的预测与实际意义的探讨。
高一数学人教版必修一第一单元知识点:函数的基本性质高一数学人教版必修一第一单元知识点:函数的基本性质函数表示每个输入值对应唯一输出值的一种对应关系。
小编准备了高一数学人教版必修一第一单元知识点,希望你喜欢。
1.高中数学必修一函数的基本性质——函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1) 分式的分母不等于零;(2) 偶次方根的被开方数不小于零;(3) 对数式的真数必须大于零;(4) 指数、对数式的底必须大于零且不等于 1.中的 x 为横坐标,函数值 y 为纵坐标的点 P(x , y) 的集合 C ,叫做函数y=f(x),(x ∈A)的图象.C 上每一点的坐标 (x , y) 均满足函数关系 y=f(x) ,反过来,以满足 y=f(x) 的每一组有序实数对 x 、 y 为坐标的点 (x , y) ,均在 C 上 . 即记为 C={ P(x,y) | y= f(x) , x ∈A }图象 C 一般的是一条光滑的连续曲线 ( 或直线 ), 也可能是由与任意平行与 Y 轴的直线最多只有一个交点的若干条曲线或离散点组成 .(2) 画法A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 (x,y) 为坐标在坐标系内描出相应的点P(x, y) ,最后用平滑的曲线将这些点连接起来 .B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3) 作用:1 、直观的看出函数的性质;2 、利用数形结合的方法分析解题的思路。
第二章 函数
第二节 函数的基本性质
一、历年高考真题题型分类突破
题型一 函数单调性的应用--比较大小
【例1】(2019全国Ⅰ卷)已知a =log 20.2,b =20.2,c =0.20.3,则( )
A .a <b <c
B .a <c <b
C .c <a <b
D .b <c <a 解析:a =log 20.2<log 21=0,b =20.2>20=1,
∵0<0.20.3<0.20=1,∴c =0.20.3
∈(0,1),
∴a <c <b ,故选B . 题型二 函数奇偶性的判断
【例2】(2014全国Ⅰ卷)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( )
A.)()(x g x f 是偶函数
B. )(|)(|x g x f 是奇函数
C. |)(|)(x g x f 是奇函数
D. |)()(|x g x f 是奇函数
解析:由函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,可得,|()|f x 和|()|g x 均为偶函数,根据一奇一偶函数相乘为奇函数和两偶函数相乘为偶函数的规律可知选C .
题型三 函数奇偶性的应用
【例3】(2019全国Ⅱ卷)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=( )
A .
B .e 1x -+
C .
D .e 1x --+ 解析:当0<x 时,0->x ,()1--=-x f x e ,又()f x 为奇函数,
有()()1-=--=-+x f x f x e . 故选D.
【例4】(2018全国Ⅲ卷)已知函数f(x)=ln(1-x 2-x)+1,f(a)=4,
则f(-a)= ________.
e 1x --e 1x ---
解析:设g(x)= ln(1-x 2
-x),g(x)为奇函数,f(a)=g(a)+1,f(-a)=g(-a)+1,相
加可得f(-a)= -2.
【例5】(2017全国Ⅱ卷)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f(x)=2x 3+x 2,则f(2)= .
解析:∵f(x)是定义在R 上的奇函数,
∴f(2)=-f(-2)=-[2×(-2)3+(-2)2]=12. 题型四 函数单调性的应用--求参数的取值范围
【例6】(2014全国Ⅱ卷)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是 ( )
(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ 解析:函数f (x )=kx ﹣lnx 在区间(1,+∞)单调递增,
∴当x >1时,f ′(x )=k ﹣ 1x
≥0,∴k ﹣1 ≥0,∴k ≥1,故选D . 【例7】(2016全国Ⅰ卷)若函数1()sin 2sin 3
f x x -x a x =+在(-∞,+∞)单调递增,则a 的取值范围是( )
A .[-1,1]
B .[-1,
13] C .[-,13] D .[-1,-13
] 解析:2()sin cos sin 3f x x -x x a x =+,222'()1(cos sin )cos 3
f x -x x a x ∴=-+, 依题意f'(x )≥0恒成立,即a cos x ≥2cos213
x -恒成立,而(a cos x )min =-|a |,21111cos21||[]33333x a a -≤-∴-≥-∈-,,解得,,故选C . 题型五 函数周期性的应用
【例8】(2018全国Ⅲ卷)函数f(x)=
tanx 1+tan 2x 的最小正周期为( ) A .π4 B .π2
C .π
D .2π 解析: f(x)= tanx 1+tan 2x =12sin2x ,则f(x)的最小正周期2πω
T = =π,故选C .
题型六 函数奇偶性、周期性的综合应用
【例9】(2018全国Ⅱ卷)已知f(x)是定义域为(-∞,+ ∞)的奇函数,满足f(1-x)= f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)= ( )
A .-50
B .0
C .2
D .50
解析:由f(1-x)= f(1+x)得f(x+2)=-f(x),所以f(x)是以4为周期的奇函数,且f(-1)=-f(1)=-2,f(0)=0,f(1)=2,f(2)=f(0)=0,f(3)=f(-1)=-2,f(4)=f(0)=0; 所以f(1)+f(2)+f(3)+…+f(50)=f(1)+f(2)=2.故选C.
题型七 函数单调性、奇偶性的综合应用
【例10】(2015全国Ⅱ卷)设函数,则使得成立的的取值范围是( )
A .
B .
C .
D .解析:由可知是偶函数,且在是增函数,所以 ,故选A . 【例11】(2020全国Ⅱ卷)设函数33
1()f x x x =-,则()f x ( ) A.是奇函数,且在(0,+∞)单调递增 B.是奇函数,且在(0,+∞)单调递减
C.是偶函数,且在(0,+∞)单调递增
D.是偶函数,且在(0,+∞)单调递减 解析:因为f(-x)= f(x),所以f(x)是奇函数.令g (x )=x 3 ,当x >0时,g (x )单调
1
递增,g (x ) 单调递减,所以在f(x)在(0,+∞)单调递增,故选A. 题型八 求函数的单调区间
【例12】(2017全国Ⅱ卷)函数f(x)=ln(x 2-2x -8)的单调递增区间是( )
A.(-∞,-2)
B.(-∞,1)
C.(1,+∞)
D.(4,+∞) 解析:依题意有x 2-2x -8>0,解得x <-2或x >4,易知f(x)在(-∞,-2)单调递减,在(4,+∞)单调递增,所以f(x)的单调递增区间是(4,+∞).故选D.
21()ln(1||)1f x x x =+-
+()(21)f x f x >-x 1,13⎛⎫
⎪⎝⎭()1,1,3⎛⎫-∞+∞ ⎪⎝⎭11,33⎛⎫- ⎪⎝⎭
11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭2
1()ln(1||)1f x x x =+-+()f x [)0,+∞()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔
<<
【例13】(2017全国Ⅱ卷)设函数f (x )=(1-x 2)e x .
(1)讨论f (x )的单调性;
(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围.
解析:(1)∵f (x )=(1-x 2)e x ,∴f ′(x )=(1-2x -x 2)e x .
令f ′(x )=0得x =-1-2或x =-1+2.
当x ∈(-∞,-1-2)时,f ′(x )<0;
当x ∈(-1-2,-1+2)时,f ′(x )>0;
当x ∈(-1+2,+∞)时,f ′(x )<0.
∴f (x )在(-∞,-1-2)和(-1+2,+∞)单调递减,在(-1-2,-1+2)单调递增.
(2)f (x )=(1+x )(1-x )e x .
当a ≥1时,设函数h (x )=(1-x )e x ,则h ′(x )=-x e x <0(x >0),
∴h (x )在[0,+∞)单调递减.
又h (0)=1,∴h (x )≤1,∴f (x )=(x +1)h (x )≤x +1≤ax +1.
当0<a <1时,设函数g (x )=e x -x -1,则g ′(x )=e x -1>0(x >0).
∴g (x )在[0,+∞)单调递增.
又g (0)=0,∴e x ≥x +1.
当0<x <1时,f (x )>(1-x )(1+x )2,
(1-x )(1+x )2-a x -1=x (1-a -x -x 2),
取x 0=5-4a -1
2
,则x 0∈(0,1). (1-x 0)(1+x 0)2-a x 0-1=0,∴f (x 0)>a x 0+1.
当a ≤0时,取x 0=5-1
2,则x 0∈(0,1).
f (x 0)>(1-x 0)(1+x 0)2=1>a x 0+1.
综上,a 的取值范围是[1,+∞).
题型九 函数单调性的应用--构造新函数
【例14】(2020全国Ⅱ卷) 若2233x y x y ---<-,则( )
A. ln(1)0y x -+>
B. ln(1)0y x -+<
C. ln ||0x y ->
D. ln ||0x y -<
解析:由 2233x y x y ---<-,移项可得2x -3-x <2y -3-y ,函数 f(x)=2x -3-x 在R 上单调递增,所以y > x ,因此y-x >0 ,y-x+1 >1 , 所以ln(y-x+1) >ln1=0,故选A.。